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The Sachdev-Ye-Kitaev (SYK) model

Pick a set of random sites/orbitals



Place electrons randomly on some sites/orbitals

The SYK model
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This describes both a strange metal and a black hole!

The SYK model



A. Kitaev, unpublished; S. Sachdev, PRX 5, 041025 (2015)

S. Sachdev and J. Ye, PRL 70, 3339 (1993)

(See also: the “2-Body Random Ensemble” in nuclear physics; did not obtain the large N limit;
T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, and S.S.M. Wong, Rev. Mod. Phys. 53, 385 (1981))

The SYK model

H =
1

(2N)3/2

NX

i,j,k,`=1

Uij;k` c
†
i c

†
jckc` � µ

X

i

c†i ci

cicj + cjci = 0 , cic
†
j + c†jci = �ij

Q =
1

N

X

i

c†i ci

Uij;k` are independent random variables with Uij;k` = 0 and |Uij;k`|2 = U2

N ! 1 yields critical strange metal.
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We suggest that the holographic principle, combined with recent technological advances in
atomic, molecular, and optical physics, can lead to experimental studies of quantum gravity.
As a specific example, we consider the Sachdev-Ye-Kitaev (SYK) model, which consists of
spin-polarized fermions with an all-to-all complex random two-body hopping and has been
conjectured to be dual to a certain quantum gravitational system. Achieving low-temperature
states of the SYK model is interpreted as a realization of a stringy black hole, provided that
the holographic duality is true. We introduce a variant of the SYK model, in which the random
two-body hopping is real. This model is equivalent to the origincal SYK model in the large-N
limit. We show that this model can be created in principle by confining ultracold fermionic
atoms into optical lattices and coupling two atoms with molecular states via photo-association
lasers. This development serves as an important first step towards an experimental realization
of such systems dual to quantum black holes. We also show how to measure out-of-time-order
correlation functions of the SYK model, which allow for identifying the maximally chaotic
property of the black hole.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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How to make a quantum black hole with ultra-cold gases Masanori Hanada

atoms with ns molecular states, described by the following Hamiltonian with real Gaussian random
couplings gs,i j:

Ĥm =
ns

Â
s=1

(
nsm̂†

s m̂s +Â
i, j

gs,i j

⇣
m̂†

s ĉiĉ j � m̂sĉ
†
i ĉ†

j

⌘)
. (3.1)

By integrating m̂s out, we obtain the following effective Hamiltonian,

Ĥeff = Â
s,i, j,k,l

gs,i jgs,kl

ns
ĉ†

i ĉ†
j ĉkĉl. (3.2)

(A similar model has been considered in [26].) Previously, a similar way of designing a kind of
two-body hopping term by means of intermediate two-particle states has been proposed in [27].

Let us take n1 = n2 = · · · = nns µ p
ns. When ns is large enough, Âs

gs,i jgs,kl
ns

should become
Gaussian except for the diagonal elements (i, j) = (k, l) or (i, j) = (l,k) (note that g2

s,i j is always
positive), because it is simply an ns-step random walk for each set of indices (i, j,k, l). In order to
improve the behavior of the diagonal elements, we take ns to be even, and set ns =+

p
nsss for even

s and ns =�p
nsss for odd s. We take the variance of gs,i j to be s2 = s2

g , with s2
g /ss = J/(2N)3/2.

In the following we set ss = sg = J/(2N)3/2. It is not hard to see that the properties needed
in the real-SYK model are satisfied at ns = •. We identify Âs

gs,i jgs,kl
ns

defined in this way with
Ji j,kl/(2N)3/2.

The model (3.2), which is equivalent to the SYK model at ns =•, can in principle be created in
a system of optical lattices loaded with ultracold gases [20]. In the proposed scheme, we utilize the
photoassociation and photodissociation processes that coherently convert two atoms into a bosonic
molecule in a certain electronic (or hyperfine), vibrational, and rotational state [28], and vice versa
(Fig. 3). For details, see [20].

Figure 3: By introducing laser beams with appropriate frequencies, the photoassociation and photodissoci-
ation processes, which can be regarded as the interaction between a molecule and two atoms in (3.1), can be
introduced.

