|. Quantum matter with quasiparticles:
random matrix model

.
2. Quantum matter without quasiparticles:

.

the complex SYK model

~

J

3. Fluctuations, and the Schwarzian
4. Models of strange metals

5. Einstein-Maxwell theory of charged
black holes in AdS space



The complex SYK model

(See also: the “2-Body Random Ensemble” in nuclear physics; did not obtain the large N limit;
T.A. Brody, ). Flores, |.B. French, PA. Mello, A. Pandey, and S.S.M.Wong, Rev. Mod. Phys. 53, 385 (1981))
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Uap.~s are independent random variables with U,g..s = 0 and |Uyg.~s|? = U?
N — oo yields critical strange metal.

S.Sachdev and |.Ye, PRL 70, 3339 (1993)
A. Kitaey, unpublished; S. Sachdev, PRX 5,041025 (2015)



The complex SYK model

Feynman graph expansion in U,g.~s, and graph-by-graph average, yields
exact equations in the large N limit:

D S.Sachdev and .Ye,
PRL 70, 3339 (1993)




The complex SYK model

The large NV limit is given by the
sum of “melon” Feynman graphs

For long times 7 > 0

A

o (T)C! = —

< ( ) a(0)> ﬁA
el (T)e, — e 2TE
(A eal0) = o2

The parameter £ = C (¢/U) determines
the particle-hole asymmetry,

and has a universal “Luttinger” relation to Q.
In a Fermi liquid,

(cam)ek(0)) = (eh(r)ea(0)) = A/r




The complex SYK model

Solution of these equations, and of the free energy, yields universal results
for the SYK model with ¢ fermion terms. These results are quantitatively
unchanged by adding additional higher ¢ fermion terms:

e At long times, and at T = 0, G(7) ~ |7|722 with A = 1/q (=
indication there are no quasiparticles)

e At general charge O, there is a spectral symmetry determined by a
parameter &:

—2A
—T T >0
~ 1T'=0
G(T) { 6—27r5(_7_)—2A <0 :
e There is a universal ‘Luttinger relation’ between —oo < & < oo and
the total charge 0 < Q < 1 A. Georges, O. Parcollet,
and S. Sachdev, PRB 63,
. 134406 (2001)
627T5 _ Sln(ﬂ-A + (9) R. Davison,Wenbo Fu,
SiIl(T('A — 9) A. Georges,Yingfei Gu,
9 ! 26)) K.Jensen, S.Sachdev, PRB
1 sin 95, 155131 (2017)
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The complex SYK model

Solution of these equations, and of the free energy, yields universal results
for the SYK model with ¢ fermion terms. These results are quantitatively
unchanged by adding additional higher ¢ fermion terms:

e At T' > 0, we obtain a solution with a conformal structure
6—271‘8T7' T 1/2
G(t)=-A , O0< 7 <1/T,
(7) V1 + e—4mE <sin(7rT7')> ! /

where the ‘particle-hole asymmetry’ is determined by £

A. Georges and O. Parcollet PRB 59,5341 (1999)
S.Sachdey, PRX 5,041025 (2015)



The complex SYK model

The equations for the Green’s function can also be solved at non-
zero I'. At e =& =0 we “guess” the solution

7'l P
= B
G(7) 5gn(7) sin(7w1'T)
Then the self-energy is
T |°°
Z _ 2B3 T
(r)=U sgn(7) sin(7w1'T)

A. Georges and O. Parcollet
PRB 59, 5341 (1999)



The complex SYK model

The equations for the Green’s function can also be solved at non-
zero I'. At e =& =0 we “guess” the solution

7'l P
= B
G(7) 5gn(7) sin(7w1'T)
Then the self-energy is
T |°°
Z _ 2B3 T
(r)=U sgn(7) sin(7w1'T)

Taking Fourier transforms, we have as a function of the Matsubara
frequency wy,

Tp—l 1B (8 . Wn, ) A. Georges and O. Parcollet
. L 9 9T PRB 59, 5341 (1999)
G(iw,) = [iBII(p)] - (1 Iz N W, )
2 27Tl
T
Yeing (iwn) = [iU?B’II(3p)]

3p  wny ’
'({1-— —
( 2 * 27TT>



The complex SYK model

(e
2 * 27T

G(iwn) = [iBII(p)] D Wn
b (1 2 | 27TT)
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where we have dropped a less-singular term in >, and

S

I(s) = 7°12° cos (7) 0(1 - s).

Now the singular part of Dyson’s equation is A. Georges and O. Parcollet
PRB 59,5341 (1999)

G (twn, ) Xging (twy ) = —1

Remarkably, the I' functions appear with just the right arguments,
so that there is a solution of the Dyson equation at p = 1/2!
S0 the Green’s functions display thermal ‘damping’ at a

scale set by 1" alone, which is independent of U.



