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(What are quasiparticles ? ]

e (Quasiparticles are additive excitations:
The low-lying excitations of the many-body system
can be identified as a set {n,} of quasiparticles with
energy &,

E =), Naca+ Za,ﬁ Fopnong + ...

In a lattice system of IV sites, this parameterizes the energy
of ~ e*V states in terms of poly(/N) numbers.



(What are quasiparticles ? ]

e (Quasiparticles eventually collide with each other. Such
collisions eventually leads to thermal equilibration in a
chaotic quantum state, but the equilibration takes a long
time. In a Fermi liquid, this time diverges as

hEr

ipT)2 as 1" — 0,

Teq ™

where E'r 1s the Fermi energy.



(What are quasiparticles ? j

e (Quasiparticles eventually collide with each other. Such
collisions eventually leads to thermal equilibration in a
chaotic quantum state, but the equilibration takes a long

time. In a Fermi liquid, this time diverges as

hEp
(kT)?

Teq ™~ as 1" — 0,

where E'r 1s the Fermi energy.

e This time is much longer than the ‘Planckian time’ h/(kgT),
which we will find in systems without quasiparticle ex-

citations. 5
Teq > as 1" — 0.

kgl
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Electrons move one-by-one randomly
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A simple model of a metal with quasiparticles

N
1
_ E( o ET
H—( )1/2 tijC,Cj — [ C, C;

i j=1 i

T T,
] _I_Cjc’i — 5@'

%Zczci =X0,

cic; +cjci =0 , coc

t;; are independent random variables with ¢;; = 0 and |¢;,]? = ¢

Fermions occupying the eigenstates of a
N x N random matrix



A simple model of a metal with quasiparticles

Feynman graph expansion in ¢;; , and graph-by-graph average,
yields exact equations in the large IV limit:

G(r) = —T. <cz-(7)cfg (0)>

1
W) = Y1) = 2
Gliw) = g+ 50 = G0
Gir=0")=0Q.
G(w) can be determined by solving a quadratic equation.
A
plw) =
— 2Im G(w)

—Qt—_,u 0 Qt;u u;



A simple model of a metal with quasiparticles

Let ¢, be the eigenvalues of the matrix ¢;;/ V' N.
The fermions will occupy the lowest N O eigen-
values, upto the Fermi energy Er. The single-
particle density of states is

p(w) — (/N) Za 5((,0 — 504)7 and pg = p(w — O)

A . ~

plw) = Ea level
ing ~1/N
spacing / )




A simple model of a metal with quasiparticles

 Many-body |
level spacing

—\_ ~27Y

g (Quasiparticle A
excitations with

> ing ~
_ spacing 1/N y

There are 2"V many
body levels with energy

N
E = E NaCas
a=1

where n, = 0,1. Shown

are all values of F for a
single cluster of size

N = 12. The ¢, have a

level spacing ~ 1/N.



A simple model of a metal with quasiparticles

The grand potential (7") at low T is (from the Sommerfeld expansion)
2
QGU—EW:N<—€mﬂQ+OUﬂ>+”.

where pg = p(0) is the single particle density of states at the Fermi level.
We can also define the many body density of states, D(FE), via

7 = e UD)/T /OO dED(E)e E/T

The inversion from €(7T') to D(F) has to performed with care (it need not commute
with the 1/N expansion), and we obtain

3 N

2N po(E — E 1
D(E)Nexp<7r\/ ol 0)> ., E>Ey, — < po(E—Ep) <N

and D(FE) = 0 for E < Ey. This is related to the asymptotic growth of the partitions
of an integer, p(n) ~ exp(m+/2n/3). Near the lower bound, there are large sample-
to-sample fluctuations due to variations in the lowest quasiparticle energies.



A simple model of a metal with quasiparticles

Now add weak interactions

_ T T
o 1/2 thﬂczcﬂ “ZCC’L 2N)3/2 Z UZJWC 5 CkCe

7] 1 ,jk'£ 1

U;j.xe are independent random variables with U;;.xe = 0 and |Uy;.x¢|? = U?. We
compute the lifetime of a quasiparticle, 7., in an exact eigenstate (i) of the
free particle Hamitonian with energy ¢,. By Fermi’s Golden rule, for ¢, at the
Fermi energy

Ti — 7U2P3/d55d5vd55f(55)(1 — f(ey))(1 = f(es5))0(ea + €5 — €4 — €5)
_ 7T3U2,0% T2
A

where pg is the density of states at the Fermi energy, and f(e) = 1/(e¥/™T +1) is
the Fermi function.

