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 Quantum phase transition in graphene



G(k,ω) =
Z

ω − vF (k − kF )− iω2F
(

k−kF
ω

) + . . .

Electron Green’s function in Fermi liquid (T=0)



Electron Green’s function in Fermi liquid (T=0)

G(k,ω) =
Z

ω − vF (k − kF )− iω2F
(

k−kF
ω

) + . . .

Green’s function has a pole in the LHP at

ω = vF (k − kF )− iα(k − kF )2 + . . .

Pole is at ω = 0 precisely at k = kF i.e. on a sphere of
radius kF in momentum space. This is the Fermi surface.

Re(ω)

Im(ω)
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Fermi surface with full square lattice symmetry

Quantum criticality of Pomeranchuk instability

x

y



Spontaneous elongation along x direction:
Ising order parameter φ > 0.
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Quantum criticality of Pomeranchuk instability

x

y

Spontaneous elongation along y direction:
Ising order parameter φ < 0.
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Pomeranchuk instability as a function of coupling λ

〈φ〉 = 0 〈φ〉 #= 0

Quantum criticality of Pomeranchuk instability
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Phase diagram as a function of T and λ

Quantum
critical Tc
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〈φ〉 = 0 〈φ〉 #= 0

Quantum criticality of Pomeranchuk instability

Phase diagram as a function of T and λ

Quantum
critical Tc

D=2+1 
Ising

criticality ?



Quantum criticality of Pomeranchuk instability

Effective action for Ising order parameter

Sφ =
∫

d2rdτ
[
(∂τφ)2 + c2(∇φ)2 + (λ− λc)φ2 + uφ4

]



Quantum criticality of Pomeranchuk instability

Effective action for Ising order parameter

Sφ =
∫

d2rdτ
[
(∂τφ)2 + c2(∇φ)2 + (λ− λc)φ2 + uφ4

]

Effective action for electrons:

Sc =
∫

dτ

Nf∑

α=1




∑

i

c†iα∂τ ciα −
∑

i<j

tijc
†
iαciα





≡
Nf∑

α=1

∑

k

∫
dτc†kα (∂τ + εk) ckα



Quantum criticality of Pomeranchuk instability

〈φ〉 > 0 〈φ〉 < 0

Coupling between Ising order and electrons

Sφc = − γ

∫
dτ φ

Nf∑

α=1

∑

k

(cos kx − cos ky)c†kαckα

for spatially independent φ



Quantum criticality of Pomeranchuk instability

〈φ〉 > 0 〈φ〉 < 0

Coupling between Ising order and electrons

Sφc = − γ

∫
dτ

Nf∑

α=1

∑

k,q

φq (cos kx− cos ky)c†k+q/2,αck−q/2,α

for spatially dependent φ



Quantum criticality of Pomeranchuk instability

Sφ =
∫

d2rdτ
[
(∂τφ)2 + c2(∇φ)2 + (λ− λc)φ2 + uφ4

]

Quantum critical field theory

Z =
∫
DφDciα exp (−Sφ − Sc − Sφc)

Sc =
Nf∑

α=1

∑

k

∫
dτc†kα (∂τ + εk) ckα

Sφc = − γ

∫
dτ

Nf∑

α=1

∑

k,q

φq (cos kx− cos ky)c†k+q/2,αck−q/2,α



Quantum criticality of Pomeranchuk instability

Hertz theory

Integrate out cα fermions and obtain non-local corrections
to φ action

δSφ ∼ Nfγ2

∫
d2q

4π2

∫
dω

2π
|φ(q, ω)|2

[ |ω|
q

+ q2
]

+ . . .

This leads to a critical point with dynamic critical expo-
nent z = 3 and quantum criticality controlled by the Gaus-
sian fixed point.



Quantum criticality of Pomeranchuk instability

Hertz theory

Self energy of cα fermions to order 1/Nf

Σc(k, ω) ∼ i

Nf
ω2/3

This leads to the Green’s function

G(k, ω) ≈ 1
ω − vF (k − kF )− i

Nf
ω2/3

Note that the order 1/Nf term is more singular in the infrared than
the bare term; this leads to problems in the bare 1/Nf expansion
in terms that are dominated by low frequency fermions.

1
Nf (q2 + |ω|/q)



Quantum criticality of Pomeranchuk instability

The infrared singularities of fermion particle-hole pairs
are most severe on planar graphs: these all contribute at

leading order in 1/Nf .

