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(defined by transport and thermo)

No spatial disorder
A non-Fermi liquid but NOT a strange metal

e Fermi liquid

1/7(e) < e
Fermi surface coupled to a critical boson:

Potential disorder
A marginal Fermi liquid but NOT a strange metal

a density of

e Marginal Fermi liquids: Fermionic quasiparticles with a lifetime:
obeying 1/7(g) ~

Fermi surface coupled to a critical boson:
Interaction disorder
A marginal Fermi liqguid AND a strange metal

e| — 0.

3 key ingredients of our universal theory of strange metals:

1. a critical boson
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Fermi surface of fermions
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e Nematic order
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e Ferromagnetic order

Transverse component
of abelian or
non-abelian gauge field

Antiferromagnetic order...

Large NN theory

gij¢

N / d>rdr ) (r, 7 (r, )i (1, T)
1 ()l ()

“Yukawa” coupling:

o

Random potential: A

2 sources of marginal Fermi liquid self energy.
:| The ¢g*log term does not contribute to transport |3

Random interactions: ~ /d2rd’r g;jl(r)@bj(fr, ) (r, T)pi(r, T):
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Indices 7, 7,...=1...N. Obtain SYK-like ‘G-X" theory

Related model with ¢’ £ 0, but ¢ = v = 0, studied in
E. E. Aldape, T. Cookmeyer, A. A. Patel, E. Altman, arXiv:2012.00763

: 2. Spatially random interactions: _
randomness in hopping ¢;;, leads to randomness in :
: exchange interactions t2 / U. Decoupling such interactions :

! with a ®* term which is spatially uniform, we obtain a

/dQT‘dT {g + g’(?“)} WL(T‘, T)(r, 7)o(r, 7),

: where ¢ is spatially uniform and ¢’(r) is
: spatially random with zero average.
: There can also be potential disorder
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: but this is not key:.
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Boson propagator: D(q,i{2) =

Yo (iw) ~ —tv?sgn(w),

EProperties of a strange metal:

e Resistivity p(T) =po+ AT + ... asT — 0
and p(T) < h/e? (in d = 2).

Metals with p(T) > h/e? are bad metals.

s: Fermionic quasiparticles with a lifetime obeyingé
and a density of states V() ~ constant as || — 0.:

e Non-Fermi liquids: No quasiparticles.
Would-be fermionic quasiparticles have 1/7(¢) > |¢| and

e Specific heat ~ T'In(1/T) as T — 0.
S.A. Hartnoll and A.P. MacKenzie, arXiv:2107.07802
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B. Michon...... A. Georges, arXiv:2205.04030

states IV (g) ~ constant as || — 0. e Optical conductivity
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e| and a density of states N(g) ~ constant as:

3. Fermion-boson drag:

For electron-phonon scattering in metals, we have
“Bloch’s law” (1931): a resistivity p(T') ~ T°.
However, Bloch’s law ignores conservation of total
and boson (¢) Yukawa coupling of the form momentum, or phonon drag.

In a non-Fermi liquid, we cannot separate the
momenta carried by the fermions and the bosons,
because neither of them exists at low energies! We
must treat the combined system together:

extreme drag. The analog of Bloch’s law

does not apply.
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Gap map in cuprate
(Tromp et al. arXiv:2205. 09740)

Boson self energy: 11 = 11, + 11,
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Fermion self energy: > = >, + 2, + 2

) Conductivity: o(w) ~ —iwm*(w)/m|
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Yig(iw) ~
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Residual resistivity is determined by v?;

T

but the ¢’?log term does! Linear-in-T resistivity determined by ¢’




