

Subir Sachdev

Dynamics and Disorder in Quantum Many Body Systems Far from Equilibrium Les Houches Summer School, August 19-21, 2019

PHYSICS

Remarkable recent observation of 'Planckian' strange metal transport in cuprates, pnictides, magic-angle graphene, and ultracold atoms: the resistivity, ρ , is

$$\rho = \frac{m^*}{ne^2} \, \frac{1}{\tau}$$

with a universal scattering rate

$$\frac{1}{\tau} \approx \frac{k_B T}{\hbar} \,,$$

independent of the strength of interactions!

Remarkable recent observation of 'Planckian' strange metal transport in cuprates, pnictides, magic-angle graphene, and strange acold atoms: the resistivity is associated with a universal scattering time $\approx \hbar/(k_B T)$. Universal *T*-linear resistivity and Planckian

dissipation in overdoped cuprates

NATURE PHYSICS | VOL 15 | FEBRUARY 2019 | 142-147

A. Legros^{1,2}, S. Benhabib³, W. Tabis^{3,4}, F. Laliberté¹, M. Dion¹, M. Lizaire¹, B. Vignolle³, D. Vignolles³, H. Raffy⁵, Z. Z. Li⁵, P. Auban-Senzier⁵, N. Doiron-Leyraud¹, P. Fournier^{1,6}, D. Colson², L. Taillefer^{1,6*} and C. Proust^{3,6*}

Planckian dissipation and scale invariance in a quantum-critical disordered pnictide

Yasuyuki Nakajima,^{1,2} Tristin Metz,² Christopher Eckberg,² Kevin Kirshenbaum,² Alex Hughes,² Renxiong Wang,² Limin Wang,² Shanta R. Saha,² I-Lin Liu,^{2,3,4} Nicholas P. Butch,^{2,4} Zhonghao Liu,^{5,6} Sergey V. Borisenko,⁵ Peter Y. Zavalij,⁷ and Johnpierre Paglione^{2,8}

Strange metal in magic-angle graphene with near Planckian dissipation

Yuan Cao,^{1, *} Debanjan Chowdhury,^{1, *} Daniel Rodan-Legrain,¹ Oriol Rubies-Bigordà,¹ Kenji Watanabe,² Takashi Taniguchi,² T. Senthil,^{1, †} and Pablo Jarillo-Herrero^{1, †} arXiv:1901.03710

Bad metallic transport in a cold atom Fermi-Hubbard system

Science 363, 379-382 (2019)

Peter T. Brown¹, Debayan Mitra¹, Elmer Guardado-Sanchez¹, Reza Nourafkan², Alexis Reymbaut², Charles-David Hébert², Simon Bergeron², A.-M. S. Tremblay^{2,3}, Jure Kokalj^{4,5}, David A. Huse¹, Peter Schauß^{1*}, Waseem S. Bakr¹[†]

Bi2201	<i>p</i> ~ 0.4	3.5	7 ± 1.5	8 ± 2	8 ± 2	1	1.0 ± 0.4
LSCO	<i>p</i> = 0.26	7.8	9.8 ± 1.7	8.2 ± 1.0	8.9 ± 1.8		9.9 ± 0.3
Nd-LSCO	<i>p</i> = 0.24	7.9	12 ± 4	7.4 ± 0.8	10.6 ± 3.7	(0.7 ± 0.4
PCCO	<i>x</i> = 0.17	8.8	2.4 ± 0.1	1.7 ± 0.3	2.1 ± 0.1	(0.8 ± 0.2
LCCO	<i>x</i> = 0.15	9.0	3.0 ± 0.3	3.0 ± 0.45	2.6 ± 0.3		$.2 \pm 0.3$
TMTSF	P = 11 kbar	1.4	1.15 ± 0.2	2.8 ± 0.3	2.8 ± 0.4	-	$.0 \pm 0.3$

Slope of *T*-linear resistivity vs Planckian limit in seven materials.

$$\frac{1}{\tau} = \alpha \, \frac{k_B T}{\hbar}$$

A. Legros, S. Benhabib, W. Tabis, F. Laliberté, M. Dion, M. Lizaire, B. Vignolle, D. Vignolles, H. Raffy, Z. Z. Li, P. Auban-Senzier, N. Doiron-Leyraud, P. Fournier, D. Colson, L. Taillefer, and C. Proust, Nature Physics **15**, 142 (2019)

Black Holes

Objects so dense that light is gravitationally bound to them.

In Einstein's theory, the region inside the black hole horizon is disconnected from the rest of the universe.

Horizon radius $R = \frac{2GM}{c^2}$

• The ring-down is predicted by General Relativity to happen in a time $\frac{8\pi GM}{c^3} \sim 8$ milliseconds. Curiously this happens to equal $\frac{\hbar}{k_B T_H}$ so the ring down can also be viewed as the approach of a quantum system to thermal equilibrium at the fastest possible rate.

Black holes

- Black holes have an entropy and a temperature, $T_H = \hbar c^3 / (8\pi G M k_B)$.
- The entropy is proportional to their surface area.
- They relax to thermal equilibrium in a Planckian time $\sim \hbar/(k_B T_H)$.

