Electrical transport near a pair-breaking
superconductor-metal quantum phase transition

Emily Dunkel (Harvard)
Joel Moore (Berkeley)
Daniel Podolsky (Berkeley)
Subir Sachdev (Harvard)
Ashvin Vishwanath (Berkeley)
Philipp Werner (ETH)
Matthias Troyer (ETH)

Physical Review Letters 92, 237003 (2004)
Physical Review B 73, 085116 (2006)
cond-mat/0510597.

.E”Q}; See also talk by Daniel Podolsky,

- N38.00007, Wed 9:12 AM
Talk online at http://sachdev.physics.harvard.edu




Standard Abrikosov-Gorkov theory for the suppression of the
mean-field BCS critical temperature, Ty, of a superconductor
by a pair-breaking frequency a:

ln (CZYJO) = @) — (% + QTT)Z(;TC)
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There is a critical &« = a, such that 7. = 0 for a > «a,.. We are
interested in the nature of the crossovers near the quantum phase

transition at a = a,. especially in spatial dimensions d = 1, 2.



Pairbreaking, o can be be due to a magnetic field, H, applied on a wire of radius r
a = D(eHr/c)?/4,
where D is the Cooperon diffusion constant.

On a hollow cylinder with radii r; and rs:
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where n is an integer. (A. V. Lopatin, N. Shah, and V. M. Vinokur, Phys. Rev. Lett. 94, 037003 (2005)).
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Y. Liu, Yu. Zadorozhny, M. M. Rosario, B. Y. Rock, P. T. Carrigan, and H. Wang,
Science 294, 2332 (2001).



Other sources of pairbreaking

e Parallel magnetic field, H, on a film of thickness ¢, a =
D(eHt/c)?/6. Experiments by K. A. Parendo, K. H. Sarwa,
B. Tan, and A. M. Goldman, cond-mat/0512704.

e Inhomogeneous pairing interaction (M. V. Feigelman and
A. I. Larkin, Chem. Phys. 235, 107 (1998); B. Spivak,
A. Zyuzin, and M. Hruska, Phys. Rev. B 64, 132502
(2001)).

e Impurities in a d-wave superconductor. (I. F. Herbut,
Phys. Rev. Lett. 85, 1532 (2000)).

e Magnetic impurities.



|. Theory for the superconductor-metal
guantum phase transition



Computation of fluctuation conductivity in metal at low temperatures

a

At T = 0, the Maki-Thomson and density of states corrections to the conductivity,
do, increase with increasing a (negative magnetoresistance):

do ~ (a — a,)

(A. V. Lopatin, N. Shah, and V. M. Vinokur, Phys. Rev. Lett. 94, 037003 (2005)).
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We will argue that these are corrections to scaling to the theory of the quantum
critical point. These corrections are dangerously irrelevant, because they dominate
at low T




Computation of fluctuation conductivity in metal at low temperatures
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At T > 0, Aslamazov-Larkin corrections lead to
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Computation of fluctuation conductivity in metal at low temperatures
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At T > 0, Aslamazov-Larkin corrections lead to

4e? D>~ kgT/h)?
T h (a— ap)69/2

oo
(A. V. Lopatin, N. Shah, and V. M. Vinokur, Phys. Rev. Lett. 94, 037003 (2005))

We will argue these are contained in the quantum critical theory. Note, however, the
leading critical fluctuations vanish at 7" = 0 for a > ... This leads to a non-monotonic
T dependence in critical theory.




Theory for guantum-critical region, and beyond

Cooperon fluctuations have propagator ~ 1/(Dg¢*+|w|+«). Self-interactions
between such fluctuations are described by

Suac = [ | [ 52 (DIV.0(a. )P + (ol + 0)lota0)P)+5 [ drlwte |

R. Ramazashvili and P. Coleman, Phys. Rev. Lett. 79, 3752 (1997); 1. F. Herbut, Phys. Rev.
Lett. 85, 1532 (2000)); D. Dalidovich and P. Phillips, Phys. Rev. Lett. 84, 737 (2000); B. Spivak,
A. Zyuzin, and M. Hruska, Phys. Rev. B 64, 132502 (2001))



Theory for guantum-critical region, and beyond

In one dimension, theory reduces to the Langer-Ambegaokar-
McCumber-Halperin theory (Model A dynamics), near mean-field T,

g

5 =~ |~Do + oy +uly |y

+ thermal Langevin noise



Role of charge conservation in guantum critical theory
(related to the question of why dissipation is not || q°)

Dynamics of qguantum theory (and model A) does not
conserve total charge.

