Subir Sachdev

Aspen Center for Physics August 13, 2018

What are quasiparticles?

• Quasiparticles are additive excitations:

The low-lying excitations of the many-body system can be identified as a set $\{n_{\alpha}\}$ of quasiparticles with energy ε_{α}

$$E = \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha} + \sum_{\alpha,\beta} F_{\alpha\beta} n_{\alpha} n_{\beta} + \dots$$

In a lattice system of N sites, this parameterizes the energy of $\sim e^{\alpha N}$ states in terms of poly(N) numbers.

What are quasiparticles?

• Quasiparticles eventually collide with each other. Such collisions eventually leads to thermal equilibration in a chaotic quantum state, but the equilibration takes a long time. In a Fermi liquid, this time diverges as

$$au_{
m eq} \sim rac{\hbar E_F}{(k_B T)^2} \quad , \quad {
m as} \ T o 0,$$

where E_F is the Fermi energy.

What are quasiparticles?

• Quasiparticles eventually collide with each other. Such collisions eventually leads to thermal equilibration in a chaotic quantum state, but the equilibration takes a long time. In a Fermi liquid, this time diverges as

$$au_{
m eq} \sim rac{\hbar E_F}{(k_B T)^2} \quad , \quad {
m as} \ T o 0,$$

where E_F is the Fermi energy.

• This time is much longer than the 'Planckian time' $\hbar/(k_BT)$, which we will find in systems without quasiparticle excitations.

$$au_{\rm eq} \gg \frac{\hbar}{k_B T}$$
 , as $T \to 0$.

I. Random matrix quasiparticle model q=2, complex SYK

- 2. Matter without quasiparticles q=4, complex SYK
- 3. The Schwarzian theory
- 4. Connections to black holes with AdS₂ horizons

I. Random matrix quasiparticle model q=2, complex SYK

- 2. Matter without quasiparticles q=4, complex SYK
- 3. The Schwarzian theory
- 4. Connections to black holes with AdS₂ horizons

Pick a set of random positions

$$H = \frac{1}{(N)^{1/2}} \sum_{i,j=1}^{N} t_{ij} c_i^{\dagger} c_j - \mu \sum_i c_i^{\dagger} c_i$$

$$c_i c_j + c_j c_i = 0 \quad , \quad c_i c_j^{\dagger} + c_j^{\dagger} c_i = \delta_{ij}$$

$$\frac{1}{N} \sum_i c_i^{\dagger} c_i = \mathcal{Q}$$

 t_{ij} are independent random variables with $\overline{t_{ij}} = 0$ and $|\overline{t_{ij}}|^2 = t^2$

Fermions occupying the eigenstates of a $N \times N$ random matrix

Feynman graph expansion in $t_{ij...}$, and graph-by-graph average, yields exact equations in the large N limit:

$$G(\tau) \equiv -T_{\tau} \left\langle c_{i}(\tau) c_{i}^{\dagger}(0) \right\rangle$$

$$G(i\omega) = \frac{1}{i\omega + \mu - \Sigma(i\omega)} , \quad \Sigma(\tau) = t^{2}G(\tau)$$

$$G(\tau = 0^{-}) = Q.$$

 $G(\omega)$ can be determined by solving a quadratic equation.

Let ε_{α} be the eigenvalues of the matrix t_{ij}/\sqrt{N} . The fermions will occupy the lowest NQ eigenvalues, upto the Fermi energy E_F . The single-particle density of states is

$$\rho(\omega) = (1/N) \sum_{\alpha} \delta(\omega - \varepsilon_{\alpha}), \text{ and } \rho_0 \equiv \rho(\omega = 0).$$

There are 2^N many body levels with energy

$$E = \sum_{\alpha=1}^{N} n_{\alpha} \varepsilon_{\alpha},$$

where $n_{\alpha} = 0, 1$. Shown are all values of E for a single cluster of size N = 12. The ε_{α} have a level spacing $\sim 1/N$.

The grand potential $\Omega(T)$ at low T is (from the Sommerfeld expansion)

$$\Omega(T) - E_0 = N\left(-\frac{\pi^2}{6}\rho_0 T^2 + \mathcal{O}(T^4)\right) + \dots$$

where $\rho_0 \equiv \rho(0)$ is the *single* particle density of states at the Fermi level. We can also define the *many* body density of states, D(E), via

$$Z = e^{-\Omega(T)/T} = \int_{-\infty}^{\infty} dE D(E) e^{-E/T}$$

The inversion from $\Omega(T)$ to D(E) has to performed with care (it need not commute with the 1/N expansion), and we obtain

$$D(E) \sim \exp\left(\pi\sqrt{\frac{2N\rho_0(E - E_0)}{3}}\right) \quad , \quad E > E_0 \; , \; \frac{1}{N} \ll \rho_0(E - E_0) \ll N$$

and D(E) = 0 for $E < E_0$. This is related to the asymptotic growth of the partitions of an integer, $p(n) \sim \exp(\pi \sqrt{2n/3})$. Near the lower bound, there are large sample-to-sample fluctuations due to variations in the lowest quasiparticle energies.