Fermi liquid state: Two-body interactions lead to a scattering time
of quasiparticle excitations from in (random) single-particle eigen-
states which diverges as ~ T2 at the Fermi level.
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The Sachdev-Ye-Kitaev (SYK) model
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The SYK model

Entangle electrons pairwise randomly
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The SYK model

This describes both a strange metal and a black hole!



The SYK model

(See also: the “2-Body Random Ensemble” in nuclear physics; did not obtain the large N limit;
T.A. Brody, ). Flores, |.B. French, PA. Mello, A. Pandey, and S.S.M.Wong, Rev. Mod. Phys. 53, 385 (1981))

N
1
o (2N)3/2 > Usgimeeicjopey =1 cic;

i dk 0=1 i

cic; +cjci =0 cic;- — ch-ci = 04

J
O = %chcz

U;;.xe are independent random variables with Uy;.xe = 0 and |U;;.5e|? = U?
N — oo yields critical strange metal.

S.Sachdev and |.Ye, PRL 70, 3339 (1993)
A. Kitaey, unpublished; S. Sachdev, PRX 5,041025 (2015)



The SYK model

Feynman graph expansion in U;;ke, and graph-by-graph average, yields ex-
act equations in the large N limit:

G

S.Sachdev and ].Ye, Phys. Rev. Lett. 70, 3339 (1993)



The SYK model

Feynman graph expansion in U;;ke, and graph-by-graph average, yields ex-
act equations in the large N limit:

Low frequency analysis shows that the solutions must be gapless and obey

oi(m/4+0) A o—i(m/4+0)

Yi(z) = p Vzt+... , G(z)= NE

A
where A = (7/U? cos(26))'/4. The value of 6 is universally related to Q by

a Luttinger-Ward functional analysis similar to that used to establish the
Luttinger theorem of Fermi liquid theory:

1 6 sin(20)
2 0w 4
S.Sachdev and ].Ye, Phys. Rev. Lett. 70, 3339 (1993)
A. Georges, O. Parcollet, and S. Sachdev, PRB 63, 134406 (2001)

O =



The SYK model

Feynman graph expansion in U;;ke, and graph-by-graph average, yields ex-
act equations in the large N limit:

At T > 0, we obtain a solution with a conformal structure

—27ET'T
G(r)=-A - ( L

\/1 + 6—47?5

where the ‘particle-hole asymmetry’ is determined by &£

1/2
0<7<1/T
SiIl(7TT7')> ’ T<1/T,

omE _ sin(7/4 + 0)
sin(w/4 —60)

€

A. Georges and O. Parcollet PRB 59,5341 (1999)
S. Sachdev, PRX 5,041025 (2015)



The SYK model

" Many-body
level spacing ~

g&—]\f _ €—N1n2J

rNom—quasipaurtic:l@

excitations with

—NSO

- Aspacing ~ €

_

There are 2"V many body levels
with energy E. Shown are all
values of E for a single cluster of
size N = 12. The 1" — 0 state has
an entropy Sqgps = Nsg, where
So < In2 is determined by
integrating

@:27#;.

dQ
At Q=1/2,

G

T

In(2
(2) _ 464848 .

S0

where G 1s Catalan’s constant.

GPS: A. Georges, O. Parcollet, and S. Sachdey,
PRB 63, 134406 (2001)

W. Fu and S. Sachdev, PRB 94, 035135 (2016)



The SYK model

1 U
QT) — Ey = N |—s0T — 5(7 + 4T E2K)T? + O(TS)} + 2T In (T) L
is the grand potential, where K = dQ/du ~ 1/U is the compressibility /N, v ~ 1/U
will appear later in the co-efficient of the Schwarzian, and the N term arises from
fluctuations about the large N theory described by the Schwarzian.

The inversion from €2(7') to the many-body density of states, D(FE),

7 = H/T — / h dED(E)e E/T

— OO

requires terms in 2(7") which are exponentially small in N (not shown above) from
the Schwarzian action, yielding terms which are not small in D(E). We obtain

J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, and M.Tezuka, arXiv:1611.04650;
R. Davison,Wenbo Fu,A. Georges,Yingfei Gu, K. Jensen, S. Sachdey, arXiv.1612.00849 ;
A.M. Garcia-Garcia and J.J.M.Verbaarschot, arXiv:1701.06593; D. Bagrets, A. Altland, and A. Kameney, arXiv:1702.08902;
D. Stanford and E.Witten, arXiv:1703.04612;A. Kitaev and S.J. Suh, arXiv:1711.08467;Yingfei Gu and S. Sachdey, unpublished.



