PHYSICAL REVIEW B

VOLUME 33, NUMBER 9°

{ MAY 1986

Viscous relaxation in metallic glasses

Subir Sachdev
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
(Received 11 December 1985)

Recent theories of icosahedral ordering in supercooled liquids are used to define a model dynam-
ics to describe the relaxation of momentum fluctuations in these systems. Glassy behavior of the
system at microscopic distances is enforced by introducing a phenomenological relaxation parameter
I'? which is anomalously small and strongly dependent upon temperature. Macroscopic conse-
quences of this microscopic slowing down are examined. It is found that there is an upper bound on
the magnitude of the translational correlation length, below which microscopic sluggishness is inef-
fective in producing a large macroscopic viscosity. If the correlation length is larger than this upper
bound, then the macroscopic viscosity acquires a strong temperature dependence increasing like
1/T% as the temperature falls. Binary metallic glasses have a correlation length which is just above

this bound.

1. INTRODUCTION

A few recent studies of structural ordering in metallic

glasses and undercooled liquids!—> have focussed on the’

importance of short-range icosahedral order in these sys-
tems. As a simple metal or metal-metalloid alloy is
cooled below its melting temperature at a rate fast enough
to avoid crystallization, many local icosahedral clusters of
atoms are expected to form.® It is topologically impossi-
ble for the atoms to extend this icosahedral ordering to
large distances. This “topclogical frustration” was identi-
fied as a key property of these systems. Building upon
these ideas, a calculation of the structure factor of metal-
lic glasses has been performed.’ The effect of the
icosahedral ordering upon the electronic density of states
has been studied by calculations upon a finite cluster of
atoms of polytope {3,3,5}.”7 This polytope exists upon the
surface of a sphere in four dimensions with every atom
sitting at the center of a perfect icosahedron.

While these approaches have, with some success, ad-
dressed the question of the structural ordering of the
atoms, the precise role the icosahedral ordering plays in
the dramatic increase of viscosity above the glass-
transition temperature is, for the most part, not under-
stood. It is clear that just above the glass-transition tem-
perature, constraints on the rearrangement of atoms be-
come very much more effective and essentially freeze the
topological configuration of the atoms. An important un-
known in this process is the length scale at which the
rearrangement times of the atoms become comparable to
the timescale of the experiment. A proper identification
of this length scale requires that the correct order parame-
ter which is driving the transition be jdentified. In the
case of spin glasses, while the proper definition of the or-
der parameter is still a matter of some controversy,® it is
generally accepted that this order parameter acquires an
infinite correlation length at the spin-glass-transition tem-
perature. This implies that all length scales contribute to
the diverging timescale. In conventional glasses and me-
tallic glasses, the answer to this question is less clear. No
diverging susceptibility has yet been discovered, implying
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that the correlation length may be finite. In this paper we
take the viewpoint that the important physics is contained
in the short-range icosahedral ordering. With this identi-
fication of the relevant ordering, the question of the
length scale at which the timescale for rearrangement be-
comes large will now be addressed.

An order parameter which measures the degree of

_short-range 1cosahedra1 ordering was introduced by Nel-

sen, and Widom:* Om m,(r). The value of O, m,(T) at -

the’ 'point r depends upon the configuration of particles
within a translational correlation length of r. The order
parameter transforms under the nth representation of
SO(4), the m,,m, are the basis indices. The n=12,20,24
components of this order parameter are of particular im-
portance in measuring the strength of the short-range
icosahedral order. For the purposes of this paper it is suf-
ficient to think of this order parameter as a complicated
multiparticle correlation function which becomes large
when the atoms near a given point are sitting at the ver-
tices of tetrahedra, fivefold bipyramids, and icosahedra.
A Landau expansion of the free energy in terms of this or-
der: parameter may now be performed. Up to quadratic
order in the Q" we have

=33 [d*r{[K, |3,

+0((Q"3) X - - - (1.1)

Here, Lg, is a generator of “translations” of SO4); K,
and r, are Landau-expansion parameters. The constant x
is a measure of the frustration in the system and is related
to the interparticle spacing d by

kd=w/5.

—ikLo)Q" |2+, | Q| %1}

(1.2)

This pecuhar form of the gradient term was proposed by
Sethna® and is necessary to account for the most favorable
relative orientations and posmons of neighboring icosahe-
dra. Sachdev and Nelson’ argued that a quadratic trunca-
tion of this free energy was a reasonable approximation,
and were able to calculate density correlation functions.
The results were in good agreement with the structure fac-
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tors of amorphous vapor-deposited films and computer
experiments.® 12

It was found that short-range icosahedral order gave
rise to well-defined peaks in the structure factor. The
structure factor of vapor-deposited films of amorphous
cobalt is shown in Fig. 1.!! The peak positions were
determined by a combination of the icosahedral ordering
and the frustration associated with the packing of icosahe-
dra.” The frustration was also responsible for the small
but finite peak widths.> In a system where the icosahedra
can pack together perfectly, e.g., the surface of a four-
dimensional sphere, the peaks would have been Bragg
spots.* From the widths of the peaks in the structure fac-
tor of a metallic glass, one can deduce a translational
correlation length £ of 2—3 atomic spacings. The length &
is also the correlation length of the icosahedral order pa-
rameter. As £ is finite, the assumption that the slowest
process in the structural rearrangements of the atoms is
the relaxation of the icosahedral order parameter implies
that there is no diverging length scale in the system.

