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Phase changes 1n nature

Winter James Bay Summer
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Ice Water

At low temperatures, At high temperatures,
minimize energy maximize entropy



Classical physics: In equilibrium, at the absolute zero of
temperature ( 7= 0 ), all particles will reside at rest
at positions which minimize their total interaction

energy. This defines a (usually) unique phase of
matter e.g. 1ce.

Quantum physics: By Heisenberg’s uncertainty principle, the
precise specification of the particle positions implies that
their velocities are uncertain, with a magnitude
determined by Planck’s constant /i . The kinetic energy
of this 71-induced motion adds to the energy cost of the
classically predicted phase of matter.

Tune 4 : If we are able to vary the “effective” value of 71,
then we can change the balance between the interaction and

kinetic energies, and so change the preferred phase:
matter undergoes a quantum phase transition




Outline

Varying “Planck’s constant” in the laboratory

. The quantum superposition principle — a qubit
. Interacting qubits in the laboratory - LiHoF,

. Breaking up the Bose-Einstein condensate
Bose-Einstein condensates and superfluids
The Mott isulator

. The cuprate superconductors

. Conclusions



1. The Quantum Superposition Principle

The simplest quantum
degree of freedom —

a qubit

Two quantum states:

‘T> and ‘¢>

These states represent

e.g. the orientation of

the electron spin on a Ho ions in a
Ho 1on in LiHoF, crystal of LiHoF,




An electron with its “up-down” spin

orientation uncertain has a definite
“left-right” spin

)= (M)
<)=7(M-1)

A — spin 1s a quantum superposition of

T and 4 spins




2. Interacting qubits in the laboratory

In 1ts natural state, the potential
energy of the qubits in LiHoF, 1s
minimized by

PP )

or
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A Ferromagnet




Enhance quantum effects by applying an external
“transverse’” magnetic field which prefers that each
qubit point “right”

For a large enough field, each
qubit will be 1n the state
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Phase diagram
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g = strength of transverse magnetic field

Quantum phase transition



Phase diagram : _
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3. Breaking up the Bose-Einstein condensate

Certain atoms, called bosons
(each such atom has an even
total number of
electrons+protons+neutrons),
condense at low temperatures
into the same single atom
state. This state of matter 1s a
Bose-FEinstein condensate.

A. Einstein and S.N. Bose (1925)



The Bose-Einstein condensate 1n a periodic potential
“Eggs 1n an egg carton”
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The Bose-Einstein condensate 1n a periodic potential
“Eggs 1n an egg carton”

G) = lof [ h+Il 1ol b+ [l [o

Lowest energy state of a single particle
minimizes Kinetic energy by maximizing
the position uncertainty of the particle



The Bose-Einstein condensate 1n a periodic potential
Lowest energy state for many atoms

BEC) = |G)|G)[G)
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Large fluctuations in number of atoms in each potential well
— superfluidity (atoms can “flow” without dissipation)
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3. Breaking up the Bose-Einstein condensate

By tuning repulsive interactions between the atoms, states
with multiple atoms 1n a potential well can be suppressed.
The lowest energy state 1s then a Mott insulator — 1t has
negligible number fluctuations, and atoms cannot “flow”

MI) = [o]ojol) + [lolo]o]) + lololal)
+{[olo]a]) + flofojof) + |lofolo)
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a Superiud state

b Insulating state |



Phase diagram
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4. The cuprate superconductors

A superconductor conducts
electricity without resistance
below a critical temperature 7,
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La,CuQ, ---- insulator

La, Sr CuO, ----
superconductor for
0.05 <x<0.25

Quantum phase
transitions as a function
of Sr concentration x




La,CuQ, --- an nsulating
antiferromagnet
with a spin density wave

La, Sr CuO, ----
a superconductor



Zero temperature phases of the cuprate
superconductors as a function of hole density

Insulator with a spin density wave

Superconductor

~0.05 ~0.12
Applied magnetic field

Theory for a system with strong interactions:
describe superconductor and superconductor+spin density

wave phases by expanding in the deviation from the quantum
critical point between them.




Accessing quantum phases and phase transitions by
varying “Planck’s constant” in the laboratory

* Immanuel Bloch: Superfluid-to-insulator transition
n trapped atomic gases

* Gabriel Aeppli: Seeing the spins (‘qubits’) in
quantum materials by neutron scattering

* Aharon Kapitulnik: Superconductor and insulators
in artificially grown materials

* Matthew Fisher: Exotic phases of quantum matter