The complex SYK model - N

G?YK(@ hw/(kpT)) =

T 1_ 1hw
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. Planckian dynamics
with peak width ~ kgT'/h
_ and independent of U |
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A. Georges and O. Parcollet PRB 59,5341 (1999)
S. Sachdev, PRX 5, 041025 (2015) hw/(kgT)



The complex SYK model -
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Planckian dynamics

with peak width ~ kgT'/h
and independent of U -
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A. Georges and O. Parcollet PRB 59,5341 (1999)
S.Sachdey, PRX 5,041025 (2015)
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The complex SYK model

We now examine the behavior of the chemical potential, u, as T — 0 at
fixed Q. For this we relate the long-time ‘conformal” Greens function, (valid
for 7> 1/U) to its short-time behavior. In particular at |w,| > U we have

. 1 noo
G(’Lwn) — iwn (@'wn)Q e e

which implies for the spectral density of the Green’s function, p(€2)

uz—/oo @Qp(ﬁ),

o T

which makes it evident that pu depends only upon the particle-hole asym-
metric part of the spectral density. Next, we can relate the () integrals to
the derivative of the imaginary time correlator

nw=—-0.G(tr=0")—-0,G(r = (1/T)7).



The complex SYK model

We pull out an explicitly particle-hole asymmetric part of G(7) by defining

1
Gr)=e *™1"G.(1) , 0<o< 7

where GG. will be given by a particle-hole symmetric conformal form at low
T and low w. Then we obtain

p o= 2rET |G(r=0")+G(r=(1/T)7)]
+ terms dependent on G,
= —2w&T + terms dependent on G,

It can be shown that all the terms dependent upon GG, have a 1" dependence
that is weaker than linear in 7" provided @ is held fixed. Hence we have

= g — 2w€&T + terms vanishing as T? with p > 1

with pg a non-universal constant. From this relation we obtain



The complex SYK model

with pg a non-universal constant. From this relation we obtain

oL
— — — T —
<8T>Q 2rE 0,

Using a Maxwell relation we then have

1 [0S
— == ] =2 T — 0.
N<0Q)T & # 0 as 0



The complex SYK model

Solution of these equations and corresponding evaluation of the free en-
ergy yields the following universal results (7.e. all results are quantitatively
unchanged by adding additional higher ¢ fermion terms):

e There is a non-vanishing entropy in the zero temperature limit

A. Georges, O. Parcollet, and S. Sachdev, PRB 63, 134406 (2001)



The complex SYK model

Solution of these equations and corresponding evaluation of the free en-
ergy yields the following universal results (7.e. all results are quantitatively
unchanged by adding additional higher ¢ fermion terms):

e There is a non-vanishing entropy in the zero temperature limit

e The saddle point equations imply the relation

dSO
70 9
10 &

Integrating this relation from sg = 0, @ = 0, allows us to compute sg
as a function of O.

A. Georges, O. Parcollet, and S. Sachdev, PRB 63, 134406 (2001)



The complex SYK model

" Many-body
level spacing ~

g&—]\f _ €—N1n2J

rNom—quasipaurtic:l@

excitations with

—NSQ

- Aspacing ~ €

_J

There are 2"V many body levels
with energy E. Shown are all
values of E for a single cluster of
size N = 12. The 1" — 0 state has
an entropy Sqgps = Nsg, where
So < In2 is determined by
integrating

@:27#;.

dQ
At Q=1/2,

G

T

In(2
(2) _ 464848 .

S0

where G 1s Catalan’s constant.

GPS: A. Georges, O. Parcollet, and S. Sachdey,
PRB 63, 134406 (2001)

W. Fu and S. Sachdev, PRB 94, 035135 (2016)
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The SYK model

S.Sachdev and ].Ye, Phys. Rev. Lett. 70, 3339 (1993)



The SYK model

At frequencies < U, the w

1 can be dropped,

and without it equations are invariant under the
reparametrization and gauge transtormations.
The singular part of the self-energy and the Green’s

function obey

B
/ 07> Saine (71, 72) G (72, 73) = —3(71 — 73)
0

Esing (7-17 7-2) — _U2G2 (7-17 TQ)G<TQ7 7-1)

A. Kitaey, 2015
S.Sachdev, PRX 5, 041025 (2015)



The complex SYK model
5
/o dry X1, T2)G (T2, T3) = —0(T1 — T3)
Z(Tl,TQ) — —U2G2(7‘1,7’2)G(TQ,7’1)

These equations are invariant under

r = f(o)

T.70) = [f' (o) f (o ~1/4 9(01) Yo o
G( 1 2) [f( 1)f( 2)] 9(0_2) G( 1, 2)
T.70) = [f (o) f (o _3/4g(01)N0 o
Y(71,7m2) = [f(01)f (02)] o(02) Yi(o1,02)

where f(o) and g(o) are arbitrary functions.
By using f(o) = tan(nTo)/(7nT) and
g(0) = 72719 we can now obtain

the T > 0 solution from the 7' = 0 solution.
A. Kitaey, 2015

S. Sachdev, PRX 5, 041025 (2015)



The SYK model

Let us write the large N saddle point solutions of S as

GS(Tl_TQ) ~ (7’1—7'2)_1/2

25(7'1—7'2) ~ (7’1—7'2)_3/2.
The saddle point will be invariant under a reperamateri-
zation f(7) when choosing G(11,72) = Gs(11 — 73) leads
to a transformed G(o1,02) = Gs(01 — 02) (and similarly
for ). It turns out this is true only for the SL(2, R)
transformations under which

at + b

- e =1.
f(r) T d ad — be

So the (approximate) reparametrization symmetry is spon-
taneously broken down to SL(2, R) by the saddle point.