A possible mechanism for the slowing down of the
dynamics was proposed by Nelson.? He argued that the
defect lines in the icosahedral parameter field should
suffer severe kinetic constraints in their movements. The
non-Abelian nature of the symmetry group under which
the order parameter transforms forces in an additional de-
. fect line whenever two defect lines try to pass through
_each other.” These kinetic constraints give rise to an en-

tangled mass of defect lines, which freeze in at the glass-
transition temperature. One would expect the entangle-
ment constraints to become effective at the microscopic
scale of a translational correlation length.

The question of the dynamic slowing down of the relax-
ation of the atoms is obviously an enormously complicat-
ed problem. In this paper we therefore choose to sidestep
the question of the precise mechanism of the slowing
down, entanglement or otherwise. Instead we assume that
a microscopic slowing down exists on the scale of clusters
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FIG. 1. Structure factor of a vapor-deposited film of amor-
phous cobalt from Ref. 11. Only the largest first peak is includ-
ed in the dynamic calculations of this paper.
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of 20—30 atoms and ask for possible macroscopic conse-
quences as manifested in measurements of the shear
viscosity. The relevant order parameter will be assumed
to be the icosahedral order parameter. However, many
features of the analysis would still hold even if some other
type of ordering was found to be responsible for the
dynamic slowing down.

In the analysis of the statics of metallic glasses it was
found that the strongest fluctuations were those contribut-
ing to the principal peak of the structure factor.” These
fluctuations belonged to the n=12 component of the or-
der parameter. Additionally, it was found that only one
particular linear combination of the Q'?s contributed ap-
preciably to the structure factor at wave vectors near the
peak. This linear combination of the Q'?s was the eigen-
vector of the quadratic part of the free energy having the
lowest eigenvalue at the wave vector of the first peak. We
therefore make the approximation that the most impor-
tant component of the order parameter is a one-
component scalar 1, corresPonding to this particular
linear combination of the Q'”s. For wave vectors near
the peak in the structure factor we can therefore write the
free energy as a functional of .

The simplest equation which can describe the relaxation
of i consistent with the free energy F{1] is'*

OY _ B _:q \OF
3 | 18“)8¢+§,

where I'Z is a relaxation coefficient and £ is a source of
thermal white noise with correlations chosen to satisfy the
fluctuation-dissipation theorem. We assume that all the
microscopic constraints that we referred to are incorporat-
ed in the function T'2(k). In particular, we assume that
I'B is strongly temperature dependent near T, and be-
comes anomalously small at temperatures just above T,
and at wave vectors near the first peak in the structure
factor.
A possible source for the decrease in I'? could be the
nonlinearities in the free energy F. To lowest order, a cu-
-bic nonlinearity will lead to a decrease in I'2."® In this pa-
per we are able to sidestep these issues because the static
analysis showed that at the scale of the translational
correlation length a quadratic truncation of the free ener-
gy will yield acceptable results. We assume that the non-
linearities are important at shorter length scales and lead
to the strongly-temperature-dependent decrease in I'?, If
the relaxation of the order parameter is dominated by
activated processes with a typical barrier height Eg,
I'? will have an Arrhenius temperature dependence
exp( —Ep/kT). To a good first approximation, the peak
in the structure factor is a Lorentzian. So the free-energy
functional can be taken to be

Fip}=5 | k) | 2X5 U+ (k —ko) &%) ,
k

(1.3)

(1.4)

where X, is the maximum susceptibility, kg is the position
of the peak in the structure factor, and £ is the transla-
tional correlation length.

‘We now turn to an analysis of the effects of this micro-
scopic slowing down upon the long-wavelength viscosity.
To do this, we introduce a fluctuating shear momentum



density jT. These momentum fluctuations will obviously
cause topological rearrangements and lead to a change in
the relaxation of 1. The simplest possible coupling be-
tween the momentura and 1 is a convective coupling:

B rr_i3,) L g iyt

ot 5

aj” ’ SF -3
9) _F . | pBy2;iT or

3 =1k 77VJ+80V¢8¢+9 -

The momentum density j¥ is assumed to be transverse.

The matrix 'fk is a transverse projection operator and gg
is a coupling constant. We have scaled the momentum
density so that Kinetic energy associated with the momen-
tum fluctuations is +j>. Longitudinal fluctuations are
omitted for simplicity. They will be considered later and
will not affect the result appreciably. 72 is a bare viscosi-
ty. Because momentum fluctuations are not directly asso-
ciated with fluctuations in the order parameter, there is no
reason to assume that n” is large. We will assume it has a
value typical of liquids well above T,. We shall be in-
terested in studying the corrections to 7” from the slow-
ing down of fluctuations in .