Black holes

- Black holes have an entropy and a temperature, $T_H = \hbar c^3 / (8\pi G M k_B)$.
- The entropy is proportional to their surface area.
- They relax to thermal equilibrium in a Planckian time $\sim \hbar/(k_B T_H)$.

Holography: Quantum black holes "look like" quantum many-particle systems without quasiparticle excitations, residing "on" the surface of the black hole

J. Maldacena, IJTP **38**, 1113 (1999); S.S. Gubser, I.R. Klebanov, and A.M. Polyakov Phys. Lett. B **428**, 105 (1998); E.Witten, Adv.Theor. Math. Phys. **2**, 253 (1998) I. Quantum matter with quasiparticles: random matrix model

2. Quantum matter without quasiparticles: the complex SYK model

3. Fluctuations, and the Schwarzian

4. Models of strange metals

5. Einstein-Maxwell theory of charged black holes in AdS space

I. Quantum matter with quasiparticles: random matrix model

- 2. Quantum matter without quasiparticles: the complex SYK model
- 3. Fluctuations, and the Schwarzian
- 4. Models of strange metals
- 5. Einstein-Maxwell theory of charged black holes in AdS space

What are quasiparticles ?

• Quasiparticles are additive excitations: The low-lying excitations of the many-body system can be identified as a set $\{n_{\alpha}\}$ of quasiparticles with energy ε_{α}

$$E = \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha} + \sum_{\alpha,\beta} F_{\alpha\beta} n_{\alpha} n_{\beta} + \dots$$

In a lattice system of N sites, this parameterizes the energy of $\sim e^{\alpha N}$ states in terms of poly(N) numbers.

Ordinary metals and quasiparticles

• Quasiparticles eventually collide with each other. Such collisions eventually leads to thermal equilibration in a chaotic quantum state, but the equilibration takes a long time. In a Fermi liquid, this time diverges as

$$\tau_{\rm eq} \sim \frac{\hbar E_F^3}{U^2 (k_B T)^2} \quad , \quad \text{as } T \to 0,$$

where U is the strength of interactions, and E_F is the Fermi energy.

• Similarly, a quasiparticle model implies a resistivity

Ordinary metals and quasiparticles

• Quasiparticles eventually collide with each other. Such collisions eventually leads to thermal equilibration in a chaotic quantum state, but the equilibration takes a long time. In a Fermi liquid, this time diverges as

$$au_{\rm eq} \sim rac{\hbar E_F^3}{U^2 (k_B T)^2} \quad , \quad {\rm as} \ T \to 0,$$

where U is the strength of interactions, and E_F is the Fermi energy.

• Similarly, a quasiparticle model implies a resistivity

$$\rho = \frac{m^*}{ne^2} \frac{1}{\tau} \sim U^2 T^2 \quad \text{with} \quad \tau \sim \tau_{\text{eq}}$$

• These times are much longer than the '<u>Planckian time</u>' $\hbar/(k_BT)$, which we will find in systems without quasiparticle excitations.

$$\tau \sim \tau_{\rm eq} \gg \frac{\hbar}{k_B T}$$
 , as $T \to 0$.

$$H = \frac{1}{(N)^{1/2}} \sum_{i,j=1}^{N} t_{ij} c_i^{\dagger} c_j - \mu \sum_i c_i^{\dagger} c_i$$
$$c_i c_j + c_j c_i = 0 \quad , \quad c_i c_j^{\dagger} + c_j^{\dagger} c_i = \delta_{ij}$$
$$\frac{1}{N} \sum_i c_i^{\dagger} c_i = \mathcal{Q}$$

 t_{ij} are independent random variables with $\overline{t_{ij}} = 0$ and $|t_{ij}|^2 = t^2$

Fermions occupying the eigenstates of a $N \ge N$ random matrix

Feynman graph expansion in $t_{ij..}$, and graph-by-graph average, yields exact equations in the large N limit:

$$G(\tau) \equiv -T_{\tau} \left\langle c_i(\tau) c_i^{\dagger}(0) \right\rangle$$

$$G(i\omega) = \frac{1}{i\omega + \mu - \Sigma(i\omega)}, \quad \Sigma(\tau) = t^2 G(\tau)$$

$$G(\tau = 0^-) = Q.$$

 $G(\omega)$ can be determined by solving a quadratic equation.

Let ε_{α} be the eigenvalues of the matrix t_{ij}/\sqrt{N} . The fermions will occupy the lowest NQ eigenvalues, upto the Fermi energy E_F . The singleparticle density of states is $\rho(\omega) = (1/N) \sum_{\alpha} \delta(\omega - \varepsilon_{\alpha})$, and $\rho_0 \equiv \rho(\omega = 0)$.

