cond-mat/9906104 v2 30 Nov 1999

arXiv

Physical Review Letters 83, 3916 (1999)

Charge order, superconductivity, and a global phase diagram of doped
antiferromagnets

Matthias Vojta and Subir Sachdev
Department of Physics, Yale University
P.O. Box 208120, New Haven, CT 06520-8120, USA
(November 8, 1999)

We investigate the interplay between lattice-symmetry breaking and superconducting order in a two-
dimensional model of doped antiferromagnets, with long-range Coulomb interactions and Sp(2N)
spin symmetry, in the large-N limit. Our results motivate the outline of a global phase diagram

for the cuprate superconductors.

We describe the quantum transitions between the phases, the

evolution of their fermion excitation spectrum, and the experimental implications.

A number of recent experiments have found ga,pHch va-
riety of phases in the cuprate superconductors'lfa. The
various ground states can be distinguished by the man-
ner in which they preserve, or spontaneously break, three
distinct and familiar symmetries of the Hamiltonian: (a)
the electromagnetic U(1) symmetry, S, which is broken
in the d-wave superconducting phase, but is preserved in
an insulating ground state; (b) the SU(2) spin rotation
symmetry, M, which is broken in magnetically ordered
phases; and (c) the symmetry of square lattice transla-
tions and rotations, C, which we will consider broken if
an observable invariant under S and M, like the charge
density, is not identical on every site and every bond.
We shall take the point of view here that all the phases
are conventionally characterized by the manner in which
S, C, and M are broken, and have no ‘exotic’ proper-
ties or excitations, i.e., in principle, an appropriate elec-
tron Hartree-Fock/RPA/BCS theory, with perturbative
corrections, can be found; the anomalous finite tempera-
ture (1') properties are then believed to be signatures of
quantum-critical points separating these phases?¢.

This paper will describe the T' = 0, global phase dia-
gram of two-dimensional, doped antiferromagnets by dis-
cussing the competition between phases in which one or
more of the §, C, and M symmetries may be broken.
Among our results will be the complete quantitative so-
lution of a microscopic model of a doped antiferromagnet
for the case where the M symmetry is generalized® from
SU(2) to Sp(2N), (note SU(2) = Sp(2)) and the large-N
limit is taken under a particular representation of Sp(NV).
The simplifying feature of this limit is that it restricts at-
tention to the portion of the phase diagram (see Fig. :1:
below) where the M symmetry remains unbroken; how-
ever, it does allow a realistic description of the subtle and
complicated interplay between the C and & symmetries.
Our results include (¢) computation of the doping depen-
dence of the charge-ordering configuration and the evolu-
tion of the ordering wavevector, (i7) computation of the
single-particle fermion spectrum, measurable in photoe-
mission experiments, in phases with C and & broken, and
(i) proposal of a quantum-critical field-theoretic model
to explain the recently observed? anomalous T" and fre-
quency dependence of the photoemission line-width.

We will consider the following extended “t—.J” Hamil-
tonian for fermions, c¢;,, on the sites, 7, of a square lattice
with spin & =1...2N (N =1 is the physical value):
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Here n; = cjacm is the on-site charge density, and the
spin operators S; are fermion bilinears times the trace-
less generators of Sp(2N). We will be primarily con-
cerned with the case where the fermion hopping, ¢;;, and
exchange, J;;, act only when 4, j are nearest neighbors,
in which case t;; =t and J;; = J; however, we will occa-
sionally refer to cases with second neighbor hopping (')
or exchange (J’). The Coulomb interaction between the
electrons is represented by the on-site constraint n; < N,
and the off-site repulsive interactions V;; which fall off as
the inverse separation between the sites. The V;; are in-
cluded to couptey=act the phase separation tendency of
the t-J modelﬂqlf'l%, and play a key role in our analysis.
We shall be interested in describing the ground state of H
as a function of its couplings and the average doping con-
centration, §, which is fixed by (1/Ns) > =, (ni) = N(1-6),
where Ny is the (infinite) number of sites.