The equations above are identical in form to the equa-
tions of the model H Hohenberg and Halperin'®1? for the
liquid-gas critical point. There are, however, several cru-
cial differences. The divergence of the viscosity near the
liquid-gas critical point depends crucially upon the fact
that the order parameter 1 is conserved. In the system of
interest in this paper, the question of whether ¥ is con-
served or not is irrelevant, because the strongest fluctua-
tions of 1 occur at a finite wave vector. The value of |
at ko will be most effective in the renormalization of 7.
In addition, the form of the free energy of v is dictated by

the underlying frustration in the system and is quite dif- "

ferent from what would happen near a critical point. The
correlation length £ is finite and only weakly temperature
dependent near Tg. The strong temperature dependence is
in T'5(kq). Nevertheless, some of the techniques that have
been developed for the analysis of the liquid-gas critical
point can be applied to the problem of interest. In partic-
ular, some of the earliest attempts at understanding the
liquid-gas critical point were made by Kawasaki and
Lo!8—20 and Oxtoby and Gelbart.?! They used a simple
self-consistent one-loop analysis, ignoring retardation ef-
fects, to calculate the viscosity and the order-parameter
relaxation rate. Their results were in remarkable agree-
ment with the experiments and were confirmed later by a
more rigorous renormalization-group analysis.!” In this
paper we shall obtain all our results in the Kawasaki ap-
proximation. The first corrections due to higher-order

loops and retardation effects are discussed in Appendix A

and B, respectively.

The results of the simple Kawasaki analysis are as fol-
lows. The behavior of the macroscopic viscosity depends
crucially on the magnitude of the correlation length. The
physics of the system changes dramatically depending on
whether kyf is greater or smaller than a positive constant
c. Neglecting longitudinal fluctuations this constant c is
determined to be 11.25. We now discuss the behavior of
the system in the two regimes.
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A. kef<e

The coupling between the order parameter and the
momentum fluctuation leads to an appreciable correction
to I. The renormalized value of I' is not anomalously
small and this leads to a renormalized viscosity which is
not anomalously large. In other words, for this range of
parameters, momentum fluctuations are strong enough to
stir up the order parameter and eliminate its sluggish
behavior. As a consequence, the renormalized viscosity
remains of order the bare viscosity. We expect such a re-
gime to exist, even beyond the Kawasaki approximation.

B. koE>c

In this regime, the renormalization of the viscosity 7
wins out and the system remains sluggish. There is no ap-
preciable remormalization of T' and the macroscopic
viscosity is controlled by the freezing in of the microscop-
ic clusters. The full frequency-dependent viscosity has the
following behavior: At zero frequency, the viscosity in-
creases with a decrease in I'Z with the dependence

1
N~TF - (1.6)
For: frequencies much greater than ]."BXO“ 1 however, the
viscosity acquires the form

g~—1/iow . - (1.7)

This indicates that at these frequencies the system has a
reactive response and shear waves can propagate. The
coefficient of —1/i® can be identified as the infinite-
frequency shear modulus G,. We also find that the
zero-frequency viscosity 1 and the infinite-frequency
shear modulus satisfy the simple relation

g 1=aG,, . (1.8)

The constant & has a value of approximately 0.04. These
results have, of course, been obtained in the simple
Kawasaki approximation. As discussed in Appendix B,
retardation corrections may reduce the value of the viscos-
ity in this regime and lead to a dependence of 1 upon I'?
which is weaker than that implied by Eq. (1.6).

Assuming that the bulk modulus of the material is of
the same order of magnitude as its infinite-frequency
shear modulus, we find that the phase space for the renor-
malization of I'? by longitudinal momentum fluctuations
is very small. Thus there is a negligible correction in the
value of the constant ¢ when longitudinal fluctuations are
included. The longitudinal viscosity D; scales with the
shear viscosity in the high-viscosity regime:

Dj=3%q. (1.9)

From the experimentally determined structure factor of
amorphous cobalt shown in Fig. 1, we deduce a value of
ko&: of around 13.3, Most binary metallic glasses will
haveé a value of ky& which is 10—20 % smaller than this
value. It is noteworthy how close this value of ky& is to
the value of the constant ¢ in the Kawasaki approxima-
tion, :

Nowhere in the analysis is the interpretation of 3 as an
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icosahedral order parameter crucial. The scalar ¥ may
well be some other microscopic order parameter which is
being frozen in. Only the fact that fluctuations of i are
controlled by the free energy (1.4) is important in the sub-
sequent analysis.

