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Ultracold 8"Rb atoms - ],o.g)sons

7 \ 7 N
a Superfluid state ; % \

M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and 1. Bloch, Nature 415, 39 (2002).
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Excitations of the insulator:

Particles ~ °

Density of particles = density of holes =
“relativistic” field theory for :

- u
S= [ drdr (1000 + AT + sl + Sl

Insulator < () =0
Superfluid < () #0

Holes ~




Superfluid
<1p > = ()

O =00

\

A)

Insulator

W)=0

o =0

S

c

— u
S= [ drar [|0:wP + AT + sl + Sl




Conformal field theory:
Wilson-Fisher fixed point
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Graphene




Graphene

Low energy theory has 4 two-component Dirac fermions, v,
a =1...4, interacting with a 1/r Coulomb interaction

S = / 2rdrip! ((97 — iwpd - 6) e

2
- % / d2rd®r' drl o (1) ngzpﬁ(r’)

1
="

Dimensionless “fine-structure” constant A = e*/(4hvp).

RG flow of «a:
d\

==
Behavior is similar to a CFT3 with A\ ~ 1/In(scale)

—\? +
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Wave oscillations of the
condensate (classical Gross-
Pitaevski equation)
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particle and holes

> Quantum y
\ critical ,




CFT at 7>0
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M. P. A. Fisher, PhyS Rev. Lett. 65, 923 (1990) FIG. 1. Evolution of the temperature dependence of the

sheet resistance R(7) with thickness for a Bi film deposited
onto Ge. Fewer than half of the traces actually acquired are
shown. Film thicknesses shown range from 4.36 to 74.27 A,

D. B. Haviland, Y. Liu, and A. M. Goldman,
Phys. Rev. Lett. 62,2180 (1989)




Density correlations in CFTs at 77>0

Two-point density correlator, y(k,w)

— W

Kubo formula for conductivity o(w) = llirr(l) 7 x(k,w)
For all CFT2s, at all Aw/kpT
4e? vk? 4e? Kv
x(k, w) h  v2k2 —w? '’ o(w) h —iw

where K is a universal number characterizing the CFT2 (the level
number), and v is the velocity of “light”.




Density correlations in CFTs at 77>0

Two-point density correlator, y(k,w)

— W

Kubo formula for conductivity o(w) = llirr(l) 7 x(k,w)
For all CFT3s, at hw > kT
4e? k? 4e?
x(h,w) = — K\/v%z = o(w)=——K

where K is a universal number characterizing the CFT3, and v is
the velocity of “light”.




Density correlations in CFTs at 77>0

Two-point density correlator, y(k,w)

(F,w)

Kubo formula for conductivity o(w) = llirr(l) —k_z;,u X

However, for all CFT3s, at hw < kg'T', we have the Einstein re-
lation

Dk? 4e?
DEZ — i . o(w) = 4e*Dy, = T@l@g

X<k7 W) - 462Xc

where the compressibility, y., and the diffusion constant D

obey
- kBT hUQ

X= Gt kT

with ©1 and ©, universal numbers characteristic of the CFT3
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

O




Density correlations in CFTs at 77>0

In CFT3s collisions are “phase” randomizing, and lead to
relaxation to local thermodynamic equilibrium. So there
is a crossover from collisionless behavior for hw > kg7, to
hydrodynamic behavior for Aw < kgT.

( 4 2
%K C hw > kT
o(w) = 4
4e?
\ 761@2 y hw < k’BT

and in general we expect K # ©10, (verified for Wilson-
Fisher fixed point).

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).




Collisionless-hydrodynamic crossover in graphene

‘ ok . hw > kpT/(In(A/T))’
\ 4—;2(1n(A/T))2@1@2 . hw < kpT/(In(A/T))?

L. Fritz, M. Mueller, J. Schmalian and S. Sachdev, to appear.
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For experimental applications, we must move away from the ideal CFT

A chemical potential w

* A magnetic field B

— - Superﬂwd
- CFT
Commensurate -
| Mottinsulator @™~ --- - - .
9e -~~~ g
p=70 oo
/ Supér/ﬂwd
s p=>0
= 2 2 4
V —id)y| - glul? + Il




Cuprate superconductors




Cuprate superconductors

/ Nernst measurements
AT







Cuprate superconductors

AT Use coupling g
to induce a

transition to a

VBS insulator




Cuprate superconductors

AT

Nernst measurements

o\l \JTo\.)ct

Insulator
x=1/8




In the regime hw < kgI', we can use the principles of hydrody-
namics:

e Describe system in terms of local state variables which obey
the equation of state

e Express conserved currents in terms of gradients of state vari-
ables using transport co-efficients. These are restricted by
demanding that the system relaxes to local equilibrium 1.e.
entropy production is positive.

e The conservation laws are the equations of motion.