Sung-Sik Lee, arXiv:0905.4532

1
Nf (q2 + |ω|/q)

1
ω − vF (k − kF )− i

Nf
ω2/3
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Γ

Fermi surfaces in electron- and hole-doped cuprates
Hole 
states 

occupied

Electron 
states 

occupied

Γ
Effective Hamiltonian for quasiparticles:

H0 = −
∑

i<j

tijc
†
iαciα ≡

∑

k

εkc†kαckα

with tij non-zero for first, second and third neighbor, leads to satisfactory agree-
ment with experiments. The area of the occupied electron states, Ae, from
Luttinger’s theory is

Ae =
{

2π2(1− p) for hole-doping p
2π2(1 + x) for electron-doping x

The area of the occupied hole states, Ah, which form a closed Fermi surface and
so appear in quantum oscillation experiments is Ah = 4π2 −Ae.



Spin density wave theory

A spin density wave (SDW) is the spontaneous appearance
of an oscillatory spin polarization. The electron spin polar-
ization is written as

!S(r, τ) = !ϕ(r, τ)eiK·r

where !ϕ is the SDW order parameter, and K is a fixed or-
dering wavevector. For simplicity we will consider the case
of K = (π, π), but our treatment applies to general K.



Spin density wave theory

In the presence of spin density wave order, !ϕ at wavevector K =
(π, π), we have an additional term which mixes electron states with
momentum separated by K

Hsdw = !ϕ ·
∑

k,α,β

c†k,α!σαβck+K,β

where !σ are the Pauli matrices. The electron dispersions obtained
by diagonalizing H0 + Hsdw for !ϕ ∝ (0, 0, 1) are

Ek± =
εk + εk+K

2
±

√(
εk − εk+K

2

)
+ ϕ2

This leads to the Fermi surfaces shown in the following slides for
electron and hole doping.



Increasing SDW order

Spin density wave theory in hole-doped cuprates

Γ

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). 
A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).
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Increasing SDW order

Spin density wave theory in hole-doped cuprates

ΓΓΓ

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). 
A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Γ

Hole 
pockets

SDW order parameter is a vector, !ϕ,
whose amplitude vanishes at the transition

to the Fermi liquid.



Spin density wave theory

In the presence of spin density wave order, !ϕ at wavevec-
tor K = (π, π), we have an additional term which mixes
electron states with momentum separated by K

Hsdw = !ϕ ·
∑

k,α,β

c†k,α!σαβck+K,β

where !σ are the Pauli matrices. At the quantum critical
point for the onset of SDW order, we integrate out the
fermions and derive an effective action functional for !ϕ.



Spin density wave theory

This functional has the form

S =
∫

d2q

4π2

∫
dω

2π
|#ϕ(q, ω)|2

[
r + q2 + χ(K, ω)

]

+ u

∫
d2xdτ(#ϕ2(x, τ))2 + . . .

The susceptibility, χ, has a non-analytic dependence on ω
because of Landau damping:

χ(K, ω) = χ0 + χ1|ω| + . . .

This leads to a critical point with dynamic critical expo-
nent z = 2, and upper-critical dimension d = 2.



Spin density wave theory

This functional has the form

S =
∫

d2q

4π2

∫
dω

2π
|#ϕ(q, ω)|2

[
r + q2 + χ(K, ω)

]

+ u

∫
d2xdτ(#ϕ2(x, τ))2 + . . .

The susceptibility, χ, has a non-analytic dependence on ω
because of Landau damping:

χ(K, ω) = χ0 + χ1|ω| + . . .

This leads to a critical point with dynamic critical expo-
nent z = 2, and upper-critical dimension d = 2.

However, the higher order corrections require
summation of all planar graphs,
as in the Pomeranchuk instability.

M. Metlitski
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Conformal field theory
in 2+1 dimensions at T = 0

Einstein gravity
on AdS4



Conformal field theory
in 2+1 dimensions at T > 0

Einstein gravity on AdS4

with a Schwarzschild
black hole



Conformal field theory
in 2+1 dimensions at T > 0,

with a non-zero chemical potential, µ
and applied magnetic field, B

Einstein gravity on AdS4

with a Reissner-Nordstrom
black hole carrying electric

and magnetic charges



AdS4-Reissner-Nordstrom 
black hole

ds2 =
L2

r2

(
f(r)dτ2 +

dr2

f(r)
+ dx2 + dy2

)
,

f(r) = 1−
(

1 +
(r2

+µ2 + r4
+B2)

γ2

) (
r

r+

)3

+
(r2

+µ2 + r4
+B2)

γ2

(
r

r+

)4

,

A = iµ

[
1− r

r+

]
dτ + Bx dy .