Now add weak interactions

$$H = \frac{1}{(N)^{1/2}} \sum_{i,j=1}^{N} t_{ij} c_i^{\dagger} c_j - \mu \sum_i c_i^{\dagger} c_i + \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} U_{ij;k\ell} c_i^{\dagger} c_j^{\dagger} c_k c_\ell$$

 $U_{ij;k\ell}$ are independent random variables with $\overline{U_{ij;k\ell}} = 0$ and $|U_{ij;k\ell}|^2 = U^2$. We compute the lifetime of a quasiparticle, τ_{α} , in an exact eigenstate $\psi_{\alpha}(i)$ of the free particle Hamitonian with energy ε_{α} . By Fermi's Golden rule, for ε_{α} at the Fermi energy

$$\frac{1}{\tau_{\alpha}} = \pi U^{2} \rho_{0}^{2} \int d\varepsilon_{\beta} d\varepsilon_{\gamma} d\varepsilon_{\delta} f(\varepsilon_{\beta}) (1 - f(\varepsilon_{\gamma})) (1 - f(\varepsilon_{\delta})) \delta(\varepsilon_{\alpha} + \varepsilon_{\beta} - \varepsilon_{\gamma} - \varepsilon_{\delta})$$

$$= \frac{\pi^{3} U^{2} \rho_{0}^{2}}{4} T^{2}$$

where ρ_0 is the density of states at the Fermi energy, and $f(\epsilon) = 1/(e^{\epsilon/T} + 1)$ is the Fermi function.

Fermi liquid state: Two-body interactions lead to a scattering time of quasiparticle excitations from in (random) single-particle eigenstates which diverges as $\sim T^{-2}$ at the Fermi level.

I. Random matrix quasiparticle model q=2, complex SYK

- 2. Matter without quasiparticles q=4, complex SYK
- 3. The Schwarzian theory
- 4. Connections to black holes with AdS₂ horizons

The Sachdev-Ye-Kitaev (SYK) model

Pick a set of random positions

This describes both a strange metal and a black hole!

(See also: the "2-Body Random Ensemble" in nuclear physics; did not obtain the large N limit; T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, and S.S.M. Wong, Rev. Mod. Phys. **53**, 385 (1981))

$$H = \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} U_{ij;k\ell} c_i^{\dagger} c_j^{\dagger} c_k c_{\ell} - \mu \sum_i c_i^{\dagger} c_i$$
$$c_i c_j + c_j c_i = 0 \quad , \quad c_i c_j^{\dagger} + c_j^{\dagger} c_i = \delta_{ij}$$
$$\mathcal{Q} = \frac{1}{N} \sum_i c_i^{\dagger} c_i$$

 $U_{ij;k\ell}$ are independent random variables with $\overline{U_{ij;k\ell}} = 0$ and $\overline{|U_{ij;k\ell}|^2} = U^2$ $N \to \infty$ yields critical strange metal.

S. Sachdev and J. Ye, PRL **70**, 3339 (1993)

A. Kitaev, unpublished; S. Sachdev, PRX 5, 041025 (2015)

Feynman graph expansion in $U_{ijk\ell}$, and graph-by-graph average, yields exact equations in the large N limit:

$$G(i\omega) = \frac{1}{i\omega + \mu - \Sigma(i\omega)} , \quad \Sigma(\tau) = -U^2 G^2(\tau) G(-\tau)$$
$$G(\tau = 0^-) = \mathcal{Q}.$$

S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)

Feynman graph expansion in $U_{ijk\ell}$, and graph-by-graph average, yields exact equations in the large N limit:

$$G(i\omega) = \frac{1}{\cancel{\bowtie} + \mu - \Sigma(i\omega)} \quad , \quad \Sigma(\tau) = -U^2 G^2(\tau) G(-\tau)$$
$$G(\tau = 0^-) = \mathcal{Q}.$$

Low frequency analysis shows that the solutions must be gapless and obey

$$\Sigma(z) = \mu - \frac{e^{i(\pi/4+\theta)}}{A} \sqrt{z} + \dots , \quad G(z) = \frac{Ae^{-i(\pi/4+\theta)}}{\sqrt{z}}$$

where $A = (\pi/U^2 \cos(2\theta))^{1/4}$. The value of θ is universally related to \mathcal{Q} by a Luttinger-Ward functional analysis similar to that used to establish the Luttinger theorem of Fermi liquid theory:

$$Q = \frac{1}{2} - \frac{\theta}{\pi} - \frac{\sin(2\theta)}{4}$$

S. Sachdev and J. Ye, Phys. Rev. Lett. **70**, 3339 (1993)

A. Georges, O. Parcollet, and S. Sachdev, PRB 63, 134406 (2001)

Feynman graph expansion in $U_{ijk\ell}$, and graph-by-graph average, yields exact equations in the large N limit:

$$G(i\omega) = \frac{1}{\cancel{\bowtie} + \mu - \Sigma(i\omega)} , \quad \Sigma(\tau) = -U^2 G^2(\tau) G(-\tau)$$
$$G(\tau = 0^-) = \mathcal{Q}.$$