The variables entering the hydrodynamic theory are

e the external magnetic field F'*Y,

0O 0 O
F#» =10 0 B |,
0 —B 0
e T the stress energy tensor, e J¥ the current,
e p, the difference in density e ¢, the local energy
from the Mott insulator.
e P, the local pressure, e ut, the local velocity, and

e 0(, a universal conductivity, which is the single transport
co-efficient.

The dependence of €, P, g on T and v follows from simple scaling
arguments




Lorentz invariance and positivity of entropy production lead to the
hydrodynamic equations of motion and constitutive relations:

S.A. Hartnoll, P.K. Kovtun, M. Miiller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)




Lorentz invariance and positivity of entropy production lead to the
hydrodynamic equations of motion and constitutive relations:

9, J" = 0

« Conservation laws/equations of motion
o,T" = F*J,

S.A. Hartnoll, P.K. Kovtun, M. Miiller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)




Lorentz invariance and positivity of entropy production lead to the
hydrodynamic equations of motion and constitutive relations:

o, Jt = 0
0,T"" = FHI],
™" = (e + P)utu” + Pg"”

JE =yt \

Constitutive relations which follow from Lorentz
transformation to moving frame

S.A. Hartnoll, P.K. Kovtun, M. Miiller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)




Lorentz invariance and positivity of entropy production lead to the
hydrodynamic equations of motion and constitutive relations:

o, Jt = 0
0,T"" = FHI],
™" = (e + P)utu” + Pg"”

O, T
put + og(g"” + utu"”) [(—&/u + Fau?) + pt—

] T
Single dissipative' term allowed by requirement of

positive entropy production. There 1s only one
independent transport co-efficient

JI«L

S.A. Hartnoll, P.K. Kovtun, M. Miiller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)




For experimental applications, we must move away from the ideal CFT

« A chemical potential u

* A magnetic field B

* An impurity scattering rate
1/t (1ts T dependence

follows from scaling
arguments)

e.g.
S = /d2rd7 [|(8T — Y| + v? |(§ —
V x A

A=B , V(r)=0

Y

p=70

AN ‘Superfluid-
\ p <0
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) Superfluid
) op >0

- 2
iAyp| = gl + VOl + Sl
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Lorentz invariance and positivity of entropy production lead to the
hydrodynamic equations of motion and constitutive relations:

oJt' = 0
o,IT"" = F*"J, + . (08 + utuy) T Y u.
imp
T = (e + P)uru” + Pg"”
5 5 o0, T
JE = put +og(g" +utu?) | (—Oup+ Fuau ) + MT

S.A. Hartnoll, P.K. Kovtun, M. Miiller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)




Lorentz invariance and positivity of entropy production lead to the
hydrodynamic equations of motion and constitutive relations:

oJt' = 0
0,T"*" = F"J,+ - (08 + utuy) T u.
imp
T = (e + P)uru” + Pg"”
5 5 0,T
JE = put +og(g" +utuY) | (—Bup+ Fuau ) + MT

Solve initial value problem and relate
results to response functions (Kadanoff+Martin)

S.A. Hartnoll, P.K. Kovtun, M. Miiller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)




From these relations, we obtained results for the transport co-efficients,
expressed 1n terms of a “cyclotron” frequency and damping:

2e B pv? B?y?
. T =0Q 5
c(e + P) c?*(e + P)

We =

Longitudinal conductivity

(w 44/ Timp) (w + ¥y + wZ /¥ + 4/ Timp)

(w =+ 7y + 1/ Timp ) ? — w?