The SYK model

> 2
D(E) = 2mwf (B — 2
(B)= ) ¢ d( 2NK>

p=—00

where NQ + p is the integer fermion number, d(F) = 0 for £ < Ej, and

d(FE) ~ exp (Nsg)sinh (\/Qny(E — EO)) , E>Ey, e N <vy(E—-E) <N

There are exponentially more low energy states than for the quasiparticle case, and
D(FE) self-averages down to energies exponentially small in V.
We can understand the dependence on the integer charge p by the relationship

dsog/dQ = 27&, and hence Nso(Q + p/N) ~ Nsg + 2np€.

J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, and M.Tezuka, arXiv:1611.04650;
R. Davison,Wenbo Fu,A. Georges,Yingfei Gu, K. Jensen, S. Sachdey, arXiv.1612.00849 ;
A.M. Garcia-Garcia and J.J.M.Verbaarschot, arXiv:1701.06593; D. Bagrets, A. Altland, and A. Kameney, arXiv:1702.08902;
D. Stanford and E.Witten, arXiv:1703.04612;A. Kitaev and S.J. Suh, arXiv:1711.08467;Yingfei Gu and S. Sachdey, unpublished.



A simple model of a metal with quasiparticles

The grand potential (7") at low T is (from the Sommerfeld expansion)
2
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where pg = p(0) is the single particle density of states at the Fermi level.
We can also define the many body density of states, D(FE), via

7 = e UD)/T /OO dED(E)e E/T
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3 N
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The SYK model

> 2
D(E) = 2mwf (B — 2
(B)= ) e d( 2NK>

p=—00

where NQ + p is the integer fermion number, d(F) = 0 for £ < Ej, and

d(E) N[exp (Nsojsinh (\/QN*y(E — EO)) , E>Ey, e N <~y(E—-E) <N

There are exponentially more low energy states than for the quasiparticle case, and
D(FE) self-averages down to energies exponentially small in V.

We can understand the dependence on the integer charge p by the relationship
dsog/dQ = 2w€&, and hence Nsyg(Q + p/N) ~ Nsg + 2mp€.

J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, and M.Tezuka, arXiv:1611.04650;
R. Davison,Wenbo Fu,A. Georges,Yingfei Gu, K. Jensen, S. Sachdey, arXiv.1612.00849 ;
A.M. Garcia-Garcia and J.J.M.Verbaarschot, arXiv:1701.06593; D. Bagrets, A. Altland, and A. Kameney, arXiv:1702.08902;
D. Stanford and E.Witten, arXiv:1703.04612;A. Kitaev and S.J. Suh, arXiv:1711.08467;Yingfei Gu and S. Sachdey, unpublished.



The SYK model
(No quasiparticles]

e Rapid local thermal equilibration (of fermion correla-
tors) in a ‘Planckian’ time

h A. Georges and O. Parcollet
Teq ~ = , a8 T — (. PRB 59, 5341 (1999)
kB T A. Eberlein,V. Kasper, S. Sachdev, and

J. Steinberg, PRB 96, 205123 (2017)

Established by solution of Schwinger-Keldysh equations
for a quench.

e Presence of quasiparticles should slow down

thermahzatlon, SO Cl,ll quantum SyStemS ObeYs. Sachdev, Quantum Phase Transitions,
Cambridge (1999)

h
Teq>Ck’B—T : as 1" — 0.
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The SYK model

Feynman graph expansion in J;; , and graph-by-graph average,
yields exact equations in the large NV limit:

Low frequency analysis shows that the solutions must be gapless
and obey

where A = e=/4(7r /U?)Y/* at half-filling. The ground state is a
non-Fermi liquid, with a continuously variable density O.