At T > 0, we obtain a solution with a conformal structure

$$G(\tau) = -A \frac{e^{-2\pi\mathcal{E}T\tau}}{\sqrt{1 + e^{-4\pi\mathcal{E}}}} \left(\frac{T}{\sin(\pi T\tau)}\right)^{1/2} , \quad 0 < \tau < 1/T,$$

where the 'particle-hole asymmetry' is determined by \mathcal{E}

$$e^{2\pi\mathcal{E}} = \frac{\sin(\pi/4 + \theta)}{\sin(\pi/4 - \theta)}.$$

Many-body level spacing \sim $2^{-N} = e^{-N \ln 2}$

Non-quasiparticle

excitations with

spacing $\sim e^{-Ns_0}$

There are 2^N many body levels with energy E. Shown are all values of E for a single cluster of size N=12. The $T\to 0$ state has an entropy $S_{GPS}=Ns_0$, where $s_0<\ln 2$ is determined by integrating

$$\frac{ds_0}{d\mathcal{Q}} = 2\pi\mathcal{E} \,.$$

At
$$Q = 1/2$$
,

$$s_0 = \frac{G}{\pi} + \frac{\ln(2)}{4} = 0.464848\dots$$

where G is Catalan's constant.

GPS: A. Georges, O. Parcollet, and S. Sachdev, PRB **63**, 134406 (2001)

$$\Omega(T) - E_0 = N \left[-s_0 T - \frac{1}{2} (\gamma + 4\pi^2 \mathcal{E}^2 K) T^2 + \mathcal{O}(T^3) \right] + 2T \ln \left(\frac{U}{T} \right) \dots$$

is the grand potential, where $K = dQ/d\mu \sim 1/U$ is the compressibility/N, $\gamma \sim 1/U$ will appear later in the co-efficient of the Schwarzian, and the N^0 term arises from fluctuations about the large N theory described by the Schwarzian.

The inversion from $\Omega(T)$ to the many-body density of states, D(E),

$$Z = e^{-\Omega(T)/T} = \int_{-\infty}^{\infty} dE D(E) e^{-E/T}$$

requires terms in $\Omega(T)$ which are exponentially small in N (not shown above) from the Schwarzian action, yielding terms which are not small in D(E). We obtain

$$D(E) = \sum_{p=-\infty}^{\infty} e^{2\pi p\mathcal{E}} d\left(E - \frac{p^2}{2NK}\right)$$

where NQ + p is the integer fermion number, d(E) = 0 for $E < E_0$, and

$$d(E) \sim \exp(Ns_0) \sinh\left(\sqrt{2N\gamma(E - E_0)}\right)$$
 , $E > E_0$, $e^{-cN} \ll \gamma(E - E_0) \ll N$

There are exponentially more low energy states than for the quasiparticle case, and D(E) self-averages down to energies exponentially small in N.

We can understand the dependence on the integer charge p by the relationship $ds_0/d\mathcal{Q} = 2\pi\mathcal{E}$, and hence $Ns_0(\mathcal{Q} + p/N) \approx Ns_0 + 2\pi p\mathcal{E}$.

A.M. Garcia-Garcia and J.J.M. Verbaarschot, arXiv:1701.06593; D. Bagrets, A. Altland, and A. Kamenev, arXiv:1702.08902;

D. Stanford and E. Witten, arXiv:1703.04612; A. Kitaev and S.J. Suh, arXiv:1711.08467; Yingfei Gu and S. Sachdev, unpublished.

A simple model of a metal with quasiparticles

The grand potential $\Omega(T)$ at low T is (from the Sommerfeld expansion)

$$\Omega(T) - E_0 = N\left(-\frac{\pi^2}{6}\rho_0 T^2 + \mathcal{O}(T^4)\right) + \dots$$

where $\rho_0 \equiv \rho(0)$ is the *single* particle density of states at the Fermi level. We can also define the *many* body density of states, D(E), via

$$Z = e^{-\Omega(T)/T} = \int_{-\infty}^{\infty} dE D(E) e^{-E/T}$$

The inversion from $\Omega(T)$ to D(E) has to performed with care (it need not commute with the 1/N expansion), and we obtain

$$D(E) \sim \exp\left(\pi\sqrt{\frac{2N\rho_0(E - E_0)}{3}}\right) \quad , \quad E > E_0 \; , \; \frac{1}{N} \ll \rho_0(E - E_0) \ll N$$

and D(E) = 0 for $E < E_0$. This is related to the asymptotic growth of the partitions of an integer, $p(n) \sim \exp(\pi \sqrt{2n/3})$. Near the lower bound, there are large sample-to-sample fluctuations due to variations in the lowest quasiparticle energies.

$$D(E) = \sum_{p=-\infty}^{\infty} e^{2\pi p\mathcal{E}} d\left(E - \frac{p^2}{2NK}\right)$$

where NQ + p is the integer fermion number, d(E) = 0 for $E < E_0$, and

$$d(E) \sim \exp(Ns_0) \sinh\left(\sqrt{2N\gamma(E-E_0)}\right)$$
 , $E > E_0$, $e^{-cN} \ll \gamma(E-E_0) \ll N$

There are exponentially more low energy states than for the quasiparticle case, and D(E) self-averages down to energies exponentially small in N.

We can understand the dependence on the integer charge p by the relationship $ds_0/d\mathcal{Q} = 2\pi\mathcal{E}$, and hence $Ns_0(\mathcal{Q} + p/N) \approx Ns_0 + 2\pi p\mathcal{E}$.