4. Discussions and future directions

In this presentation, we have suggested a path to create a quantum black hole in the laboratory,
by experimentally realizing the SYK model. Of course, that we can make a black hole in principle
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Fig. 2 Schematic illustrations of the energy levels of the atomic and molecular states

relevant to our protocol (a) and the PA process (b) for N = 4 and nms = 1.

However, since in general the lattice depth for molecules may be controlled independently

from that for atoms, we assume that the former has the sign opposite to the latter. In this

situation, the potential minima of the molecular optical lattice sit right next to those of

the atomic optical lattice, as illustrated in Fig. 2(a), such that we do not have to take into

account the effects of the onsite interactions between an atom and a molecule, which would

otherwise complicate the levels of the atomic and molecular bands. We assume that the opti-

cal lattices are so deep that atoms and molecules in each lattice site are completely isolated.

To make the manipulation of the system easier, we remove all the atoms in the lattice sites

neighboring to occupied sites. We also assume that each occupied atomic lattice site contains

Q atoms. We regard the band degrees of freedom in the atomic site as the physical site index

of the SYK model. More specifically, the first, second, third, . . ., N -th bands correspond to

i = 1, 2, 3, . . . , N sites. We write the energy of the lowest molecular band and that of the

i-th atomic band as Em and Ea,i.

Let us introduce a PA laser, which couples atomic bands i(≤ N) and j(≤ N) with the

lowest molecular band. The frequency of the PA laser is chosen as

ωPA
i,j = Em − E

(2)
i,j − ν, (12)

where E(2)
i,j = Ea,i + Ea,j , and ν denotes the detuning. We consider a situation in which all the

combinations of the two atomic bands (i, j) are coupled via independent PA lasers as shown

in Fig. 2(b). For such a situation to be possible, |ν| has to be larger than the linewidth of the

PA lasers ΓPA and that of the molecular state Γms. In addition, the condition |ν| ≪ ∆min

has to be satisfied, where ∆min denotes the minimum level spacing in E
(2)
i,j ≤ E

(2)
N−1,N . The

number of necessary PA lasers is N(N − 1)/2. The PA process is described by the following

7



A simple model of a metal with quasiparticles

Pick a set of random positions



Place electrons randomly on some sites
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Electrons move one-by-one randomly
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H =
1

(N)1/2

NX

i,j=1

tijc
†
i cj + . . .

cicj + cjci = 0 , cic
†
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Fermions occupying the eigenstates of a 
N x N random matrix

tij are independent random variables with tij = 0 and |tij |2 = t2
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A simple model of a metal with quasiparticles

!

Let "↵ be the eigenvalues of the matrix tij/
p
N .

The fermions will occupy the lowest NQ eigen-

values, upto the Fermi energy EF . The density

of states is ⇢(!) = (1/N)

P
↵ �(! � "↵).

EF
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A simple model of a metal with quasiparticles
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GPS:   A. Georges, O. Parcollet, and S. Sachdev, 
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where G is Catalan’s constant,

for the half-filled case Q = 1/2.
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A. Georges and O. Parcollet PRB 59, 5341 (1999)

• Low energy, many-body density of states

⇢(E) ⇠ eNs0
sinh(

p
2(E � E0)N�)

• Low temperature entropy S = Ns0 +N�T + . . ..

• T = 0 fermion Green’s function G(⌧) ⇠ ⌧�1/2
at

large ⌧ . (Fermi liquids with quasiparticles have G(⌧) ⇠
1/⌧)

• T > 0 Green’s function has conformal invariance

G ⇠ (T/ sin(⇡kBT ⌧/~))1/2

The SYK model
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• Study of non-equilibrium quench
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A strongly correlated metal built from Sachdev-Ye-Kitaev models

Xue-Yang Song,1, 2 Chao-Ming Jian,2, 3 and Leon Balents2

1International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
2Kavli Institute of Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

3Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA
(Dated: May 23, 2017)