T =
1

4πr+

(
3−

r2
+µ2

γ2
−

r4
+B2

γ2

)
.



T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694
F. Denef, S. Hartnoll, and S. Sachdev, arXiv:0908.1788

Examine free energy and Green’s function 
of a probe particle 



Short time behavior depends upon
conformal AdS4 geometry near boundary

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694
F. Denef, S. Hartnoll, and S. Sachdev, arXiv:0908.1788



Long time behavior depends upon
near-horizon geometry of black hole

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694
F. Denef, S. Hartnoll, and S. Sachdev, arXiv:0908.1788



Radial direction of gravity theory is
measure of energy scale in CFT

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694
F. Denef, S. Hartnoll, and S. Sachdev, arXiv:0908.1788



AdS4-Reissner-Nordstrom 
black hole

ds2 =
L2

r2

(
f(r)dτ2 +

dr2

f(r)
+ dx2 + dy2

)
,

f(r) = 1−
(

1 +
(r2

+µ2 + r4
+B2)

γ2

) (
r

r+

)3

+
(r2

+µ2 + r4
+B2)

γ2

(
r

r+

)4

,

A = iµ

[
1− r

r+

]
dτ + Bx dy .

T =
1

4πr+

(
3−

r2
+µ2

γ2
−

r4
+B2

γ2

)
.



AdS2 x R2 near-horizon
geometry

r − r+ ∼ 1
ζ

ds2 =
R2

ζ2

(
−dτ2 + dζ2

)
+

r2
+

R2

(
dx2 + dy2

)



T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694

Infrared physics of Fermi surface is linked to
the near horizon AdS2 geometry of 

Reissner-Nordstrom black hole



T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694

AdS4

Geometric interpretation of RG flow



T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694

AdS2 x R2

Geometric interpretation of RG flow



Green’s function of a fermion

T. Faulkner, H. Liu, 
J. McGreevy, and 

D. Vegh, 
arXiv:0907.2694

G(k,ω) ≈ 1
ω − vF (k − kF )− iωθ(k)

See also M. Cubrovic, J Zaanen, and K. Schalm, arXiv:0904.1993



Green’s function of a fermion

T. Faulkner, H. Liu, 
J. McGreevy, and 

D. Vegh, 
arXiv:0907.2694

G(k,ω) ≈ 1
ω − vF (k − kF )− iωθ(k)

Similar to non-Fermi liquid theories of Fermi surfaces 
coupled to gauge fields, and at quantum critical points



Free energy from gravity theory
The free energy is expressed as a sum over the “quasinor-
mal frequencies”, z!, of the black hole. Here ! represents
any set of quantum numbers:

Fboson = −T
∑

!

ln

(
|z!|
2πT

∣∣∣∣Γ
(

iz!

2πT

)∣∣∣∣
2
)

Ffermion = T
∑

!

ln

(∣∣∣∣Γ
(

iz!

2πT
+

1
2

)∣∣∣∣
2
)

Application of this formula shows that the fermions ex-
hibit the dHvA quantum oscillations with expected pe-
riod (2π/(Fermi surface ares)) in 1/B, but with an ampli-
tude corrected from the Fermi liquid formula of Lifshitz-
Kosevich.

F. Denef, S. Hartnoll, and S. Sachdev, arXiv:0908.1788
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The cuprate superconductors



Γ Γ



Multiple quantum phase transitions 
involving at least two order parameters 

(antiferromagnetism and 
superconductivity) and a 

topological change in the Fermi surface

The cuprate superconductors



N. E. Hussey,  J. Phys: Condens. Matter 20, 123201 (2008)

Crossovers in transport properties of hole-doped cuprates

0 0.05 0.1 0.15 0.2 0.25 0.3

(K
)

Hole doping

2

+ 2

or

FL
?

coh
?

( )
S-shaped

*

-wave SC

(1 < < 2)
A
F
M

upturns
in ( )



Classical
spin

waves

Dilute
triplon

gas

Quantum
critical

Neel order



0 0.05 0.1 0.15 0.2 0.25 0.3

T
(K
)

Hole doping x

d-wave SC

A
F
M

Strange metal

xm

Crossovers in transport properties of hole-doped cuprates

Strange metal: quantum criticality of
optimal doping critical point at x = xm ?