A.M. Garcia-Garcia and J.J.M. Verbaarschot, arXiv:1701.06593; D. Bagrets, A. Altland, and A. Kamenev, arXiv:1702.08902;

D. Stanford and E. Witten, arXiv:1703.04612; A. Kitaev and S.J. Suh, arXiv:1711.08467; Yingfei Gu and S. Sachdev, unpublished.

No quasiparticles

• Rapid local thermal equilibration (of fermion correlators) in a 'Planckian' time

$$au_{
m eq} \sim rac{\hbar}{k_B T}$$
 , as $T o 0$. A. Georges and O. Parcollet PRB **59**, 5341 (1999) A. Eberlein, V. Kasper, S. Sachdev, and

A. Georges and O. Parcollet J. Steinberg, PRB **96**, 205123 (2017)

Established by solution of Schwinger-Keldysh equations for a quench.

• Presence of quasiparticles should slow down thermalization, so all quantum systems obey S. Sachdev, Quantum Phase Transitions, Cambridge (1999)

$$au_{\rm eq} > C \frac{\hbar}{k_B T} \quad , \quad {\rm as} \ T \to 0.$$

Absence of quasiparticles \Leftrightarrow Fastest possible thermalization

- I. Random matrix quasiparticle model q=2, complex SYK
- 2. Matter without quasiparticles q=4, complex SYK
- 3. The Schwarzian theory
- 4. Connections to black holes with AdS₂ horizons

Feynman graph expansion in $J_{ij...}$, and graph-by-graph average, yields exact equations in the large N limit:

$$G(i\omega) = \frac{1}{i \times + \mu - \Sigma(i\omega)} , \quad \Sigma(\tau) = -U^2 G^2(\tau) G(-\tau)$$
$$G(\tau = 0^-) = \mathcal{Q}.$$

Low frequency analysis shows that the solutions must be gapless and obey

$$\Sigma(z) = \mu - \frac{1}{A}\sqrt{z} + \dots$$
 , $G(z) = \frac{A}{\sqrt{z}}$

where $A = e^{-i\pi/4}(\pi/U^2)^{1/4}$ at half-filling. The ground state is a non-Fermi liquid, with a continuously variable density \mathcal{Q} .

The equations for the Green's function can also be solved at non-zero T. At half-filling, Q = 1/2, we "guess" the particle-hole symmetric solution

$$G(\tau) = B \operatorname{sgn}(\tau) \left| \frac{\pi T}{\sin(\pi T \tau)} \right|^{\rho}$$

Then the self-energy is

$$\Sigma(\tau) = U^2 B^3 \operatorname{sgn}(\tau) \left| \frac{\pi T}{\sin(\pi T \tau)} \right|^{3\rho}$$

A. Georges and O. Parcollet PRB **59**, 5341 (1999)

The equations for the Green's function can also be solved at non-zero T. At half-filling, Q = 1/2, we "guess" the particle-hole symmetric solution

$$G(\tau) = B \operatorname{sgn}(\tau) \left| \frac{\pi T}{\sin(\pi T \tau)} \right|^{\rho}$$

Then the self-energy is

$$\Sigma(\tau) = U^2 B^3 \operatorname{sgn}(\tau) \left| \frac{\pi T}{\sin(\pi T \tau)} \right|^{3\rho}$$

Taking Fourier transforms, we have as a function of the Matsubara frequency ω_n

$$G(i\omega_n) = [iB\Pi(\rho)] \frac{T^{\rho-1} \Gamma\left(\frac{\rho}{2} + \frac{\omega_n}{2\pi T}\right)}{\Gamma\left(1 - \frac{\rho}{2} + \frac{\omega_n}{2\pi T}\right)} \qquad \text{A. Georges and O. Parcollet PRB $59,5341 (1999)}$$

$$\Sigma_{\text{sing}}(i\omega_n) = \left[iU^2 B^3 \Pi(3\rho)\right] \frac{T^{3\rho-1} \Gamma\left(\frac{3\rho}{2} + \frac{\omega_n}{2\pi T}\right)}{\Gamma\left(1 - \frac{3\rho}{2} + \frac{\omega_n}{2\pi T}\right)} \,,$$

$$G(i\omega_n) = [iB\Pi(\rho)] \frac{T^{\rho-1} \Gamma\left(\frac{\rho}{2} + \frac{\omega_n}{2\pi T}\right)}{\Gamma\left(1 - \frac{\rho}{2} + \frac{\omega_n}{2\pi T}\right)}$$

$$\Sigma_{\text{sing}}(i\omega_n) = [iU^2 B^3 \Pi(3\rho)] \frac{T^{3\rho-1} \Gamma\left(\frac{3\rho}{2} + \frac{\omega_n}{2\pi T}\right)}{\Gamma\left(1 - \frac{3\rho}{2} + \frac{\omega_n}{2\pi T}\right)},$$

where we have dropped a less-singular term in Σ , and

$$\Pi(s) \equiv \pi^{s-1} 2^s \cos\left(\frac{\pi s}{2}\right) \Gamma(1-s).$$

Now the singular part of Dyson's equation is

$$G(i\omega_n)\Sigma_{\rm sing}(i\omega_n) = -1$$

A. Georges and O. Parcollet PRB **59**, 5341 (1999)

Remarkably, the Γ functions appear with just the right arguments, so that there is a solution of the Dyson equation at $\rho = 1/2$!