The grand potential $\Omega(T)$ at low T is (from the Sommerfeld expansion)

$$\Omega(T) - E_0 = N\left(-\frac{\pi^2}{6}\rho_0 T^2 + \mathcal{O}(T^4)\right) + \dots$$

where $\rho_0 \equiv \rho(0)$ is the *single* particle density of states at the Fermi level. We can also define the *many* body density of states, D(E), via

$$Z = e^{-\Omega(T)/T} = \int_{-\infty}^{\infty} dED(E)e^{-E/T}$$

The inversion from $\Omega(T)$ to D(E) has to performed with care (it need not commute with the 1/N expansion), and we obtain

$$D(E) \sim \exp\left(\pi\sqrt{\frac{2N\rho_0(E-E_0)}{3}}\right) , \quad E > E_0 , \ \frac{1}{N} \ll \rho_0(E-E_0) \ll N$$

and D(E) = 0 for $E < E_0$. This is related to the asymptotic growth of the partitions of an integer, $p(n) \sim \exp(\pi \sqrt{2n/3})$. Near the lower bound, there are large sampleto-sample fluctuations due to variations in the lowest quasiparticle energies.

 $\sim Nt$

Quasiparticle excitations with spacing $\sim 1/N$ There are 2^N many body levels with energy

$$E = \sum_{\alpha=1}^{N} n_{\alpha} \varepsilon_{\alpha},$$

where $n_{\alpha} = 0, 1$. Shown are all values of E for a single cluster of size N = 12. The ε_{α} have a level spacing $\sim 1/N$.

Now add weak interactions

$$H = \frac{1}{(N)^{1/2}} \sum_{i,j=1}^{N} t_{ij} c_i^{\dagger} c_j - \mu \sum_i c_i^{\dagger} c_i + \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} U_{ij;k\ell} c_i^{\dagger} c_j^{\dagger} c_k c_\ell$$

 $U_{ij;k\ell}$ are independent random variables with $\overline{U_{ij;k\ell}} = 0$ and $\overline{|U_{ij;k\ell}|^2} = U^2$. We compute the lifetime of a quasiparticle, τ_{α} , in an exact eigenstate $\psi_{\alpha}(i)$ of the free particle Hamitonian with energy ε_{α} . By Fermi's Golden rule, for ε_{α} at the Fermi energy

$$\frac{1}{\tau_{\alpha}} = \pi U^2 \rho_0^3 \int d\varepsilon_{\beta} d\varepsilon_{\gamma} d\varepsilon_{\delta} f(\varepsilon_{\beta}) (1 - f(\varepsilon_{\gamma})) (1 - f(\varepsilon_{\delta})) \delta(\varepsilon_{\alpha} + \varepsilon_{\beta} - \varepsilon_{\gamma} - \varepsilon_{\delta})$$
$$= \frac{\pi^3 U^2 \rho_0^3}{4} T^2$$

where ρ_0 is the density of states at the Fermi energy, and $f(\epsilon) = 1/(e^{\epsilon/T} + 1)$ is the Fermi function.

Fermi liquid state: Two-body interactions lead to a scattering time of quasiparticle excitations from in (random) single-particle eigenstates which diverges as $\sim T^{-2}$ at the Fermi level.

I. Quantum matter with quasiparticles: random matrix model

2. Quantum matter without quasiparticles: the complex SYK model

3. Fluctuations, and the Schwarzian

4. Models of strange metals

5. Einstein-Maxwell theory of charged black holes in AdS space

The complex SYK model

(See also: the "2-Body Random Ensemble" in nuclear physics; did not obtain the large N limit; T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, and S.S.M. Wong, Rev. Mod. Phys. **53**, 385 (1981))

$$H = \frac{1}{(2N)^{3/2}} \sum_{\alpha,\beta,\gamma,\delta=1}^{N} U_{\alpha\beta;\gamma\delta} c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\gamma} c_{\delta} + \epsilon \sum_{\alpha} c_{\alpha}^{\dagger} c_{\alpha}$$
$$c_{\alpha} c_{\beta} + c_{\beta} c_{\alpha} = 0 \quad , \quad c_{\alpha} c_{\beta}^{\dagger} + c_{\beta}^{\dagger} c_{\alpha} = \delta_{\alpha\beta}$$
$$\mathcal{Q} = \frac{1}{N} \sum_{\alpha} c_{\alpha}^{\dagger} c_{\alpha}$$

 $U_{\alpha\beta;\gamma\delta}$ are independent random variables with $\overline{U_{\alpha\beta;\gamma\delta}} = 0$ and $\overline{|U_{\alpha\beta;\gamma\delta}|^2} = U^2$ $N \to \infty$ yields critical strange metal.

S. Sachdev and J.Ye, PRL **70**, 3339 (1993)
 A. Kitaev, unpublished; S. Sachdev, PRX **5**, 041025 (2015)

The complex SYK model

Feynman graph expansion in $U_{\alpha\beta;\gamma\delta}$, and graph-by-graph average, yields exact equations in the large N limit:

$$G(i\omega) = \frac{1}{i\omega - \epsilon - \Sigma(i\omega)} , \quad \Sigma(\tau) = -U^2 G^2(\tau) G(-\tau)$$
$$G(\tau = 0^-) = \mathcal{Q}.$$

S. Sachdev and J. Ye, PRL **70**, 3339 (1993)