The outline of the remainder of the paper is as follows:
In Sec. II we recapitulate the theory of the static structure
factor of metallic giasses of Ref. 5. In Sec. III we define a
model mode-coupling dynamics for the icosahedral order
parameter and the momentum density. A graphical per-
turbation analysis of the model dynamics is presented in
Sec. IV. The results of analyzing the self-consistent one-
loop equations in the Kawasaki approximation are dis-
cussed in Sec. V. In Sec. VI we examine the effect of
longitudinal momentum fluctuations which have been
neglected so far. In Sec. VII we restate the main con-
clusions of the analysis of this paper. Corrections to the
Kawasaki approximation are discussed briefly in the two
appendixes.

II. REVIEW OF STATICS

We begin with a summary of the calculation of the stat-
ic structure factor of Ref. 5. The density at a point r is
expanded in terms of the order parameter Qy, ,,(r) as fol-

lows:*

pd)= 3 Q% (D[Y] . (W]

mmy,my

2.1

Here, @ is a coordinate on a tangent four-dimensional
sphere which is associated with every point in the physical
space r. The physical density is the density at the south
pole of this tangent sphere. The Y7, ,m, are the hyper-

spherical harmonics defined on the surface of a four-
dimensional sphere and transform under the nth represen-
tation of SO(4). Using the value of the hyperspherical
harmonics at the south pole, we obtain for the physical
density

172
plr)= (—1)" [—'3—'*'—1 Qmm(T) . (2.2)

et 2m?

The free energy which controls fluctuations in the order
parameter Qp, . (r) was shown in Eq. (1.1). As argued in
Ref. 5, a quadratic truncation of the free-energy expan-
sion is adequate, facilitating the calculation of denmsity
correlations. We perform a Fourier transform in space
and then diagonalize the quadratic form in the SO(4) rep-
resentation basis. The eigenvalues of the quadratic form,
XMk), are all positive and we label them in ascending or-
der by index i If we label the ith eigenvector by
Tt m,;i(K), we may expand the order parameter Q" in

terms of the eigenvectors:
O m, (K)= 3, Try m,i(K)af(K) .
' 1

2.3)

The density-density correlations may now easily be calcu-
lated from the quadratic free energy (1.1) and the expan-
sion (2.3). We obtain, for the structure factor of the
liquid,
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S(k)y={|plk)|®)

-3 n+1 kpT
n,i 21 KoXMK)+ry

2

S T 2.4)

m

It is a good approximation to assume that for each repre-
sentation n the contribution to the structure factor is
dominated by the lowest eigenvalue X§(k). Therefore the
structure factor goes through a maximum for each repre-
sentation n, when X7(k) goes through a minimum as a
function of k. Moreover, fluctuations in the density
which do not have an icosahedral symmetry should be
strongly suppressed from energetic considerations outlined
earlier. This can be enforced by demanding that the
masses r, are very large for all representations n except
those that allow fluctuations with an icosahedral symme-
try, namely n =12,20,24,.... Thus we expect peaks in
the structure factor associated only with these representa-
tions. Comparing the results of the calculation with ex-
periments on vapor-deposited metal films, we find that
the positions of the peaks (which are independent of the
parameters K, and r,) are in good agreement, allowing
one to determine 715,720,724 and K5,K79,K54.

In the following analysis we shall make the approxima-
tion of including fluctuations only in the n=12 represen-
tation. We expect this to be a good approximation be-
cause the n=12 peak in the structure factor is much
larger than the n=20 and 24 peaks. Besides, the factor of
(n +1)/27? which occurs in Eq. (2.4) for the expansion of
the density also helps in making the order-parameter fluc-
tuations in Q" for n=12 larger. Therefore the relevant
order parameter is a}’(k) and may be identified with the
(k) discussed in the Introduction.

III. MODEL DYNAMICS

We will examine the relaxational dynamics of the order
parameter Q" in the presence of a convective coupling to
a fluctuating momentum density j. The equation of
motion for Q" has the form

g OF
S(Qn)*

L0 ——
S0 | gojVQ=~T

5 +£. (3.1)

This, in turn, implies that there exists a Poisson bracket
between Q" and j given by

(O my (D) (')} = — 800,00 m, (DB(r—1) . (3.2)

The relaxation of the momentum density can be written in
the form

I
?=avo‘yv ’

(3.3)
where o, is the stress tensor. Because of the Poisson-
bracket coupling (3.2), there is a contribution to the stress
tensor oy, from the order-parameter fluctuations:
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+a Qn in—ayvaaQ*aaQ

Ouy cr,w

+2ik(Q@*L0y8,Q —8,0*L0,Q —8,,Q " L0505Q +8,,0,Q * Lo Q) —°8,,Q* Loy L0, Q] - 34

For clarity we have suppressed the n, m, and m, indices from the expression above. ‘T.uv is the stress arising from
volume fluctuations and dissipation. It is nontrivial fact that the Poisson bracket (3.2) and the free energy (1.1) combine
to give an expression for the relaxation of j which can be expressed in the form (3.3). It assures us that the formulation
of the model dynamics is internally consistent even in the presence of frustration. These equations can be considerably
simplified if we perform a Fourier transformation and express the equations in terms of the variables ak), which are
the coefficients of the eigenvectors of the quadratic form

da; (k)
ot

+8o 1/77' EjT(q)-[—i(k—q)]Ti*(k)T,-(k—q)aj(k—q)=—TBX}(k)af(kHé' )
(3.5)

=g

o _
—L(‘Jl+n BiT(g)—go \/I_/ S X;(—k)a; (—k)[—z(k+q)]T*(k)T(k +9)®a;(k+q)=0

. ! -
Again, redundant indices on «f, X/, and T3 \mysi have b will be chosen to be 3, although the results are very in-

been suppressed, and a viscosity #® has been introduced.  Semsitive to the value of b.