So the Green's functions display thermal 'damping' at a scale set by T alone, which is independent of U.

Away from half-filling, the T=0 solution has the low frequency form

$$\Sigma(z) = \mu - \frac{e^{i(\pi/4+\theta)}}{A}\sqrt{z} + \dots , \quad G(z) = \frac{Ae^{-i(\pi/4+\theta)}}{\sqrt{z}}$$

where $A = (\pi/U^2 \cos(2\theta))^{1/4}$. The value of θ is universally related to \mathcal{Q} by a Luttinger-Ward functional analysis similar to that used to establish the Luttinger theorem of Fermi liquid theory:

$$Q = \frac{1}{2} - \frac{\theta}{\pi} - \frac{\sin(2\theta)}{4}$$

At T > 0, we obtain a solution with a conformal structure

$$G(\tau) = -A \frac{e^{-2\pi\mathcal{E}T\tau}}{\sqrt{1 + e^{-4\pi\mathcal{E}}}} \left(\frac{T}{\sin(\pi T\tau)}\right)^{1/2} , \quad 0 < \tau < 1/T,$$

where the 'particle-hole asymmetry' is determined by \mathcal{E}

$$e^{2\pi\mathcal{E}} = \frac{\sin(\pi/4 + \theta)}{\sin(\pi/4 - \theta)}.$$

A. Georges and O. Parcollet PRB **59**, 5341 (1999)

A. Georges, O. Parcollet, and S. Sachdev, PRB **63**, 134406 (2001)

S. Sachdev, PRX 5, 041025 (2015)

Green's functions away from half-filling

So the Green's functions display thermal 'damping' at a scale set by T alone, which is independent of U.

$$G(i\omega) = \frac{1}{i\omega + \mu - \Sigma(i\omega)} , \quad \Sigma(\tau) = -U^2 G^2(\tau) G(-\tau)$$
$$\Sigma(z) = \mu - \frac{1}{A} \sqrt{z} + \dots , \quad G(z) = \frac{A}{\sqrt{z}}$$

$$G(i\omega) = \frac{1}{(\omega + \chi - \Sigma(i\omega))} , \quad \Sigma(\tau) = -U^2 G^2(\tau) G(-\tau)$$

$$\Sigma(z) = \chi - \frac{1}{A} \sqrt{z} + \dots , \quad G(z) = \frac{A}{\sqrt{z}}$$

At frequencies $\ll U$, the $i\omega + \mu$ can be dropped, and without it equations are invariant under the reparametrization and gauge transformations. The singular part of the self-energy and the Green's function obey

$$\int_0^\beta d\tau_2 \, \Sigma_{\text{sing}}(\tau_1, \tau_2) G(\tau_2, \tau_3) = -\delta(\tau_1 - \tau_3)$$
$$\Sigma_{\text{sing}}(\tau_1, \tau_2) = -U^2 G^2(\tau_1, \tau_2) G(\tau_2, \tau_1)$$

$$\int_0^\beta d\tau_2 \, \Sigma_{(\tau_1, \tau_2)} G(\tau_2, \tau_3) = -\delta(\tau_1 - \tau_3)$$
$$\Sigma(\tau_1, \tau_2) = -U^2 G^2(\tau_1, \tau_2) G(\tau_2, \tau_1)$$

These equations are invariant under

$$\tau = f(\sigma)$$

$$G(\tau_1, \tau_2) = \left[f'(\sigma_1) f'(\sigma_2) \right]^{-1/4} \frac{g(\sigma_1)}{g(\sigma_2)} \widetilde{G}(\sigma_1, \sigma_2)$$

$$\Sigma(\tau_1, \tau_2) = \left[f'(\sigma_1) f'(\sigma_2) \right]^{-3/4} \frac{g(\sigma_1)}{g(\sigma_2)} \widetilde{\Sigma}(\sigma_1, \sigma_2)$$

where $f(\sigma)$ and $g(\sigma)$ are arbitrary functions. By using $f(\sigma) = \tan(\pi T \sigma)/(\pi T)$ we can now obtain the T > 0 solution from the T = 0 solution.

Let us write the large N saddle point solutions of S as

$$G_s(\tau_1 - \tau_2) \sim (\tau_1 - \tau_2)^{-1/2}$$

 $\Sigma_s(\tau_1 - \tau_2) \sim (\tau_1 - \tau_2)^{-3/2}.$

The saddle point will be invariant under a reperamaterization $f(\tau)$ when choosing $G(\tau_1, \tau_2) = G_s(\tau_1 - \tau_2)$ leads to a transformed $\widetilde{G}(\sigma_1, \sigma_2) = G_s(\sigma_1 - \sigma_2)$ (and similarly for Σ). It turns out this is true only for the SL(2, R) transformations under which

$$f(\tau) = \frac{a\tau + b}{c\tau + d}$$
 , $ad - bc = 1$.

So the (approximate) reparametrization symmetry is spontaneously broken down to SL(2, R) by the saddle point.