Analogous the Fermi-liquid/spin-density-wave
transition (Hertz theory), where dynamics of critical
theory does not conserve total spin.



Role of charge conservation in guantum critical theory
(related to the question of why dissipation is not || q°)

Dynamics of qguantum theory (and model A) does not
conserve total charge.

Analogous the Fermi-liquid/spin-density-wave
transition (Hertz theory), where dynamics of critical
theory does not conserve total spin.

Conservation laws place strong constraints for
w/q — oo, but can be ignored in the critical regime,

where w/q — 0.
L. B. Ioffe and A. J. Millis, Phys. Rev. B 51, 16151 (1995)

Cooper pairs (SDW) fluctuations decay into fermionic excitations at a
finite rate, before any appreciable phase precession due to changes in
chemical potential (magnetic field).



I1. Quantum criticality in d=1



Theory for guantum-critical region, and beyond in d=1

N
T|
N
~Te ” ,
AN Quantum critical R
\\ //
N\
\\ ///
\ 7
Superconductor \ 2" Metal

\L - ,
o 94

C
Quantum critical theory obeys strong hyperscaling properties in spatial di-

mensions d < 2. Exponents can be determined by an expansion in € = 2 — d
in a theory with n-component fields (n = 2 here).
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Results at e = 1 in very good agreement with QMC simulations.



Theory for guantum-critical region, and beyond in d=1
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In d = 1, conductivity of critical theory obeys universal scaling form:

4e? { KD \'* o — o
= (kBT) (I)U(Tl/(zu))

where @, is a scaling function.




Theory for guantum-critical region, and beyond in d=1
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Quantum critical 7" dependence in d = 1:
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Non-monotonic dependence on 7'



[11. Nanowires near the superconductor-metal
quantum critical point



Nanowires near the guantum critical point in d=1
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Now the conductance, g, of the wire is universal

4 2
g = %F(wL”Z)

where L is the length of the wire, and L < (AD/kgT )/



Effect of the leads

nanowire
NorS N NorS

lead L lead

Siead = [ dr [~H(0,7) = HY*(0,7) + C|¥(0,7)P]
where H # 0 for a superconducting lead.
Both H and C' scale to strong-coupling, and therefore we have
Dirichlet boundary conditions (¥ = 0) for a N lead, and

Fixed boundary conditions for a S lead

Conductance is independent of the specific bare values of H and C.
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Quantum Monte Carlo and large n computation of

d.c. conductance
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V. Quantum criticality in d=2



Theory for guantum-critical region, and beyond in d=2

To leading logarithmic accuracy, (nearly) all physical proper-
ties can be expressed in terms of computable universal func-
tions of two energy scales, R, and U. R measures distance
from the quantum critical point, while U is a quartic self-
coupling. These are parameters in a classical theory of equal-
time correlations with free energy

~ U
F=[ds [|W|2 +RIWE + ]
R and U depend upon the bare values of o, D, T, and log-
arithmically on a cutoff energy scale A, and are determined

by solving a simple integral equation.

The loci of points with a fixed U/R has the same physical
properties, upto a shift in the overall energy scale, R.



Locus of points with U/R constant

The Kosterlitz-Thouless

transition occurs at 1’ =
Tyr, where U/R ~ 34
(a universal number).




Locus of points with U/R constant

The conductivity obeys
the scaling form

a—4€2kBT<I> (Q)
~ h R “\R

where ® 4 1S a com-
pletely universal func-
tion which can be (nu-
merically) determined
by a classical, contin-
uum Model A theory:.




Locus of points with U/R constant

At the quantum-critical
point
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Conclusions

Universal transport in wires near the superconductor-metal
transition

Theory includes contributions from thermal and quantum phase
slips ---- reduces to the classical LAMH theory at high
temperatures

Sensitivity to leads should be a generic feature of the
““coherent’” transport regime of quantum critical points.

Complete computation of electrical transport in d=2 to leading
logarithmic accuracy.