0:1:3: T

S.A. Hartnoll, P.K. Kovtun, M. Miiller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)




From these relations, we obtained results for the transport co-efficients,
expressed 1n terms of a “cyclotron” frequency and damping:

2e B pv? B?y?
. T =0Q 5
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Longitudinal conductivity
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462 p21)2 1
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S.A. Hartnoll, P.K. Kovtun, M. Miiller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)




From these relations, we obtained results for the transport co-efficients,
expressed 1n terms of a “cyclotron” frequency and damping:
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g T =0Q 5
c(e + P) c’(e + P)

We =

Hall conductivity

i _ 2epc Y% + w? — 2iyw + 277/ Timp
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S.A. Hartnoll, P.K. Kovtun, M. Miiller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)




From these relations, we obtained results for the transport co-efficients,
expressed 1n terms of a “cyclotron” frequency and damping:
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Hall conductivity

2epc [v? + w? — 2iyw + 277/ Timp
Opy = —
Y B | (WHiy+i/Timp)? — w?
2
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B

S.A. Hartnoll, P.K. Kovtun, M. Miiller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)




From these relations, we obtained results for the transport co-efficients,
expressed 1n terms of a “cyclotron” frequency and damping:
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Hall conductivity
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S.A. Hartnoll, P.K. Kovtun, M. Miiller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)




From these relations, we obtained results for the transport co-efficients,
expressed 1n terms of a “cyclotron” frequency and damping:
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From these relations, we obtained results for the transport co-efficients,
expressed 1n terms of a “cyclotron” frequency and damping:

2e B pv? B?y?
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c(e + P) 7= 1 p)
Thermal conductivity

o (RRTY (24 P\ [(@2/7) w2/ +1/Timp)
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S.A. Hartnoll, P.K. Kovtun, M. Miiller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)




From these relations, we obtained results for the transport co-efficients,
expressed 1n terms of a “cyclotron” frequency and damping:

2e B pv? B?v?

T e+ P) 0 T et P

Nernst signal

- k_B e+ P wc/Timp
N7\ 2e ) \ksTp) [ (02/7 + 1/Timp)? + w32

kB
— =43.0861V /K
2e wv/

S.A. Hartnoll, P.K. Kovtun, M. Miiller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)




From these relations, we obtained results for the transport co-efficients,
expressed 1n terms of a “cyclotron” frequency and damping:

2e B pv? B?v?

T e+ P) 0 T et P

Transverse thermoelectric co-efficient

_ 2 Timp \ - P2 4 PoPey p(kpT)? /20T,
( h )Oéa;y:q)sB(kBT)z( T p> p-+ +P(_B2 )° I/ 27 Tymp |
2ekp h CIDEJFP(/{BT)G + B 0° (27 Timp /1)

where

B = Bgo/(w)* 5 p=p/(lw)*.

S.A. Hartnoll, P.K. Kovtun, M. Miiller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)




LSCO Experiments

Measurement of o, =0 e,

1 .
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0.0001 - Do ED
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T(K)
Y. Wang et al., Phys. Rev. B 73, 024510 (2006).




LSCO Experiments

Measurement of o, =0 e,

BT*(p™,, +#T°)

1 3 T ! I ! 1
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T (K) y=2.5407¢ e

Y. Wang et al., Phys. Rev. B 73, 024510 (2006).




LSCO Experiments

Measurement of a, =0, ey

BT, +#T°)

1 ' I I | | L axy 6 2 .22
0.1 F e
0.
.,
o, 001k .y (T small)
: .
0.001 SR 0) ~ 2eks = ('27‘-nmp ll)zpzmu)f
: 2 Chay /DL N ) (kgT)
0.0001 : ' ' ' 0
30 40 60 80 100120 hv=4T7meV A
TK) T, ~107"s
v=2.5x07¢ P

Y. Wang et al., Phys. Rev. B 73, 024510 (2006).

— Prediction for w_:

35K
)

* T-dependent cyclotron frequency!

* 0.035 times smaller than the cyclotron
frequency of free electrons (at T=35 K)

* Only observable in ultra-pure samples

-1
where Ty =0




B(T)

LSCO Experiments

B, T-dependence

Theory for o, =0 N LSCO-0.12 Nernst signal N
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Y Wang, L. Li, and N. P. Ong, Phys. Rev. B 73, 024510 (2006).




LSCO Experiments

Theory for N

2.0 4.0 6.0 8.(.) 0 10 20 30 40 50
T(K) T (K)

Y Wang, L. Li, and N. P. Ong, Phys. Rev. B 73, 024510 (2006).
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Quantum criticality and dyonic black holes




Black Holes

Objects so massive that light 1s
gravitationally bound to them.