The momentum fluctuations have been restricted to be _

purely transverse. This constraint will be removed later. IV. PERTURBATION ANALYSIS
We will be interested in momentum fluctuations which _

occur at small wave vectors, while the order-parameter

fluctuations will occur at the wave vectors near k.

Under these conditions, we use the orthonormality of the

We use the standard Martin-Siggia-Rose*? technique to
perform the calculation. The techniques are very similar
‘to calculations performed earlier on momentum relaxation
near the liquid-gas critical point!” and thermal conduc-

n
eigenvectors ™ to approximate tivity near the A transition®®?* in liquid helium. We will
> T;,';1 my; J'(k)Tmlm'z; ik +q)=8; . (3.6)  therefore just define the notation and present the results
my,m, of the graphical analysis. In this section and the next we

will assume that the momentum fluctuations. are purely
transverse. This is equivalent to assuming a large bulk
modulus. The effect of longitudinal fluctuations will be
considered in Sec. VL

We introduce the conjugate fields 1// and ], which en-
ables us to transform the equations into a Martin-Siggia-
Rose functional. If we index the hatted fields by 1 and
unhatted fields by 2, the matrix propagators for the 9

If we now concentrate only upon the ai*(k) mode, the
above equations reduce to the model equations (1.4) dis-
cussed in the Introduction. Focusing only on wave vec-
tors for order-parameter fluctuations which are near the
first peak in the structure factor, we can use the approxi-
mation (1.4) for the free energy. We will restrict the wave
vector k of the order parameter to lie in the range

ko—£ <k< k0+£ . — @) field, G, and the j field, D, are given by (we have set
§ £ kpT=1)
| .
—2D3(k)—%,4(k) io— Tk~ (k) — 3 4(k,0)
G~ ko) = I—ia;—l"B(k)X_l(k)-—-Eﬁ(k,m) 0 ’
—27%k2 M (k,0) —io—pPki—Mhkw) ]| @1
Diltkom= |,y nmk 11,(k0) o -

We have introduced the self-energies IT and X for the P Momentum autocorrelations are given by D,, and field
and j fields. The renormalized viscosity and relaxation  autocorrelations are given by G,,. The physical response

coefficients are related to these self-energies by functions are not equal to G, and D;, because of the
1 presence of the convective coupling. In the absence of any -
n(k,0)=nP+ FHu( ko) nonlinearities in the statics, a simple relationship exists

between the response functions R¢ and R; and the
=B+ ko) , Green s functions:

@.2) '
[(k,w)=T24+X (k)3 ,(k,0) rRll’(k’w):—[FB+-212(k’w)X(k)]G21(k7‘0) )

4.3)
=%+ T%%,0) . . Rj(k,0)=—[n"k*+11(k,@)]1Dy (k) .
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FIG. 2. One-loop graph contributing to the correction to the
viscosity. The internal lines are the exact Green’s functions.

The fluctuation-dissipation theorem now implies the fol-
lowing relationship between the self-energies:

Sulk,0)=2X(k)Re[Z)(k,0)] ,

4.4)
[In(k,w) =2 Re[Hn(k,co)] .

From the self-consistent one-loop equations for the wme
Green’s functions we may deduce relationships between
the renormalized viscosity and I'. The equations for the
viscosity follow from the graph in Fig. 2. The wavy lines FIG. 3. Two one-loop graphs contributing to the relaxation
represent the momentum j and the smooth lines represent coefficient of the order parameter. Again the internal lines are
fluctuations of the order parameter 3. We have exact Green’s functions.

7k, f ‘;f,’ (27 )_3 p- Ty PIX M ) =X Up )X (p_)Gyulp,,0—&)Re[Gy(p_,0)], (4.5)

where pi=pik/2. Two graphs shown in Fig. 3 contribute to the renormalized relaxation coefficient I'. Their sum
yields the following equation for ' k,w):

da
k,0)=2g3 [ ‘“f(z g

Equations (4.5) and (4 6) will form the basis of our further analysis.