Basics of conformal field theory

In a space with metric tensor $g_{\mu\nu}$ and proper distance

$$ds^2 = g_{\mu\nu} dx_{\mu} dx_{\nu}$$

after the co-ordinate transformation $x_{\mu} \to x'_{\mu}$, the new metric tensor is

$$g'_{\mu\nu} = g_{\rho\lambda} \frac{\partial x_{\rho}}{\partial x'_{\mu}} \frac{\partial x_{\lambda}}{\partial x'_{\nu}}.$$

A conformal transformation is one which preserves all angles and so

$$g'_{\mu\nu}(x') = \Lambda(x)g_{\mu\nu}(x).$$

In a conformal field theory, two-point correlators of scalar fields transform as

$$\langle \phi(x_1)\phi(x_2)\rangle = \left|\det\left[\frac{\partial x_1'}{\partial x_1}\right]\right|^{\Delta/d} \left|\det\left[\frac{\partial x_2'}{\partial x_2}\right]\right|^{\Delta/d} \langle \phi(x_1')\phi(x_2')\rangle$$

Infinite-range (SYK) model without quasiparticles

After introducing replicas $a = 1 \dots n$, and integrating out the disorder, the partition function can be written as

$$Z = \int \mathcal{D}c_{ia}(\tau) \exp\left[-\sum_{ia} \int_{0}^{\beta} d\tau \, c_{ia}^{\dagger} \left(\frac{\partial}{\partial \tau} - \mu\right) c_{ia}\right]$$
$$-\frac{U^{2}}{4N^{3}} \sum_{ab} \int_{0}^{\beta} d\tau d\tau' \left|\sum_{i} c_{ia}^{\dagger}(\tau) c_{ib}(\tau')\right|^{4}.$$

For simplicity, we neglect the replica indices, and introduce the identity

$$1 = \int \mathcal{D}\Sigma(\tau_1, \tau_2) \exp\left[-N \int_0^\beta d\tau_1 d\tau_2 \Sigma(\tau_1, \tau_2) \left(G(\tau_2, \tau_1) + \frac{1}{N} \sum_i c_i(\tau_2) c_i^{\dagger}(\tau_1)\right)\right].$$

Infinite-range (SYK) model without quasiparticles

Then the partition function can be written as a path integral with an action S analogous to a Luttinger-Ward functional

$$Z = \int \mathcal{D}G(\tau_{1}, \tau_{2}) \mathcal{D}\Sigma(\tau_{1}, \tau_{2}) \exp(-NS)$$

$$S = \ln \det \left[\delta(\tau_{1} - \tau_{2})(\partial_{\tau_{1}} + \mu) - \Sigma(\tau_{1}, \tau_{2})\right]$$

$$+ \int d\tau_{1} d\tau_{2} \Sigma(\tau_{1}, \tau_{2}) \left[G(\tau_{2}, \tau_{1}) + (U^{2}/2)G^{2}(\tau_{2}, \tau_{1})G^{2}(\tau_{1}, \tau_{2})\right]$$

At frequencies $\ll U$, the time derivative in the determinant is less important, and without it the path integral is invariant under the reparametrization and gauge transformations

A. Georges and O. Parcollet

 $\tau = f(\sigma)$ A. Kitaev, 2015 S. Sachdev, PRX **5,** 041025 (2015) $G(\tau_1,\tau_2) = \left[f'(\sigma_1)f'(\sigma_2)\right]^{-1/4} \frac{g(\sigma_1)}{g(\sigma_2)} \, G(\sigma_1,\sigma_2)$

$$\Sigma(\tau_1, \tau_2) = \left[f'(\sigma_1) f'(\sigma_2) \right]^{-3/4} \frac{g(\sigma_1)}{g(\sigma_2)} \Sigma(\sigma_1, \sigma_2)$$

where $f(\sigma)$ and $g(\sigma)$ are arbitrary functions.

Reparametrization and phase zero modes

We can write the path integral for the SYK model as

$$\mathcal{Z} = \int \mathcal{D}G(\tau_1, \tau_1) \mathcal{D}\Sigma(\tau_1, \tau_2) e^{-NS[G, \Sigma]}$$

for a known action $S[G, \Sigma]$. We find the saddle point, G_s , Σ_s , and only focus on the "Nambu-Goldstone" modes associated with breaking reparameterization and U(1) gauge symmetries by writing

$$G(\tau_1, \tau_2) = [f'(\tau_1)f'(\tau_2)]^{1/4}G_s(f(\tau_1) - f(\tau_2))e^{i\phi(\tau_1) - i\phi(\tau_2)}$$

(and similarly for Σ). Then the path integral is approximated by

$$\mathcal{Z} = \int \mathcal{D}f(\tau)\mathcal{D}\phi(\tau)e^{-NS_{\text{eff}}[f,\phi]}.$$

J. Maldacena and D. Stanford, arXiv:1604.07818;

R. Davison, Wenbo Fu, A. Georges, Yingfei Gu, K. Jensen, S. Sachdev, arXiv. 1612.00849; S. Sachdev, PRX 5, 041025 (2015); J. Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857;