The proposed phase diagram of H is shown in Fig. -_]:
First, consider the vertical line, 6 = 0. Below X, mag-
netic Néel order is present and so M is broken; however,
the charge densities are identical on every bond and site,
and so C is preserved, as is S because the ground state is
an insulator. Above X, there is a transition to a quantum
paramagnet and M symmetry is restored; this transition
was studied in Refs. :_I-?E,E, and it was argued that C was
necessarily broken in the quantum paramagnet leading
to spin-Peierls order. We can also view the spin-Peierls
order as,a bond-centeredcharge-density wave with a 2 x 1
unit cell™. Recent workd? has shown strong evidence for
this order in the N = 1 model with J' > 0.

We now describe the evolution of the ground state with
increasing 6 along A;. The large-N limit is taken, as
described earlier', by minimizing the saddle point free
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FIG. 1. Schematic, proposed, ground state phase diagram
of H as a function of the doping § for physically reasonable
values of t, J and V. The vertical axis represents a param-
eter which measures the strength of quantum spin fluctua-
tions—it increases linearly with N but can also be tuned con-
tinuously by J'/J. The magnetic M symmetry is broken
in the hatched region, while C symmetry is broken (with ac-
companying charge-density modulation) in the shaded region;
there are numerous additional phase transitions at which the
detailed nature of the M or C symmetry breaking changes -
these are not shown. For 6 = 0, M symmetry is broken only
below the critical point X, while C symmetry is broken only
above X. The superconducting & symmetry is broken for all
6 > 0 at large N; for smaller N, the & can be restored at
small & by additional C breaking along the vertical axis for
the states in the inset—this is not shown. The superconduc-
tivity is pure d-wave only in the large § region were C and
M are not broken. The arrow A; represents the path along
which quantitative results are obtained in this paper, while
Az is the experimental path. The nature of the C symme-
try breaking along path A; is also sketched: the thick and
dashed lines indicate varying values of |Q;;| (proportional to
the bond charge density) on the links, while the circles rep-
resent b? (proportional to the site hole density). The charge
densities on the links and sites not shown take values con-
sistent with the symmetries of the figures shown. We expect
that the nature of the C symmetry breaking will not change
significantly as we move from A; to As, and across the phase
boundary where M is broken: this suggests the appearance
of collinearly polarized spin-density waves, which break both
C and M, and which undergo an ‘anti-phase’ shift across the
hole-rich stripestd.

energy with respect to the site charge density N(1 —
b?) = (n;) and the complex bond pairing amplitude
NQ;j = <jaﬁcjac;6>/(bibj) (where b? is the hole density
at site ¢ and J denotes the Sp(2N)-invariant antisym-
metric tensor), while maintaining certain local and global
constraints. There have been a number of related earlier
mean-field stpdies'-”:, but they have all (with the excep-
tion of Ref. \L1) restricted attention to the case where b;
and |Q;;| are spatially uniform (note that |Q;;| has the
same symmetry signature as the bond charge density, and
is therefore a measure of its value). However such solu-
tions are usually unstable, and at best metastable, at low
doping; here we have attempted to find the true global
minima of the saddle-point equations, while allowing for
arbitrary spatial dependence: such a procedure leads to
considerable physical insight, and also leads to solutions
in accord with recent experimental observations.

First, at § = 0 along A; we find the fully dimerized, in-
sulating,spin-Peierls (or 2 x 1 bond charge-density wave)
solution'l?in which |Q;;| is non-zero only on the bonds
shown in Fig. :1: Moving to small non-zero § along Aj,
our numerical search always yielded lowest energy states
with G broken, consisting of bond-centered charge-density
wavestd with a p x 1 unit cell, as shown in Fig. :14' We
always found p to be an even integer, reflecting the dimer-
ization tendency of the § = 0 solution. Within each p x 1
unit cell, we find that the holes are concentrated on a
q x 1 region, with a total linear hole density of p;. A key
property is that ¢ and py remain finite, while p — o0,
as 6 — 0. Indeed, the values of ¢ and p, are deter-
mined primarily by ¢, J, and the nearest-neighbor value
of Vi; = Vin, and are insensitive to § and longer range
parts of V;;. For § — 0, we found that ¢ = 2 was optimum
for a wide range of parameter values, while larger values
of ¢ (¢ > 4) appear for smaller values of V,,,; specifically
we had ¢ =2, pp =042 at t/J = 1.25, V,,,,/t = 0.6, and
g=4,p =08att/J=1.25 V,,/t =0.5. The limit
Van — 0 leads to ¢ — oo which reflects the tendency to
phase separation in the “bare” t — J model. The evolu-
tion of p with § is shown in Fig. :_2 Note that there is a
large plateau at p = 4 around doping § = 1/8, and, for
some parameter regimes, this is the last state before C
is restored at large §; indeed p = 4 is the smallest value
of p for which our mean-field theory hag solutions with
b; not spatially uniform. Experimentally:}?, a pinning of
the charge order at a wavevector K = 1/4 is observed,
and we consider it significant that this value emerges nat-
urally from our theory.