Black Holes

Objects so massive that light 1s
gravitationally bound to them.

The region inside the black hole
horizon is causally disconnected
from the rest of the universe.

2GM
-2

Horizon radius R =




Black Hole Thermodynamics

Bekenstein and Hawking discovered astonishing
connections between the Einstein theory of black
holes and the laws of thermodynamics

kA
40%
where A is the area of the horizon, and

Gh
{p =/ — 1s the Planck length.
c

Entropy of a black hole S =

The Second Law: dA > 0




Black Hole Thermodynamics

Bekenstein and Hawking discovered astonishing
connections between the Einstein theory of black
holes and the laws of thermodynamics

h2

Horizon temperature: 4dnkr’l =
. BL T oM




AdS/CFT correspondence

The quantum theory of a black hole in a 3+1-
dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory of a
quantum critical point) in 2+1 dimensions

A 2+1 dimensional
system at 1ts quantum
critical point

3+1 dimensional
AdS space

Black hole Maldacena




AdS/CFT correspondence

The quantum theory of a black hole in a 3+1-
dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory of a
quantum critical point) in 2+1 dimensions

Black hole
temperature =

3+1 dimensional
AdS space

Quantum
criticality
in2+1 D

Black hole Strominger, Vafa

temperature of
quantum
criticality




AdS/CFT correspondence

The quantum theory of a black hole in a 3+1-
dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory of a
quantum critical point) in 2+1 dimensions

Dynamics of
quantum criticality

= waves in curved
gravitational
background

3+1 dimensional
AdS space

Quantum
criticality
n 2--4-D

Black hole Maldacena




AdS/CFT correspondence

The quantum theory of a black hole in a 3+1-
dimensional negatively curved AdS universe is
holographically represented by a CFT (the theory of a
quantum critical point) in 2+1 dimensions

“Friction” of
gquantum critical

dynamics = black
hole absorption
rates

3+1 dimensional
AdS space

Quantum
criticality
in 2++D

Son

Black hole




Application of the AdS/CFT correspondence

Can obtain the exact w and k dependence of the quantum crit-
ical density correlation functions of many supersymmetric CFT3s
(which are similar to supersymmetric generalizations of critical

spin liquid theories). There are dual to black hole solutions of
11-dimensional supergravity.
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Application of the AAS/CFT correspondence

Can obtain the exact w and k dependence of the quantum crit-
ical density correlation functions of many supersymmetric CFT3s
(which are similar to supersymmetric generalizations of critical
spin liquid theories). There are dual to black hole solutions of
11-dimensional supergravity.

e The solutions exhibit the predicted collisionless-to-hydrodynamic
Crossover.

e Exact values are obtained for transport co-efficients (these
are the first such results for a clean, interacting many-body
system in dimensions d > 1.)

e Adding p and B to the CFT3 corresponds to adding elec-
tric and magnetic charges to the black hole. Solutions of the
Einstein-Maxwell equations in this dyonic black hole back-
ground yield thermoelectric response functions which agree
perfectly with all hydrodynamic results presented earlier.




THEORETICAL PHYSICS

A black hole full of answers

Jan Zaanen

A facet of string theory, the currently favoured route to a ‘theory of
everything', might help to explain some properties of exotic matter phases —
such as some peculiarities of high-temperature superconductors.
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Conclusions

* Hydrodynamic theory for thermoelectric response functions of
quantum critical systems

* Applications to the cuprates and graphene.

* Exact solutions via black hole mapping have yielded first exact
results for transport co-efficients in interacting many-body
systems, and were valuable in determining general structure of
hydrodynamics.




Collisionless to hydrodynamic crossover of SYM3
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Collisionless to hydrodynamic crossover of SYM3
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Universal constants of SYM3
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Electromagnetic self-duality

e Unexpected result, K = ©,0,.

e This is traced to a four-dimensional electromagnetic
self-duality of the theory on AdS,. In the large N
limit, the SO(8) currents decouple into 28 U(1) cur-

rents with a Maxwell action for the U(1) gauge fields
on AdS4

e This special property is not expected for generic CFT 3s.

e Open question: Does K = 0©;0, hold beyond the
N — oo limit 7 In other words, does this “self-
duality” survive in the full M theory.