Prominent systems like the high-Tc cuprates and heavy fermions display intriguing features going beyond
the quasiparticle description. The Sachdev-Ye-Kitaev(SYK) model describes a 0 + 1D quantum cluster with
random all-to-all four-fermion interactions among N Fermion modes which becomes exactly solvable as N !
1, exhibiting a zero-dimensional non-Fermi liquid with emergent conformal symmetry and complete absence
of quasi-particles. Here we study a lattice of complex-fermion SYK dots with random inter-site quadratic
hopping. Combining the imaginary time path integral with real time path integral formulation, we obtain a
heavy Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature
Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find linear in
temperature resistivity in the incoherent regime, and a Lorentz ratio L ⌘ ⇢T varies between two universal values
as a function of temperature. Our work exemplifies an analytically controlled study of a strongly correlated
metal.

Introduction - Strongly correlated metals comprise an en-
during puzzle at the heart of condensed matter physics. Com-
monly a highly renormalized heavy Fermi liquid occurs be-
low a small coherence scale, while at higher temperatures a
broad incoherent regime pertains in which quasi-particle de-
scription fails[1–9]. Despite the ubiquity of this phenomenol-
ogy, strong correlations and quantum fluctuations make it
challenging to study. The exactly soluble SYK models pro-
vide a powerful framework to study such physics. The most-
studied SYK4 model, a 0 + 1D quantum cluster of N Ma-
jorana fermion modes with random all-to-all four-fermion
interactions[10–18] has been generalized to SYKq models
with q-fermion interactions. Subsequent works[19, 20] ex-
tended the SYK model to higher spatial dimensions by cou-
pling a lattice of SYK4 quantum clusters by additional four-
fermion “pair hopping” interactions. They obtained electrical
and thermal conductivities completely governed by di↵usive
modes and nearly temperature-independent behavior owing to
the identical scaling of the inter-dot and intra-dot couplings.

Here, we take one step closer to realism by considering a
lattice of complex-fermion SYK clusters with SYK4 intra-
cluster interaction of strength U0 and random inter-cluster
“SYK2” two-fermion hopping of strength t0[21–26]. Un-
like the previous higher dimensional SYK models where lo-
cal quantum criticality governs the entire low temperature
physics, here as we vary the temperature, two distinctive
metallic behaviors appear, resembling the previously men-
tioned heavy fermion systems. We assume t0 ⌧ U0, which
implies strong interactions, and focus on the correlated regime
T ⌧ U0. We show the system has a coherence temperature

scale Ec ⌘ t2
0/U0[21, 27, 28] between a heavy Fermi liquid

and an incoherent metal. For T < Ec, the SYK2 induces a
Fermi liquid, which is however highly renormalized by the
strong interactions. For T > Ec, the system enters the incoher-
ent metal regime and the resistivity ⇢ depends linearly on tem-
perature. These results are strikingly similar to those of Par-
collet and Georges[29], who studied a variant SYK model ob-
tained in a double limit of infinite dimension and large N. Our
model is simpler, and does not require infinite dimensions. We
also obtain further results on the thermal conductivity , en-
tropy density and Lorentz ratio[30, 31] in this crossover. This
work bridges traditional Fermi liquid theory and the hydrody-
namical description of an incoherent metallic system.

SYK model and Imaginary-time formulation - We consider
a d-dimensional array of quantum dots, each with N species
of fermions labeled by i, j, k · · · ,

H =
X

x

X

i< j,k<l

Ui jkl,xc†ixc†jxckxclx +
X

hxx0i

X

i, j

ti j,xx0c
†
i,xc j,x0 (1)

where Ui jkl,x = U⇤kli j,x and ti j,xx0 = t⇤ji,x0x are random zero mean
complex variables drawn from Gaussian distribution whose
variances |Ui jkl,x|2 = 2U2

0/N
3 and |ti j,x,x0 |2 = t2

0/N.
In the imaginary time formalism, one studies the partition

function Z = Tr e��(H�µN), with N = Pi,x c†i,xci,x, written as
a path integral over Grassman fields cix⌧, c̄ix⌧. Owing to the
self-averaging established for the SYK model at large N, it is
su�cient to study Z̄ =