S.Sachdev and ].Ye, Phys. Rev. Lett. 70, 3339 (1993)



The SYK model

The equations for the Green’s function can also be solved at non-zero 7'
At half-filling, Q = 1/2, we “guess” the particle-hole symmetric solution

ik P
=B
G(7) sn(7) sin(7w1'T)
Then the self-energy is
T P
3 _ 2B3 U
(7) = U" B sen(7) sin(7w1'T)

A. Georges and O. Parcollet
PRB 59, 5341 (1999)



The SYK model

The equations for the Green’s function can also be solved at non-zero 7'
At half-filling, Q = 1/2, we “guess” the particle-hole symmetric solution

ik P
— B
G(7) sgn(7) sin(7w1'T)
Then the self-energy is
T |
3 _ 2B3 n
(7) = U"Bsen(7) sin(71'T)

Taking Fourier transforms, we have as a function of the Matsubara
frequency w,,

Tr—1717 (E 1 Wn ) A. Georges and O. Parcollet
: _ : ) D[’ PRB 59, 5341 (1999)
G(an) — [ZBH(:O)] I (1 B B N Wn, )
2 27T
3P W
T30~ 1T [ — -~
( 2 i 27TT>

Yeing(iwn) = [iU?B°IL(3p)]

3p  wy ’
I'|f1——
( 2 " 27TT>



The SYK model

Tr—1T1T (8 + Wn )

Gliwn) = [iBT(p)] o
r (1 -2 )
2 2l
Tgp_lr (@_I_ Wn, )
Yeing(iwn) = [1U?B’IL(3p)] 2 el

3p  wy ’
'({1—- —
( 2+27TT>

where we have dropped a less-singular term in >, and

s

I(s) = 75125 cos (7) r(1 - s).

Now the singular part of Dyson’s equation is
A. Georges and O. Parcollet

PRB 59, 534| (1999
(i) Seing (i) = —1 177

Remarkably, the I' functions appear with just the right arguments, so
that there is a solution of the Dyson equation at p =1/2 !

S0 the Green’s functions display thermal ‘damping’ at a
scale set by 1" alone, which is independent of U.



The SYK model

Away from half-filling, the T' = 0 solution has the low frequency form

i /4+0) A o —i(m/4+0)

X(2) = p— y Vz+... , G(z)= 7

where A = (7/U? cos(20))'/%. The value of 0 is universally related to Q by
a Luttinger-Ward functional analysis similar to that used to establish the

Luttinger theorem of Fermi liquid theory:

At T > 0, we obtain a solution with a conformal structure

6—27T5T7‘ T 1/2
G(t)=-A 0 1/T
(7) V14 e—4mE (sin(wTT)) ’ <7 <UT,

where the ‘particle-hole asymmetry’ is determined by &

A. Georges and O. Parcollet
PRB 59,5341 (1999)

sin(7 /4 + 0
62778 = — ( / T ) . A. Georges, O. Parcollet, and S. Sachdey,
sin(w/4 — 0) PRB 63, 134406 (2001)
S.Sachdev, PRX 5,041025 (2015)




The SYK model

G (wW)GA (W)

1.0+

—ReGE(w) 0/5 ¢ —ImG" (w)

—1OIIII—5IIII-IIIIIII‘|LO
W

Green’s functions away from half-filling

So the Green’s functions display thermal ‘damping’ at a
scale set by 1" alone, which is independent of U.



The SYK model

S.Sachdev and ].Ye, Phys. Rev. Lett. 70, 3339 (1993)



The SYK model

At frequencies < U, the w

1 can be dropped,

and without it equations are invariant under the
reparametrization and gauge transtormations.
The singular part of the self-energy and the Green’s

function obey

B
/ 07> Saine (71, 72) G (72, 73) = —3(71 — 73)
0

Esing (7-17 7-2) — _U2G2 (7-17 TQ)G<TQ7 7-1)

A. Kitaey, 2015
S.Sachdev, PRX 5, 041025 (2015)



The SYK model

B
/ dro X(11,72)G(T2,73) = —0(T1 — T3)
0

2(7'177'2) — —UQGQ(Tl,TQ)G(TQ,Tl)

These equations are invariant under

r = (o)

~

01

N T (oA 9O &
G(m,m2) = |f(01)f (02)] o(0s) G(o1,02)
.7 = [f (o) f (o _3/4g(al)~0 %
X(11,72) = [f (01)f (02)] o(0n) ¥ (o1, 02)

where f(o) and g(o) are arbitrary functions.
By using f(o) = tan(nTo)/(7T) we can
now obtain the T > 0 solution from the 7" = 0 solution.