K. Jensen, arXiv: 1605.06098; J. Engelsoy, T.G. Mertens, and H. Verlinde, arXiv: 1606.03438

The Schwarzian theory of the SYK model

Symmetry arguments, and explicit computations, show that the effective action is

$$S_{\text{eff}}[f,\phi] = \frac{K}{2} \int_0^{1/T} d\tau (\partial_\tau \phi + i(2\pi \mathcal{E}T)\partial_\tau f)^2 - \frac{\gamma}{4\pi^2} \int_0^{1/T} d\tau \left\{ \tan(\pi T f(\tau)), \tau \right\},$$

where $f(\tau)$ is a monotonic map from [0, 1/T] to [0, 1/T], the couplings K, γ , and \mathcal{E} can be related to thermodynamic derivatives and we have used the Schwarzian:

$$\{g,\tau\} \equiv \frac{g'''}{g'} - \frac{3}{2} \left(\frac{g''}{g'}\right)^2.$$

Specifically, an argument constraining the effective at T=0 is

$$S_{\text{eff}}\left[f(\tau) = \frac{a\tau + b}{c\tau + d}, \phi(\tau) = 0\right] = 0,$$

and this is origin of the Schwarzian.

J. Maldacena and D. Stanford, arXiv:1604.07818; R. Davison, Wenbo Fu, A. Georges, Yingfei Gu, K. Jensen, S. Sachdev, arXiv.1612.00849;

A. Gaikwad, L.K. Joshi, G. Mandal, and S.R. Wadia, arXiv:1802.07746;

Yingfei Gu and S. Sachdev, unpublished

- I. Random matrix quasiparticle model q=2, complex SYK
- 2. Matter without quasiparticles q=4, complex SYK
- 3. The Schwarzian theory
- 4. Connections to black holes with AdS₂ horizons

Black holes

- Black holes have an entropy and a temperature, $T_H = \hbar c^3/(8\pi GM k_B)$.
- The entropy is proportional to their surface area.

• The ring-down is predicted by General Relativity to happen in a time $\frac{8\pi GM}{c^3} \sim 8$ milliseconds.

• The ring-down is predicted by General Relativity to happen in a time $\frac{8\pi GM}{c^3} \sim 8$ milliseconds. Curiously this happens to equal so the ring down can also be viewed as the approach of a

 $\frac{k_B T_H}{\text{quantum system to thermal equilibrium at the fastest possible rate.}}$

Black holes

- Black holes have an entropy and a temperature, $T_H = \hbar c^3/(8\pi GM k_B)$.
- The entropy is proportional to their surface area.
- They relax to thermal equilibrium in a time $\sim \hbar/(k_B T_H)$.

Black holes

- Black holes have an entropy and a temperature, $T_H = \hbar c^3/(8\pi GM k_B)$.
- The entropy is proportional to their surface area.
- They relax to thermal equilibrium in a time $\sim \hbar/(k_B T_H)$.

Holography:

Quantum black holes "look like" quantum many-particle systems without quasiparticle excitations, residing "on" the surface of the black hole

Consider a charged black hole with the smallest possible mass: the extremal limit. Zoom in to the near-horizon region at low energies. In this limit, the quantum theory lives in one space (ζ) and one time dimension

The near-horizon region of an extremal charged black hole has the geometry of (1+1)-dimensional anti-de Sitter spacetime. By holography, this should map to a zero-dimensional quantum system: this turns out to be the SYK model

Bekenstein-Hawking entropy of AdS_2 horizon at $T = 0 \Leftrightarrow Ns_0$ entropy of SYK model

The correspondence between the complex SYK model and extremal black holes holds also for the low T thermodynamics and low energy density of states. Both obey

$$\Omega(T) - E_0 = N \left[-s_0 T - \frac{1}{2} (\gamma + 4\pi^2 \mathcal{E}^2 K) T^2 + \mathcal{O}(T^3) \right] + 2T \ln \left(\frac{U}{T} \right) \dots$$

for the grand potential, and for the density of states at a fixed charge $\mathcal Q$

$$d(E) \sim \exp(Ns_0) \sinh\left(\sqrt{2N\gamma(E-E_0)}\right)$$
 , $E > E_0$, $e^{-cN} \ll \gamma(E-E_0) \ll N$

with the relation
$$\frac{ds_0}{d\mathcal{Q}}=2\pi\mathcal{E}$$
 also obtained from Einstein's equations A Sen, JHEP **0509**, 038 (2005)

- Reparameterization invariance is a defining property of Einstein's theory of gravity
- In imaginary time, AdS_2 is the homogeneous hyperbolic space: two-dimensional surface of constant negative curvature. Its metric is invariant under SL(2,R)

$$ds^2 = (d\tau^2 + d\zeta^2)/\zeta^2$$
 is invariant under

$$\tau' + i\zeta' = \frac{a(\tau + i\zeta) + b}{c(\tau + i\zeta) + d} \text{ with } ad - bc = 1.$$

- Reparameterization invariance is a defining property of Einstein's theory of gravity
- In imaginary time, AdS_2 is the homogeneous hyperbolic space: two-dimensional surface of constant negative curvature. Its metric is invariant under SL(2,R)

$$ds^2 = (d\tau^2 + d\zeta^2)/\zeta^2$$
 is invariant under

$$\tau' + i\zeta' = \frac{a(\tau + i\zeta) + b}{c(\tau + i\zeta) + d} \text{ with } ad - bc = 1.$$

Their identical symmetries lead to the same low energy quantum theory for the SYK model and extremal charged black holes!