R
[dc̄][dc]e�S c , with (repeated species

indices are summed over)

S c =
X

x

Z �

0
d⌧ c̄ix⌧(@⌧ � µ)cix⌧ �

Z �

0
d⌧1d⌧2

hX

x

U2
0

4N3 c̄ix⌧1 c̄ jx⌧1 ckx⌧1 clx⌧1 c̄lx⌧2 c̄kx⌧2 c jx⌧2 cix⌧2 +
X

hxx0i

t2
0

N
c̄ix⌧1 c jx0⌧1 c̄ jx0⌧2 cix⌧2

i
. (2)

The basic features can be determined by a simple power- counting. Considering for simplicity µ = 0, starting from

Ut
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A strongly correlated metal built from Sachdev-Ye-Kitaev models

Xue-Yang Song,1, 2 Chao-Ming Jian,2, 3 and Leon Balents2

1International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
2Kavli Institute of Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
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Strongly correlated metals comprise an enduring puzzle at the heart of condensed matter physics.
Commonly a highly renormalized heavy Fermi liquid occurs below a small coherence scale, while at
higher temperatures a broad incoherent regime pertains in which quasi-particle description fails. Despite
the ubiquity of this phenomenology, strong correlations and quantum fluctuations make it challenging to
study. The Sachdev-Ye-Kitaev(SYK) model describes a 0 + 1D quantum cluster with random all-to-all
four-fermion interactions among N Fermion modes which becomes exactly solvable as N ! 1, exhibiting
a zero-dimensional non-Fermi liquid with emergent conformal symmetry and complete absence of quasi-
particles. Here we study a lattice of complex-fermion SYK dots with random inter-site quadratic hopping.
Combining the imaginary time path integral with real time path integral formulation, we obtain a heavy
Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature
Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find
linear in temperature resistivity in the incoherent regime, and a Lorentz ratio L ⌘ ⇢T varies between two
universal values as a function of temperature. Our work exemplifies an analytically controlled study of a
strongly correlated metal.

Prominent systems like the high-Tc cuprates and heavy
fermions display intriguing features going beyond the quasi-
particle description[1–9]. The exactly soluble SYK models
provide a powerful framework to study such physics. The
most-studied SYK4 model, a 0 + 1D quantum cluster of N
Majorana fermion modes with random all-to-all four-fermion
interactions[10–18] has been generalized to SYKq models
with q-fermion interactions. Subsequent works[19, 20] ex-
tended the SYK model to higher spatial dimensions by cou-
pling a lattice of SYK4 quantum clusters by additional four-
fermion “pair hopping” interactions. They obtained electrical
and thermal conductivities completely governed by di↵usive
modes and nearly temperature-independent behavior owing to
the identical scaling of the inter-dot and intra-dot couplings.

Here, we take one step closer to realism by considering a
lattice of complex-fermion SYK clusters with SYK4 intra-
cluster interaction of strength U0 and random inter-cluster
“SYK2” two-fermion hopping of strength t0[21–25]. Un-
like the previous higher dimensional SYK models where lo-
cal quantum criticality governs the entire low temperature
physics, here as we vary the temperature, two distinctive
metallic behaviors appear, resembling the previously men-
tioned heavy fermion systems. We assume t0 ⌧ U0, which
implies strong interactions, and focus on the correlated regime
T ⌧ U0. We show the system has a coherence temperature
scale Ec ⌘ t2

0/U0[21, 26, 27] between a heavy Fermi liquid
and an incoherent metal. For T < Ec, the SYK2 induces a

Fermi liquid, which is however highly renormalized by the
strong interactions. For T > Ec, the system enters the incoher-
ent metal regime and the resistivity ⇢ depends linearly on tem-
perature. These results are strikingly similar to those of Par-
collet and Georges[28], who studied a variant SYK model ob-
tained in a double limit of infinite dimension and large N. Our
model is simpler, and does not require infinite dimensions. We
also obtain further results on the thermal conductivity , en-
tropy density and Lorentz ratio[29, 30] in this crossover. This
work bridges traditional Fermi liquid theory and the hydrody-
namical description of an incoherent metallic system.