A. Kitaey, 2015
S.Sachdev, PRX 5, 041025 (2015)



The SYK model

Let us write the large N saddle point solutions of S as

GS(Tl_TQ) ~ (7’1—7'2)_1/2

25(7'1—7'2) ~ (7’1—7'2)_3/2.
The saddle point will be invariant under a reperamateri-
zation f(7) when choosing G(11,72) = Gs(11 — 73) leads
to a transformed G(o1,02) = Gs(01 — 02) (and similarly
for ). It turns out this is true only for the SL(2, R)
transformations under which

at + b

- e =1.
f(r) T d ad — be

So the (approximate) reparametrization symmetry is spon-
taneously broken down to SL(2, R) by the saddle point.

A. Kitaev



Basics of conformal field theory

In a space with metric tensor g,,, and proper distance
ds® = guvdx,dx,
after the co-ordinate transformation x, — $:L, the new metric tensor is

B 0x, Ox
I = 9o ox), Oz],

A conformal transformation is one which preserves all angles and so

G (') = M) gy ()

In a conformal field theory, two-point correlators of scalar fields transform as

0x'y 0x,
det {&Cl} det {8:62}

A/d A/d

(d(21)(x3))

(P(x1)P(2)) =




Infinite-range (SYK) model without quasiparticles

After introducing replicas a = 1...n, and integrating out the dis-

order, the partition function can be written as

I &
- dm;;a(
ia 70

B
Z / drdr’
0

7 = /DCm(T) exp

U2

 4N3
ab

1

o(T)cin(T')

9 N\
ot v

4

For simplicity, we neglect the replica indices, and introduce the

identity

1 = /DZ(Tl,TQ)eXp

I B
—N/ dTldTQZ(Tl,TQ) <G(TQ,7’1)
0

-+ % Z cdw)cj{(n))




Infinite-range (SYK) model without quasiparticles

Then the partition function can be written as a path integral with
an action S analogous to a Luttinger-Ward functional

Z = /DG(Tl,Tg)DZ(Tl,Tg)exp(—NS)
S =1Indet [6(T — 72)(0r, + 1) — 2(71,72)]
4 /dﬁdTgE(ﬁ,Tz) [G(Tz,ﬁ) + (U2/2)G2(7'277'1)G2(7'1>7'2)]

At frequencies < U, the time derivative in the determinant is less
important, and without it the path integral is invariant under the

reparametrization and gauge transformations A. Georges and O, Parcollet
PRB 59, 5341 (1999)

T = f(o) A. Kitaev, 2015

S. Sachdev, PRX 5, 041025 (2015)

G(r1,72) = [f'(o0) ' (02)]) " 9(71) G(o1,02)

(02)
~3/4 g(o1)

Y(11,72) = [f'(01)f (02)]

where f(o) and g(o) are arbitrary functions.



The SYK model

Reparametrization and phase zero modes
We can write the path integral for the SYK model as

Z = /DG(T:[,Tl)DZ(Tl,TQ)e_NS[G’E]

for a known action S|G, X|. We find the saddle point, G, ¥, and only focus on the
“Nambu-Goldstone” modes associated with breaking reparameterization and U(1)
gauge symmetries by writing

G(Tl,TQ) — [f/(Tl)f/(TQ)]1/4Gs(f(Tl) o f(TQ))eiqb(Tl)—iqb(Tg)

(and similarly for ). Then the path integral is approximated by

z /Df(T)D¢(T)6_NSeff[fa¢].

J. Maldacena and D. Stanford, arXiv:1604.07818;

R. Davison,Wenbo Fu,A. Georges,Yingfei Gu, K. Jensen, S. Sachdey, arXiv.1612.00849;

S.Sachdev, PRX 5, 041025 (2015); J. Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857;
K.Jensen, arXiv:1605.06098; |. Engelsoy, T.G. Mertens, and H.Verlinde, arXiv:1606.03438



The Schwarzian theory of the SYK model

Symmetry arguments, and explicit computations, show that the effective action is

1/T

dr {tan(7T f(7)), T},

1/T
Sl o) =5 [ dr(@o+iCreno N - I

where f(7) is a monotonic map from [0,1/T] to |0,1/T], the couplings K, v, and &
can be related to thermodynamic derivatives and we have used the Schwarzian:

/11 1\ 2
g 3 (9
=5 -3(5)

Specifically, an argument constraining the effective at T' = 0 is

at + b

S | £(r) = 20, 0(r) = 0| =0,

and this is origin of the Schwarzian.