(&-T, -EX(p, Dy (p_, 0—&)Re[Ga(p,D)] . 4.6)

V. RESULTS IN THE KAWASAKI APPROXIMATION

The Kawasaki approximation!® involves neglecting the frequency dependence of 1 and I" on the right-hand side of
Eqgs. (4.5) and (4.6). This will tend to overestimate the value of the zero-frequency viscosity. Thus, if we find that a mi-
croscopic slowing down does not yield an increasing macroscopic viscosity, then this result will hold for the full Eqgs.
{4.5) and (4.6). However, in the parameter regime where the viscosity increases it is possible that retardation effects may

- destroy this increase in viscosity.
Equations (4.5) and (4.6) yield, in the Kawasaki approximation for the zero-frequency viscosity # and T,

e dp % X~ 'p+k)—Xx~Yp)P?
(k)= 2 3 P kP -1 -1 -1 -1 ’
4k (27) [Cp+kX(p+K)+T(pX (p) X~ (p+kX " (p)
k. T p—k kX (p)
Qr )3 7p—k)-(p—k+T(pX~!(p)
In the limit that the order-parameter susceptibility is a Lorentzian with a small width, it is a good approximation to re~

place 1(k) by its value at k=0, and I'(k) by its value at k =k,. Then the equations above become a pair of simultane-
ous equations for n{k=0) and I'(k =k,). In the following we shall drop the wave vector arguments of  and T,

5.1)

I‘C(k)—ggf

3 'Tp_k 'kX(p)
(27)3 7(p—k)?

2 >
g6 . 1 p d’p PTep
c -1 1112 TC—

=—lim — — X7 (p+k)—X"(p) I'*= (5.2)
1 8 ka0 k2 f (217)3 FX_3(p)[ P+ P ] ’ gOf
Using the expression for the susceptibility in (1.4), restricting the wave vector integrals to lie in the range in (3.7), and
reinserting the missing factors of density and temperature, these equations may be reduced to a simple one-dimensional
quadrature,
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P
c
7’ = B C H
r°+r
i (5.3)
MC=—=—
7 +7°
where the variables P and Q are given by
kaTXokd 12 b x2(14x/D)*
P=—"pr—7= 5 dx, (5.42)
m€py 30 I (1+x2)
kzTXok3 1 oo 2 2 ]
_ks Xo o_l_f dx(1+x/zl) (I4x/0+1 |27 +x | 2!, (5.4b)
wépy 8 70 1+x 1+x/1 |x |

with [ =ko€. Equations (5.3) can be solved and we ob-

tain, for the correction to the viscosity,

c. P—Q TP+ (5% +Q —Py+4PTPyP1 2
B 2r2 :

n

(5.5)
In the limit as I'Z tends to 0, this equation yields
P _BQ forP>Q,
c_ T
n= 5 (5.6)
P
o_p" for Q >

The condition of the relative magnitude of P and Q
reduces to a comparison of the two integrals in Egs. (5.4a)
and (5.4b) as a function of I =ko€. We find that P>Q
for ko€ > 11.25 and P < Q otherwise.
The main result of the analysis above is that if k& is
|

less. than 11.25, then the renormalized viscosity will
remain of the order of the bare viscosity and not increase
dramatically even in the presence of a microscopic slow-

— ing down. The existence of such a regime transcends the

Kawasaki approximation and should hold for the fully-
self-consistent equations (4.5) and (4.6). The value of the
upper bound 11.25 should increase slightly with a more
complete analysis. If ko& is greater than this upper
bound, then the viscosity diverges like 1/T'? as I'® be-
comes small. The temperature dependence of the viscosi-
ty is then intimately related to the unknown temperature
dependence to I'B. It is possible that retardation correc-
tigns could bring about a weaker dependence of % upon
e

Another useful result can be obtained from Egs. (4.5)
and (4.6) that is more general than the Kawasaki approxi-
mation. We look at the frequency-dependent viscosity in
the regime w>>I'X5!. Then Eq. (4.5) simplifies and we
obtain

2 S -1 =1 2
18, .1 rd¥p o X @)-X"(p)]
C, k=0)=——=2" lim — T, . (5.7)
U =0=—7 " lim s S S R S TP ST :
f
Performing the angular integral and reverting to experi- (25 Yip=aG, , (5.10a)
mental units, we obtain v
- with
-1 ,
7%= x°_ R, (5.8a) a=(P—Q)/R . (5.10b)
—iw
her. The numerical factor a can be evaluated. In the large-
whete viscosity regime {for / ~13)
kgTXokd 12 b 14x /D42 '
=:lTp°k°{—5 I % (5.80) a=(P—Q)/R ~0.04. 5.11)
0

This implies that the substance has a finite shear modulus
at frequencies which are much greater than the order-
parameter relaxation rate. The infinite-frequency shear
modulus G, is given by

G, =X;'R . (5.9)

In the regime where the viscosity is diverging, this implies
a simple relationship between 5, 7, and G :

VI. EFFECT OF LONGITUDINAL FLUCTUATIONS

We now check to see if the longitudinal fluctuations are
effective in appreciably changing the results discussed
above. We shall find, essentially from phase-space con-
siderations, that the longitudinal fluctuations are quite
ineffective in renormalizing the value of I'? and, hence,
affecting the results discussed. '

The equations of motion in the presence of longitudinal
momentum fluctuations are as follows:
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T
3 _ e _ 18)-8————-goV¢ ( +12>+§, o=

NV T+goV¢'8 +61 ],

ot 8y

vs 6.1)
ajt_+ 8F 80V8p B _ oL
Y L- |D, V% +g0v¢ 50 B —+6, |, 3t goV-j

8p represents the long-wavelength density fluctuations, B is the bulk modulus, D is the longitudinal viscosity, and Lisa
longitudinal projection operator. The perturbation analysis for this equation proceeds in much the same way as dis-
cussed in the preceding sections. Here we shall be primarily interested in the high-viscosity regime, and we wish to in-
vestlgate whether there are appreciable corrections to the order-parameter relaxation rate.