0 0.05 0.1 0.15 0.2 0.25 0.3

T
(K
)

Hole doping x

d-wave SC

A
F
M

xs

Strange metal

Only candidate quantum critical point observed at low T

Spin density wave order present
below a quantum critical point at x = xs

with xs ≈ 0.12 in the La series of cuprates
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Small
Fermi

pockets
Large
Fermi

surface

Strange
Metal

Spin density wave (SDW)

Theory of quantum criticality in the cuprates

Underlying SDW ordering quantum critical point
in metal at x = xm



Evidence for connection between linear resistivity and
stripe-ordering in a cuprate with a low Tc

Linear temperature dependence of resistivity and change in the Fermi 
surface at the pseudogap critical point of a high-Tc superconductor
R. Daou, Nicolas Doiron-Leyraud, David LeBoeuf, S. Y. Li, Francis Laliberté, 
Olivier Cyr-Choinière, Y. J. Jo, L. Balicas, J.-Q. Yan, J.-S. Zhou, J. B. Goodenough 
& Louis Taillefer, Nature Physics 5, 31 - 34 (2009)

Magnetic field of 
upto 35 T

used to suppress 
superconductivity

http://www.nature.com.ezp-prod1.hul.harvard.edu/nphys/journal/v5/n1/full/nphys1109.html
http://www.nature.com.ezp-prod1.hul.harvard.edu/nphys/journal/v5/n1/full/nphys1109.html
http://www.nature.com.ezp-prod1.hul.harvard.edu/nphys/journal/v5/n1/full/nphys1109.html
http://www.nature.com.ezp-prod1.hul.harvard.edu/nphys/journal/v5/n1/full/nphys1109.html


Spin density wave theory in hole-doped cuprates

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). 
A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Increasing SDW order

ΓΓΓ Γ

Hole 
pockets

Quantum phase transition involves both
a SDW order parameter !ϕ,

and a topological change in the Fermi surface
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Theory of quantum criticality in the cuprates

Underlying SDW ordering quantum critical point
in metal at x = xm
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pairing fluctuations

Theory of quantum criticality in the cuprates

Onset of d-wave superconductivity
hides the critical point x = xm



Large
Fermi

surface

Strange
Metal

Spin density wave (SDW)

d-wave
superconductor

Small Fermi
pockets with 

pairing fluctuations

Theory of quantum criticality in the cuprates

Competition between SDW order and superconductivity
moves the actual quantum critical point to x = xs < xm.
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Theory of quantum criticality in the cuprates

Competition between SDW order and superconductivity
moves the actual quantum critical point to x = xs < xm.
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Competition between SDW order and superconductivity
moves the actual quantum critical point to x = xs < xm.
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Criticality of the coupled 
dimer antiferromagnet at x=xs
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d-wave
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Theory of quantum criticality in the cuprates

Competition between SDW order and superconductivity
moves the actual quantum critical point to x = xs < xm.

Criticality of the topological 
change in Fermi surface at x=xm

Increasing SDW orderIncreasing SDW order
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Small Fermi
pockets with 

pairing fluctuations
Large
Fermi

surface
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Metal
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quantum
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SDW

d-wave
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surface)

SDW
(Small Fermi
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SDW

Change in 
frequency of 
quantum 
oscillations in 
electron-doped 
materials identifies 
xm = 0.165



Nd2−xCexCuO4

T. Helm, M. V. Kartsovni, 
M. Bartkowiak, N. Bittner, 

M. Lambacher, A. Erb, J. Wosnitza, 
R. Gross, arXiv:0906.1431

Increasing SDW orderIncreasing SDW order
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Neutron 
scattering at 

H=0 in same 
material 

identifies xs = 
0.14 < xm
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E. M. Motoyama, G. Yu, I. M. Vishik, O. P.  Vajk, P. K. Mang, and M. Greven,
Nature 445, 186 (2007).

Nd2−xCexCuO4
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Experiments on
Nd2−xCexCuO4

show that at low
fields xs = 0.14,
while at high fields
xm = 0.165.



General theory of finite temperature 
dynamics and transport near 
quantum critical points, with 

applications to antiferromagnets, 
graphene, and superconductors

     

Conclusions



The AdS/CFT offers promise in 
providing a new understanding of 

strongly interacting quantum matter 
at non-zero density

     

Conclusions



Identified quantum criticality in cuprate 
superconductors with a critical point at optimal 

doping associated with onset of spin density 
wave order in a metal

     

Conclusions

Elusive optimal doping quantum critical 
point has been “hiding in plain sight”.

It is shifted to lower doping by the 
onset of superconductivity