Our large-N theory only found states in which the
ordering wavevector K was quantized at the rational
plateaus in Fig. g: However, for smaller N we expect that
irrational, incommensurate, values of K will appear, and
interpolate smoothly between the plateau regions.

In our large-N theory, each g-width stripe above is
a one-dimensional superconductor, while the intervening
(¢ — p)-width regions are insulating. However, fluctua-
tion corrections will couple with superconducting regions,
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FIG. 2. The charge-ordering wavevector, K, (in reciprocal
lattice units) as a function of § at N = oo for t/J = 1.25,
Vin/t = 0.6 (where ¢ = 2). For the states in Fig. :1:, K=1/p.
We have K = 1/2 at § = 0. The K = 1 value at large 0 has
C symmetry restored, and is a pure d-wave superconductor.
For other values of parameters, the K = 1/2 plateau does not
occur, and there is a direct jump from K =1 to K =1/4 (or
smaller) (see Fig. 3).

yielding an effective theory discussed in Section VII of
Ref. 2@ with their dimensionless parameter K ~ N. This
implies that Josephson pair tunneling between the one-
dimensional superconductors is a relevant perturbation
at sufficiently large N, leading to two-dimensional su-
perconductivity. However, the bare pair-tunneling am-
plitude is exponentially small in p, while the Coulomb
interaction between the hole-rich regions falls off only as
1/p—the latter can then dominate for smaller N and 4,
leading to further C breaking along the vertical stripe di-
rections, and a transition to a two-dimensional insulating
state with S restored and an even number of electrons per
unit cell. Such an insulating state is more likely at ratio-
nal &, when the charge-ordering period along the vertical
stripe direction is commensurate with the lattice.

We show a fixed § = 1/8, large N, cross-section of our
results in Fig. 3 The transition from a d-wave super-
conductor, with C unbroken, to the fully-formed p x 1
stripes discussed above can either be first-order, or via
intermediate states with partial stripe order. In the lat-
ter case, there is first a continuous transition to a state
with C symmetry breaking at p = 2 — every site is equiv-
alent in such a state, and so the site charge density is
uniform while there is a modulation in the bond charge
density; this state can also be viewed as possessing coex-
isting superconducting and spin-Peierls ordert®. To our
knowledge a p = 2 charge-ordered superconducting state
has not been experimentally detected, but a search for
one should be worthwhile. There is a second second-
order transition to p = 4 state with partial stripe order,
before the fully-formed p = 4, ¢ = 2 state with inter-
vening insulating stripes appears (Fig. ). Larger values
of V suppress phases with a non-uniform distribution of
site charge densities; such phases also disappear in the
limits of small ¢/J, and t/J — oo.
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FIG. 3. Ground states of H at 6 = 1/8 and N = co. Full
(dashed) lines indicate first- (second-) order transitions. All
states have superconducting order, but the superconductivity
is one-dimensional (only at N = oo) in the phases with full
stripe order (shaded).