As a first step we evaluate the corrections to the longitudinal viscosity from the order-parameter fluctuations. The
one-loop corrections to D; are found to be

p_Lilp X~'p ) —p, X (p_)]

PkI=; f (277)3 T X o+ T K] 2
After evaluating this integral as kX —0, we find

Df=37°. (6.3)
After a similar calculation in the high-frequency limit, we can find the corrections to the bulk modulus:

Dflw— oo )= _ll.w ;:%2 (‘21;‘;3 £. Lk o i‘f:;i;pﬂ_l(p’)] s (6.4)
which yields

B,—B=3G, . , (6.5)

We can now proceed to the calculation of corrections to I" from longitudinal momentum fluctuations. The sum of the
graphs of Fig. 3, where the momentum fluctuations are now longitudinal, is given by
3 —
k) =2¢3 [ 42498 __ l__ e
(27) 2 —zm+F(p+)X (P+)

ilwo—d)

X Re
(@0—&)+ilw—&)Dyp_)p% —Bp2

8(p.-L, KX(p,). (6.6)

The velocity of sound in this liquid is V'B. I we now assume that sound can travel across a correlation length in a time
shorter than the order-parameter relaxation time [this amounts to ignoring the (w—&)? in the denominator], and make
the Kawasaki approximation, we find, for T,

T
k) =g} [ 22 B p-k'P o) __ : (6.7)
(27w)* (p—k)* Dyp—k)\I'(p) X~ 'p)+B
Evaluating "¢ for k =k, we find
po_ ks TXokd 1 1 I Uax/D? | Qax/0*—1, |21 4 65
wp, Di4Y-b " 14x24P 214x/1) [x ] | .

!

bution is 2.5% of the transverse contribution. Thus we do
not expect a significant change in the value kyf at which
the system crosses over from small to large viscosities.

We have introduced a parameter 8 which is given by

B B B 1
= = = —. 6.9)
A DX 2G_a B.—-Ba (

. . VII. CONCLUSION
From the expression above we can compare the relative

magnitudes of the corrections to I'C from longitudinal
and transverse fluctuations. It is clear that for 8>>1 the
contributions from the transverse part will be quite small.
Also, even if we assume that B is as small as G, 8 will
be quite large and suppress the longitudinal fluctuations.
For I=13 and B=20, we find that the longitudinal contri-

We have described a simple model of dynamic relaxa-
tion in metallic glasses. Microscopic slowing down is
described by a parameter I'®(k) which is assumed to be-
come anomalously small just above T, for k~k,. The
macroscopic consequences of this short-distance sluggish-
ness were then explored. It was found that if the correla-

o



tion length £ was smaller than some upper bound, the mi-
croscopic slowing down was ineffective in slowing down
momentum fluctuations. Instead, the momentum fluctua-
tions destroy the microscopic freezing in, and lead to
large-distance behavior which is liquidlike. In the
Kawasaki approximation the upper bound on the correla-
tion length was given by kof <11.25. Remarkably, the
correlation length of a typical metallic glass is just above
this bound.

In the large-correlation-length regime, the decrease in
I'® led to an increase in the zero-freezing viscosity n of
the form n~1/ I'B. Retardation corrections, which were
ignored, may lead to a weaker dependence of 7 upon s
At frequencies much greater than I'2x5!, the system ac-
quired a finite shear modulus G,. Thus if the time
XoI'Z ! becomes larger than the experimental time, the
system will behave like a glass with a reactive shear
response. The shear modulus G, the viscosity 7, and
the relaxation time Xo(I'?)~! are related by

(7.1)

n=aG  Xo(I'®)~,
with ¢ ~0.04.

ACKNOWLEDGMENTS

I would like to thank B. Halperin, D. Nelson, and D.
Fisher for many useful discussions which provided the
stimulus for this work. I also benefited from conversa-
tions with S. Brawer, P. Hohenberg, T. Kirkpatrick, S.
Milner, S. Ramaswamy, and J. Toner. The hospitality of
the Aspen Center for Physics, Colorado, where a substan-
tial portion of this work was performed, is gratefully ac-
knowledged. This research was begun at Harvard Univer-
sity where it was supported in part by the National Sci-
ence Foundation, through the Harvard University Materi-
als Research Laboratory and through Grant No. DMR-
82-07431.

