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I. Theory for the superconductor-metal 
quantum phase transition



Computation of fluctuation conductivity in metal at low temperatures

T

Superconductor

α

Metal

Tc

αc



Computation of fluctuation conductivity in metal at low temperatures

T

Superconductor

α

Metal

Tc

αc



Computation of fluctuation conductivity in metal at low temperatures

T

Superconductor

α

Metal

Tc

αc



Computation of fluctuation conductivity in metal at low temperatures

T

Superconductor

α

Metal

Tc

αc



Theory for quantum-critical region, and beyond
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In one dimension, theory reduces to the Langer-Ambegaokar-
McCumber-Halperin theory (Model A dynamics), near mean-field Tc



Role of charge conservation in quantum critical theory

Dynamics of quantum theory (and model A) does not 
conserve total charge.

2(related to the question of why dissipation is not )qω

Analogous the Fermi-liquid/spin-density-wave 
transition (Hertz theory), where dynamics of critical 

theory does not conserve total spin.
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Cooper pairs (SDW) fluctuations decay into fermionic excitations at a 
finite rate, before any appreciable phase precession due to changes in 

chemical potential (magnetic field). 



II. Quantum criticality in d=1



Theory for quantum-critical region, and beyond in d=1
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III. Nanowires near the superconductor-metal 
quantum critical point



Nanowires near the quantum critical point in d=1
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Effect of the leads



Large n computation of conductance



Quantum Monte Carlo and large n computation of 
d.c. conductance



IV. Quantum criticality in d=2



Theory for quantum-critical region, and beyond in d=2



Locus of points with U/R constant
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Conclusions
• Universal transport in wires near the superconductor-metal 

transition

• Theory includes contributions from thermal and quantum phase 
slips ---- reduces to the classical LAMH theory at high 
temperatures

• Sensitivity to leads should be a generic feature of the 
``coherent’’ transport regime of quantum critical points.

• Complete computation of electrical transport in d=2 to leading 
logarithmic accuracy.
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