SYK model and Imaginary-time formulation - We consider
a d-dimensional array of quantum dots, each with N species
of fermions labeled by i, j, k · · · ,
H =

X

x

X

i< j,k<l

Ui jkl,xc†ixc†jxckxclx +
X

hxx0i

X

i, j

ti j,xx0c
†
i,xc j,x0 (1)

where Ui jkl,x = U⇤kli j,x and ti j,xx0 = t⇤ji,x0x are random zero mean
complex variables drawn from Gaussian distribution whose
variances |Ui jkl,x|2 = 2U2

0/N
3 and |ti j,x,x0 |2 = t2

0/N.
In the imaginary time formalism, one studies the partition

function Z = Tr e��(H�µN), with N = Pi,x c†i,xci,x, written as
a path integral over Grassman fields cix⌧, c̄ix⌧. Owing to the
self-averaging established for the SYK model at large N, it is
su�cient to study Z̄ =

R
[dc̄][dc]e�S c , with (repeated species

indices are summed over)

S c =
X

x

Z �

0
d⌧ c̄ix⌧(@⌧ � µ)cix⌧ �

Z �

0
d⌧1d⌧2

hX

x

U2
0

4N3 c̄ix⌧1 c̄ jx⌧1 ckx⌧1 clx⌧1 c̄lx⌧2 c̄kx⌧2 c jx⌧2 cix⌧2 +
X

hxx0i

t2
0

N
c̄ix⌧1 c jx0⌧1 c̄ jx0⌧2 cix⌧2

i
. (2)

The basic features can be determined by a simple power- counting. Considering for simplicity µ = 0, starting from
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Low ‘coherence’ scale

Ec ⇠
t20
U

4

The density-density correlator is expressed as

DRn(x,t; x0,t0) ⌘ i✓(t � t0)h[N(x,t),N(x0,t0)]i
=

i
2
hNc(x,t)Nq(x0,t0)i, (10)

where Ns ⌘ N�S '
�'̇s

, Nc/q = N+ ± N�(keeping momentum-
independent components- See Sec.B). Adding a contact term
to ensure that limp!0 DRn(p,! , 0) = 0[31], the action (9)
yields the di↵usive form [32]

DRn(p,!) =
�iNK!

i! � D'p2 + NK =
�NKD'p2

i! � D'p2 . (11)

From this we identify NK and D' as the compressibility and
charge di↵usion constant, respectively. The electric conduc-
tivity is given by Einstein relation � ⌘ 1/⇢ = NKD', or,
restoring all units,� = NKD' e2

~ a2�d(a is lattice spacing).
Note the proportionality to N: in the standard non-linear
sigma model formulation, the dimensionless conductance is
large, suppressing localization e↵ects. This occurs because
both U and t interactions scatter between all orbitals, destroy-
ing interference from closed loops.

The analysis of energy transport proceeds similarly. Since
energy is the generator of time translations, one considers the
time-reparametrization (TRP) modes induced by ts ! ts+✏s(t)
and defines ✏c/q = 1

2 (✏+ ± ✏�). The e↵ective action for TRP
modes to the lowest-order in p,! reads (Sec. B)

iS ✏ =
X

p

Z +1

�1
d! ✏c,!(2i�!2T 2 � p2⇤3(!))✏q,�! + · · · , (12)

where the ellipses has the same meaning as in (9). At low
frequency, the correlation function integral, given in Sec. B,
behaves as ⇤3(!) ⇡ 2�D✏T 2!, which defines the energy dif-
fusion constant D✏ . This identification is seen from the corre-
lator for energy density modes "c/q ⌘ iN�S ✏

�✏̇c/q
,

DR"(p,!) =
i
2
h"c"qip,! = �NT 2�D✏ p2

i! � D✏ p2 , (13)

where we add a contact term to ensure conservation of energy
at p = 0. The thermal conductivity reads  = NT�D✏ (kB = 1)
–like �, is O(N).