A. Kitaev, 2015

Einstein-Maxwell-theory

charge density Q $AdS_2 \times S^2$ $ds^2 = (d\zeta^2 - dt^2)/\zeta^2 + d\vec{x}^2$ Gauge field: $A = (\mathcal{E}/\zeta)dt$ $S_{4D} = \int d^4x \sqrt{-\hat{g}} \left(\hat{\mathcal{R}} + 6/L^2 - \frac{1}{4} \hat{F}_{\mu\nu} \hat{F}^{\mu\nu} \right), \, \zeta = \infty$

Has Reissner-Nördstrom-AdS charged black hole solution, with charge density \mathcal{Q} , a near-horizon $AdS_2 \times S^2$ geometry, and surface electric field \mathcal{E} . (This analysis also applies in asymptotically Minkowski spacetime $(L \to \infty)$ provided the black hole mass is extremal.)

Einstein-Maxwell-theory

charge density Q $AdS_2 \times S^2$ $ds^2 = (d\zeta^2 - dt^2)/\zeta^2 + d\vec{x}^2$ Gauge field: $A = (\mathcal{E}/\zeta)dt$ $S_{4D} = \int d^4x \sqrt{-\hat{g}} \left(\hat{\mathcal{R}} + 6/L^2 - \frac{1}{4} \hat{F}_{\mu\nu} \hat{F}^{\mu\nu} \right), \quad \zeta = \infty$

- Has Reissner-Nördstrom-AdS charged black hole solution, with charge density \mathcal{Q} , a near-horizon $AdS_2 \times S^2$ geometry, and surface electric field \mathcal{E} . (This analysis also applies in asymptotically Minkowski spacetime $(L \to \infty)$ provided the black hole mass is extremal.)
- From Einstein's equations, the Bekenstein-Hawking black hole entropy S_{4D} is found to obey the same relation as the entropy of the SYK model

$$\frac{\partial S_{4D}}{\partial \mathcal{Q}} = 2\pi \mathcal{E} \,,$$

A Sen, JHEP **0509**, 038 (2005)

where \mathcal{E} is identified from the spectral asymmetry of probe particle Green's functions in both cases. This establishes that the SYK entropy Ns_0 maps onto (Area of horizon)/(4G)

S. Sachdev, PRX 5, 041025 (2015)

EINSTEIN DR NAXWELL LN

Einstein-Maxwell-theory

charge density Q

P. Nayak, A. Shukla, R.M. Soni, S.P. Trivedi, and V. Vishal,

arXiv:1802.09547;

A. Gaikwad, L.K. Joshi, G. Mandal, and S.R. Wadia,

arXiv:1802.07746

$$AdS_2 \times S^2$$
 $ds^2 = (d\zeta^2 - dt^2)/\zeta^2 + d\vec{x}^2$
Gauge field: $A = (\mathcal{E}/\zeta)dt$

$$S_{4D} = \int d^4x \sqrt{-\hat{g}} \left(\hat{\mathcal{R}} + 6/L^2 - \frac{1}{4} \hat{F}_{\mu\nu} \hat{F}^{\mu\nu} \right),$$

In the small black hole size limit, $T \ll 1/R$, where R is the radius of the black hole, the theory dimensionally reduces to an Einstein-Maxwell-dilaton theory in two dimensions (the Jackiw-Teitelbaum model), along with Maxwell term

$$S_{2D} = Ns_0 + \int d^2x \sqrt{-g} \left(\Phi(\mathcal{R} - \Lambda) - \frac{Z(\Phi)}{4} F_{ab} F^{ab} \right) .$$

The dilaton Φ represents the radial oscillations of the small black hole.

Einstein-Maxwell-theory

P. Nayak, A. Shukla, R.M. Soni, S.P. Trivedi, and V. Vishal,

arXiv:1802.09547;

A. Gaikwad, L.K. Joshi, G. Mandal, and S.R. Wadia,

arXiv:1802.07746

$$S_{2D} = Ns_0 + \int d^2x \sqrt{-g} \left(\Phi(\mathcal{R} - \Lambda) - \frac{Z(\Phi)}{4} F_{ab} F^{ab} \right) .$$

There are no bulk quantum fluctuations of the metric in two-dimensional gravity, and there a further dimensional reduction to a 0 + 1 dimensional theory representing fluctuations of the AdS_2 boundary: this 0+1 dimensional turns out to be precisely the Schwarzian theory obtained for the SYK model.

$$S_{\text{eff}}[f,\phi] = \frac{K}{2} \int_0^{1/T} d\tau (\partial_\tau \phi + i(2\pi \mathcal{E}T)\partial_\tau f)^2 - \frac{\gamma}{4\pi^2} \int_0^{1/T} d\tau \left\{ \tan(\pi T f(\tau)), \tau \right\},$$

J. Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857;

K. Jensen, arXiv: 1605.06098;

J. Engelsoy, T.G. Mertens, and H. Verlinde, arXiv:1606.03438

Quantum matter without quasiparticles

- Planckian dynamics is realized in the 'solvable' SYK models
- Black holes thermalize in a time $\sim \hbar/(k_B T_H)$, where T_H is the Hawking temperature.
- A Schwarzian theory of a time reparameterization mode, with SL(2,R) symmetry, describes the quantum dynamics of
 - the SYK models
 - black holes with near-extremal AdS₂ horizons