We now discuss the fermion excitation spectrum in the
states found above. The d-wave superconductor of course
has gapless, linearly dispersing fermion excitations along
the (1,+£1) directions in the Brillouin zone. The various
charge-ordered phases in general show a gapped spec-
trum, see Fig. :ﬁl In the fully striped phases the fermion
energy is independent of k, (the momentum perpen-
dicular to the stripes), the dispersion minimum is near
(0,£1/4). In the p = 2 phases (and also for p = 4 and
partial stripe order) the minimum of the energy is at com-
plex values of pairing amplitudes @);;; these states break
time-reversal symmetry 7" and their fermionic excitations
are fully gapped. However, if we restrict our attention to
states without 7-breaking, then upon decreasing ¢/J in
the d-wave superconductor (at large V, see Fig. ) the
gapless fermions survive across the C-breaking transition
to the p = 2 phase; the excitation gap then opens at
smaller t/J (i.e. at a finite dimerization).

Finally, we describe the critical behavior near the
quantum transitions. Consider first, the initial onset of
C-breaking from the d-wave superconductor (Fig. i). For
large N, this transition, if second-order, occurs at the
wavevector (K = 1/2,0) which does not equal the sep-
aration between any two gapless Fermi points; so the
charge order parameter does not couple efficiently to the
fermionic excitations. In this case, the effective quan-
tum critical theory contains only two real scalars (¢,
¢y), describing the ordering along the two axes, and has
a three spacetime dimensional, ‘relativistically’ invariant
action with the symmetry of the Z, clock model. For
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FIG. 4. Dispersion of the fermionic excitation spectrum

obtained from the mean-field solution of H at § = 1/8. Left:

p =2 phase at t/J = 1.5, V/t = 1, i.e., very close to the tran-

sition to the d-wave phase. Right: p = 4 with partial stripe

order at t/J = 1.25, V/t = 0.8. Both spectra are fully gapped.

Here, k; is the momentum parallel to the charge-ordering
wavevector (i.e., the stripes run in y direction).

smaller N, we consider it likely that the initial C breaking
will occur at a wavevector (K, 0), which is incommensu-
rate with the underlying lattice, but which does exactly
equal the separation between gapless Fermi points in the
superconductor. The critical quantum field theory will
now contain two complex scalars ((®,, ®,)-their phases
represent the ability to freely slide the charge-density
wave with respect to the lattice) coupled to the four
‘Dirac’ fermions of the d-wave superconductor. Its ef-
fective action has the form S = Sy + Sg + Sy; Sy is the
fermion bilinear of the d-wave superconductor contain-
ing gapless Fermi points at (K/2,K/2), (-K/2,K/2),
(—K/2,—-K/2) and (K/2,—K/2), and we will denote the
components of ¢;, in the vicinity of these points by fua
respectively (a = 1...4); Se contains second order spa-
tial and time derivatives of ®, , and polynomial interac-
tion terms, all invariant under the uniform phase change
®,, — efvd,  and under &, < P,; S\ couples the
faa and @, ,, and the symmetries allow the following two
independent terms, free of gradients:

MIT (Po frafas + s foafsp + Py faafip + B} frafas)
2 (Coffofia + Puflo fia+ 0y fofra + Oy flofoa)

and their Hermitian conjugates. We propose that it is
this quantum field theory, describing the 7' = 0 transi-
tion at which (®, ,) become non-zero in the presence of
superconductivity, whose T' > 0 correlators describe the
observed quantum-critica],scaling of the fermion momen-
tum distribution function?. Direct observation of charge
fluctuations at wavevectors (K,0), (0, K), with K con-
sistent with photoemission, will be a test of this scenario.

We turn to the quantum transition where M sym-
metry is broken which is located at lower §. Assuming
that this is at a point where the fermion spectrum is al-
ready fully gapped, or the separation between any gapless
Fermi points is not equal to the spin ordering wavevector,

we can conclude that this transition is described by the
relativistic quantum O(3) non-linear sigma model (for
N =1). Such a scenario provides a natural explanation
for the crossovers in NMR experimentst.

This paper has used quantitative calculations of a mi-
croscopic model in a large-N limit to motivate a sce-
nario in which superconducting, spin- and charge-density
wave instabilities compete as the system evolves from an
insulating antiferromagnet to a d-wave superconductor.
Many aspects are consistent with recent experiments, and
more stringent tests should be possible in the future.
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