APPENDIX A: EFFECT OF VERTEX CORRECTIONS

In this appendix we shall examine the effects of includ-
ing some of the graphs that have so far been omitted. A
typical example of such a graph is shown in Fig. 4. We
shall, in particular, be interested in whether any of the
graphs have a dependence on I'2 which is stronger than
1/, The result that 7 ~1/I'2 depends crucially on their
being no such terms. We shall find indeed that there are
no such terms.

To begin the analysis, let us perform a simplified esti-
mate of the value of the graph in Fig. 4. We shall neglect
the effect of the wave-vector fluctuations and assume that
on the average each momentum line carries a wave vector
of 1/& and each order-parameter line carries a wave vector
of ky. Then in the time domain each order parameter
behaves like exp[ — kg )Xy '#] and the momentum lines
behave like exp(—mt/E%). For brevity of notation, we
shall denote these time dependences as exp(—I'?) and
exp(—mt), respectively. The contribution of Fig. 4 to the
zero-frequency viscosity behaves like
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FIG. 4. Typical higher-order graph which has been neglect-
ed. The underlined symbols at the vertices denote the time at
each vertex. _

‘ x x t ~Tt, —TFle—
‘87]C~ fo dt fO dtz fodtle 2e e t2|

Xe"77|'1"z|e—1"t

~ +0(1/5T) . (A1)

2T %y

The largest contribution to this integral comes from the
time interval in which the two vertices which are connect-
ed by the momentum propagator are consecutive in time.
This fact will be true for any graph.

The contribution of a general graph can be written as a
sum of terms in which the vertices have various time or-
derings. As in the graph already considered, the largest
contribution arises when the vertices at the ends of a
momentum line define a time interval with no other ver-
tex time. Pick any such graph. Each interval with a
momentum fluctuation will contribute a factor 1/ and
the remaining intervals will give factor 1/I". Since there
is at least one more order-parameter interval than a
momentum interval, the contribution of a graph with I
vertices will have to be less divergent than 1/T"*5"
with I=2n42. From this we see that the ansatz
1n~1/T is self-consistent since no terms with a strong
dependence on I' can be obtained. In a similar manner we
may show that I'C consists of a sum of terms none of
which is more divergent than 1/T "7 " +1,

APPENDIX B: EFFECT OF RETARDATION
CORRECTIONS

In this appendix we will make a very simple estimate of
the first correction due to dynamic effects. Because of the
complexity of the integral equations (4.5) and (4.6), we
will be forced to decouple the » and k-space integrals:
the wave-vector integrals will just give phase-space factors
and the momentum and order-parameter fluctuations will
be governed by a single frequency. As discussed by Sig-
gia,?® this procedure is hazardous because it will repro-
duce features characteristic of single particles. The results
in this appendix are therefore only a first estimate. How-
ever, the conclusion that dynamic corrections will redice
the viscosity is expected 10 be true on more general
grounds.

Performing the frequency integrals in Egs. (4.5) an
(4.6), we find '
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| f kT, kX(p,)Z -
Lk,0)= e 2 Bl
—&o (211')3 —io+n(p_,0—0*)pl +T(p, 0" )X (p,)
and
T -plX~Up ) =X~ p_)X(p_)Z
1) =2 1 f L P-Te-pl p+_1 p_X(p_ Z (B2)
2k 27)P —io4Tp_,0—0* X p_)+T@ 0" p) '
I
with A with
*__ s *yp—1 .
(0] ———IF(p.,.,&) )X (P+) s (B3) x=1— . o " — - (B7)
and Z given by [T{o™)+TN'e—o¥)]X;
aC(p . o) The wave-vector arguments of I" and 7 are presumed to
Zl=14+ix"Yp,) el Ldl (B4) be ko and O, respectively, and have been suppressed.
9w o=o* From Eq. (B6) the percentage change in 7€ in the hlgh-

Ignoring the wave-vector dependence of w*, and using
the approximations ko€ >>1 and /&*>>0*, Ty}, we find

2 2
86Xoks  In(2kof)—1
I'Yow)= Z (BS
(o) - o) (BS)
and
2 2 2
C 86Xoks 2 Z 1—vx
= k b
M) 30mE (koé) Na" )+ Mo—a) [ —x

(B6)

viscosity regime is dependent on the fractional change in
INo*)+T(—0*). I'e*) depends on {w=0), so to this
order is unchanged. I'(—o*) depends on 7%(—2w*). Us-

ing 0*=—iT(w=0)X5"!, we see—to lowest order from
Egs. (B6) and (B7)—that
19=20*) [U-VE)/U-xP|eas (BS)
C 2 =0 .
7(0) [(1—=VX)/(1=3)]?| x =1

So there is a 20% decrease in ['(—w»*) and no change
in Nw*). Since n(w=0) depends on INw*)+T{(—w*),
the dynamic corrections amount to a 10% decrease in the
viscosity.
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