A. Kitaev



Fluctuations
e The saddle-point

—2wET (11 —72)

V1 + e—4mE <Siﬂ(7TT(€1 - 72))>2A

€

G(Tl_TQ): A

is invariant only under PSL(2, R) transformations which map
the thermal circle onto itself, and an associated gauge trans-
formation

tan(77'T)
tan(7Tf(7)) 4 -
= , ad—bc=1,
T tan(77'T)
C - d
il

—1p(T7) = —igpg + 27ET (1 — f(1))
A. Kitaev, 2015
R. Davison,Wenbo Fu,A. Georges,Yingfei Gu, K. Jensen, S. Sachdev, PRB 95, 155131 (2017)



Infinite-range (SYK) model without quasiparticles

After introducing replicas a = 1...n, and integrating out the dis-
order, the partition function can be written as

I p
Z = /DCm(T) eXp —Z/ dr C:lra, (% - ) Cia
1a 0

U? g T e
e > / drdr’ | el (T)ein(r")
ab 0

4

For simplicity, we neglect the replica indices, and introduce the
identity

B
1:/DG(7—177_2)DZ(7_177_2>6XP _N/ dTldTQZ(T17T2) (G(7_277_1)
0

+ % Zci(’@)cj(ﬁ))




Infinite-range (SYK) model without quasiparticles

Then the partition function can be written as a path integral with
an action S analogous to a Luttinger-Ward functional

7 = /DG(Tl,Tg)DE(Tl,Tg) exp(—N.S)
S =1Indet [0(my — 12)(0r, + 1) — X(71, T2)]
+ /dﬁdTQ 2(71, 12)G (12, m1) + (U2 /2)G* (12, 1) G (71, T2)]

At frequencies < U, the time derivative in the determinant is less
important, and without it the path integral is invariant under the

reparametrization and gauge transformations A. Georges and O. Parcollet
PRB 59, 5341 (1999)
L f( ) A. Kitaev, 2015
r=J\o S. Sachdev, PRX 5, 041025 (2015)
—1/4 o)
G(r,m) = [f'(01) [ (02)] "/ (1) G(o1,02)
g(o2)
—3/4 o)
S(11,72) = [f'(00) f'(02)] (1) Y(01,02)

where f(o) and g(o) are arbitrary functions.



The SYK model

Reparametrization and phase zero modes
We can write the path integral for the SYK model as

Z = /DG(Tl,Tl)DE(Tl,TQ)G_NS[G’E]

for a known action S|G, 3]. We find the saddle point, G4, ¥, and only focus on the
“Nambu-Goldstone” modes associated with breaking reparameterization and U(1)
gauge symmetries by writing

G(r1,72) = [f' (1) f' ()] V4G (f(11) — f(72))e! @) 7000

(and similarly for ). Then the path integral is approximated by
2= [ Dp(rIDo(rIe B/ TN NSl

where Fy oc IV is the ground state energy.

J. Maldacena and D. Stanford, arXiv:1604.07818;

R. Davison,Wenbo Fu,A. Georges,Yingfei Gu, K. Jensen, S. Sachdey, arXiv.1612.00849;

S.Sachdev, PRX 5, 041025 (2015); J. Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857;
K.Jensen, arXiv:1605.06098; |. Engelsoy, T.G. Mertens, and H.Verlinde, arXiv:1606.03438



Fluctuations

Symmetry arguments, and explicit computations, show that the effective action is

/T /T
Salf.dl= =5 | dr@.¢+ieneT)o, - 15 [ dr{tan(Tf(r). 7).
0 ™ Jo

where f(7) is a monotonic map from [0,1/7] to |0,1/T], the couplings K, v, and £
can be related to thermodynamic derivatives and we have used the Schwarzian:

2
B g/// 3 g//
{97 T} T g/ 2 ( g/ ’

Specifically, an argument constraining the effective at I' = 0 is

at + b

Sar | 1) = 20, 0(r) = 0| =0,

and this is origin of the Schwarzian.

J. Maldacena and D. Stanford, arXiv:1604.07818;
R. Davison,Wenbo Fu,A. Georges,Yingfei Gu, K. Jensen, S. Sachdev, PRB 95, 155131 (2017);
A. Gaikwad, L.K. Joshi, G. Mandal, and S.R.WVadia, arXiv:1802.07746