J. Maldacena and D. Stanford, arXiv:1604.07818;

R. Davison,Wenbo Fu,A. Georges, Yingfei Gu, K. Jensen, S. Sachdey, arXiv.1612.00849;
A. Gaikwad, L.K. Joshi, G. Mandal, and S.R.Wadia, arXiv:1802.07746;

Yingfei Gu and S. Sachdey, unpublished



|. Random matrix quasiparticle model
g=2, complex SYK

2. Matter without quasiparticles
g=4, complex SYK

3.The Schwarzian theory

4 )

4.Connections to black holes
with AdS; horizons




e Black holes have an entropy
and a temperature, Ty =

hcg/(ST('GM]CB).

Black

e The entropy is proportional

hOICS to their surface area.




Hanford, Washington (H1) Livingston, Louisiana (L1)

=
(=)

©coo
Vo Wwm

—
o

Strain (10°%1)
—
-

oo
nmowm

—
o

Reconstructed (wavelet)

—Wml : i
0.30 0.35 0.40 0.45
Time (s)
lnqpral l Mprgc-r Rln(;

i LIGO

C’ 9 6@  seprember 14,2015

e The ring-down is predicted by General Relativity to happen in a
STGM

time 2 ~ & milliseconds.
C

C. V. Vishveshwara, Nature 227,936 (1970)
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e The ring-down is predicted by General Relativity to happen in a

STGM
time 2 ~ 8 milliseconds. Curiously this happens to equal
c
h
so the ring down can also be viewed as the approach of a
kTy

quantum system to thermal equilibrium at the fastest possible ratel



e Black holes have an entropy
and a temperature, Ty =

hcg/(ST('GM]CB).

Black

e The entropy is proportional

hOICS to their surface area.

e They relax to thermal equi-
librium in a time ~ A/ (kT ).




e Black holes have an entropy
and a temperature, Ty =

hCS/(ST('GM]CB).

Black

e The entropy is proportional

hOleS to their surface area.

e They relax to thermal equi-
librium in a time ~ A/ (kT ).

Holography:

Quantum black holes “look like”
quantum many-particle systems
without quasiparticle excitations,
residing “on’” the surface of the black hole




Consider a charged black hole with the smallest
possible mass: the extremal limit. Zoom in to the near-
horizon region at low energies. In this limit, the quantum
theory lives in one space (C) and one time dimension



SYK models and black holes

charge
density O

(Black hole\ AdS, x G2

__horizon ===}, 2 _ (dC2 — dt?) /¢ + di?
Gauge field: A = (£/()dt

R —— N

The near-horizon region of an extremal charged black hole has
the geometry of (1+1)-dimensional anti-de Sitter spacetime. By
holography, this should map to a zero-dimensional quantum
system: this turns out to be the SYK model



SYK models and black holes

charge

AdSQ > SQ density O
ds? = (d¢? — dt?) /(% + dT?
Gauge field: A = (£/()dt

Black hole
horizon

Bekenstein-Hawking entropy of AdSs horizon
at T'= 0 < Nsg entropy of SYK model

S.Sachdey, Phys. Rev. Lett. 105, 51602 (2010)



SYK models and black holes

Yingfei Gu and S. Sachdey, unpublished

Black hole
horizon

charge

AdS, x G2 density O
ds? = (d¢? — dt?)/¢? + dx?
Gauge field: A = (£/()dt

The correspondence between the complex SYK model and extremal black holes holds
also for the low 1" thermodynamics and low energy density of states. Both obey

QUT)—Ey=N [—SQT - %(7 + 4T EPK)T? + O(TS)] + 2T In (%) .

for the grand potential, and for the density of states at a fixed charge O

d(F) ~ exp (Nsg) sinh (\/QN’y(E - EO)) , E>Ey, e <yE—-E) <N

ds
with the relation —— = 27€ also obtained from Einstein’s equations

dQ A Sen, JHEP 0509, 038 (2005)



SYK models and black holes

e Reparameterization invariance is a defining property
of Einstein’s theory of gravity

¢ In imaginary time, AdSs is the homogeneous hyper-
bolic space: two-dimensional surface of constant neg-
ative curvature. Its metric is invariant under SL(2,R)

ds? = (d1? + d(?)/¢? is invariant under

a R

\'*‘,

¢

XX I / ‘
with ad — be = 1. » : —--—"(
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A. Kitaev, 2015
J- Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857



SYK models and black holes

e Reparameterization invariance is a defining property
of Einstein’s theory of gravity

e In imaginary time, AdSs is the homogeneous hyper-
bolic space: two-dimensional surface of constant neg-
ative curvature. Its metric is invariant under SL(2,R)

ds? = (dr? + d(?)/¢? is invariant under

a(7 +i¢) + with ad — bc = 1.