Scaling collapse, Kadowaki-Woods and Lorentz ra-
tios – Electric/thermal conductivities are obtained from
lim!!0 ⇤2/3(!)/!, expressed as integrals of real-time corre-
lation functions, and can be evaluated numerically for any
T, t0,U0. Introducing generalized resistivities, ⇢' = ⇢, ⇢" =
T/, we find remarkably that for t0,T ⌧ U0, they collapse to
universal functions of one variable,

⇢⇣(t0,T ⌧ U0) =
1
N

R⇣( T
Ec

) ⇣ 2 {', "}, (14)

where R'(T ), R"(T ) are dimensionless universal functions.
This scaling collapse is verified by direct numerical calcula-
tions shown in Fig. 3a. From the scaling form (B2), we see the
low temperature resistivity obeys the usual Fermi liquid form

⇢⇣(T ⌧ Ec) ⇡ ⇢⇣(0) + A⇣T 2, (15)

(a)

(b)

FIG. 3. (a): For t0,T ⌧ U0, ⇢'/" “collapse” to R'/"( T
Ec

)/N. (b): The
Lorentz ratio ⇢

T reaches two constants ⇡2

3 ,
⇡2

8 , in the two regimes.
The solid curves are guides to the eyes.

where the temperature coe�cient of resistivity A⇣ =
R00⇣ (0)
2NE2

c
is

large due to small coherence scale in denominator, charac-
teristic of a strongly correlated Fermi liquid. Famously, the
Kadowaki-Woods ratio, A'/(N�)2, is approximately system-
independent for a wide range of correlated materials[33, 34].
We find here A'

(N�)2 =
R00' (0)

2[S0(0)]2N3 is independent of t0 and U0!
Turning now to the incoherent metal regime, in limit of

large arguments, T � 1, the generalized resistivities vary lin-
early with temperature: R⇣(T ) ⇠ c⇣ T . We analytically obtain
c' = 2p

⇡
and c" = 16

⇡5/2 (Supplementary Information), implying
that the Lorenz number, characterizing the Wiedemann-Franz
law, takes the unusual value L = 

�T ! ⇡2

8 for Ec ⌧ T ⌧ U0.
More generally, the scaling form (B2) implies that L is a uni-
versal function of T/Ec, verified numerically as shown in
Fig. 3b. The Lorenz number increases with lower tempera-
ture, saturating at T ⌧ Ec to the Fermi liquid value ⇡2/3.

Conclusion – We have shown that the SYK model pro-
vides a soluble source of strong local interactions which,
when coupled into a higher-dimensional lattice by ordinary
but random electron hopping, reproduces a remarkable num-
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Conclusion – We have shown that the SYK model pro-
vides a soluble source of strong local interactions which,
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Low ‘coherence’ scale

Ec ⇠
t20
U

For Ec < T < U , the

resistivity, ⇢, and
entropy density, s, are

⇢ ⇠ h

e2

✓
T

Ec

◆
, s = s0
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Quantum matter without quasiparticles:

• No quasiparticle

decomposition of low-lying states:

E 6=
P

↵ n↵"↵
+

P
↵,� F↵�n↵n� + . . .

• Thermalization and many-body chaos in

the shortest possible time of order ~/(kBT ).

• These are also characteristics of black holes

in quantum gravity.



Black 
holes

• Black holes have an entropy

and a temperature, TH .

• The entropy is proportional

to their surface area.

• They relax to thermal equi-

librium in a time⇠ ~/(kBTH).
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• The Hawking temperature, TH influences the radiation from the
black hole at the very last stages of the ring-down (not observed
so far). The ring-down (approach to thermal equilibrium) hap-

pens very rapidly in a time ⇠ ~
kBTH

=
8⇡GM

c3
⇠ 8 milliseconds.



⇣
~x

⇣ = 1

charge
density Q

T2

SYK and black holes
Black hole

horizon

AdS2 ⇥ T2

ds

2 = (d⇣2 � dt

2)/⇣2 + d~x

2

Gauge field: A = (E/⇣)dt

Quantum gravity on the 1+1 dimensional spacetime AdS2 
(when embedded in AdS4) is holographically matched 

to the 0+1 dimensional SYK model
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