T+ i’ =

c(t+i()+d

ol

Their identical symmetries lead to AT (¥
the same low energy quantum Fi\
= . : &".* . & ,‘-;'.-:"
theory for the SYK model and B o

extremal charged black holes !J
A.Kitaev, 2015

J- Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857




Einstein-Maxwell-theory

charge

AdS, % G2 density O
2

ds? = (d¢? — dt?)/(? + da?
Gauge field: A = (£/()dt

e Has Reissner-Nordstrom-AdS charged black hole solution, with charge den-
sity @, a near-horizon AdSy x S? geometry, and surface electric field £.
(This analysis also applies in asymptotically Minkowski spacetime (L — o)
provided the black hole mass is extremal.)

| m—



Einstein-Maxwell-theory

charge
density O

AdSQ X 52
ds? = (d¢? — dt?)/(? + da?
Gauge field: A = (£/()dt

| m—

e Has Reissner-Nordstrom-AdS charged black hole solution, with charge den-
sity @, a near-horizon AdSy x S? geometry, and surface electric field £.
(This analysis also applies in asymptotically Minkowski spacetime (L — o)
provided the black hole mass is extremal.)

e rom Einstein’s equations, the Bekenstein-Hawking black hole entropy S4p
is found to obey the same relation as the entropy of the SYK model

054D
90 2me A Sen, JHEP 0509, 038 (2005)

where £ is identified from the spectral asymmetry of probe particle Green’s

functions in both cases. This establishes that the SYK entropy Nsg maps

onto (Area of horizon)/(4G)
S.Sachdev, PRX 5, 041025 (2015)



Einstein-Maxwell-theory

charge
density O

AdSQ X 52
ds? = (d¢? — dt?)/(? + da?
Gauge field: A = (£/()dt

P. Nayak, A. Shukla, R.M. Soni, S.P. Trivedi, and V.Vishal,
arXiv:1802.09547;

A. Gaikwad, L.K. Joshi, G. Mandal, and S.R.Wadia,
arXiv:1802.07746

Sup = /d‘lm/—g (7€+ 6/L% — ZF“”FW> :

In the small black hole size limit, T' < 1/ R, where R is the
radius of the black hole, the theory dimensionally reduces
to an Einstein-Maxwell-dilaton theory in two dimensions
(the Jackiw-Teitelbaum model), along with Maxwell term

7(d)

SQD — NSO -+ /dZZB\/ —( ((I)(R — A) FabFab> .

The dilaton ® represents the radial oscillations of the small
black hole.

| m—



Einstein-Maxwell-theory

charge
density O

AdSQ X 52
ds? = (d¢? — dt?)/(? + da?
Gauge field: A = (£/()dt

P. Nayak, A. Shukla, R.M. Soni, S.P. Trivedi, and V.Vishal,
arXiv:1802.09547;

A. Gaikwad, L.K. Joshi, G. Mandal, and S.R.Wadia,
arXiv:1802.07746

| m—

SZD — NS() -+ /dzill‘\/ —(g (@(R — A) A FabFab>

There are no bulk quantum fluctuations of the metric in two-dimensional
oravity, and there a further dimensional reduction to a 0 + 1 dimensional
theory representing fluctuations of the AdS; boundary: this 0+ 1 dimensional
turns out to be precisely the Schwarzian theory obtained for the SYK model.

1T

1/T
Srlfoo) = 5 [ dr@o+iCrenonnt = 15 [ dr {an(rT s (7).,

J- Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857;
K. Jensen, arXiv:1605.06098;

J. Engelsoy, T.G. Mertens, and H.Verlinde, arXiv:1606.03438



(Quantum matter without quasiparticles)

e Planckian dynamics is realized in the ‘solvable’ SYK

models

e Black holes thermalize in a time ~ h/(kgTy), where Ty
is the Hawking temperature.

e A Schwarzian theory of a time reparameterization mode,
with SL(2,R) symmetry, describes the quantum dynam-

ics of

— the SYK model

S

— black holes wit!

n near-extremal AdS» horizons



