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Abstract

We present details of earlier studies (Zheng et al, Phys. Rev. Lett. 78, 310

(1997) and Das Sarma et al, ibid 79, 917 (1997)) and additional new results

on double-layer quantum Hall systems at a total filling ν = 2ν1, where a single

layer at filling ν1 forms a ferromagnetic, fully spin-polarized, gapped incom-

pressible quantum Hall state. For the case ν1 = 1, a detailed Hartree-Fock

analysis is carried out on a realistic, microscopic Hamiltonian. Apart from the

state continuously connected to the ground state of two well separated layers,

we find two double-layer quantum Hall phases: one with a finite interlayer

antiferromagnetic spin ordering in the plane orthogonal to the applied field

(the ‘canted’ state), and the other a spin singlet. The quantum transitions

between the various quantum Hall states are continuous, and are signaled by

the softening of collective intersubband spin density excitations. For the case

of general ν1, closely related results are obtained by a semi-phenomenological

continuum quantum field theory description of the low-lying spin excitations

using a non-linear sigma model. Because of its broken symmetry, the canted

phase supports a linearly dispersing Goldstone mode and has a finite temper-

ature Kosterlitz-Thouless transition. We present results on the form of the

phase diagram, the magnitude of the canted order parameter, the collective
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excitation dispersions, the specific heat, the form of the dynamic light scat-

tering spectrum at finite temperature, and the Kosterlitz-Thouless critical

temperature. Our findings are consistent with recent experimental results.
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I. INTRODUCTION

Interaction in a low-dimensional system does not merely result in strong renormalization

of physical quantities, but can in many cases drive the system into completely new phases

with peculiar properties. For a two-dimensional (2D) electron gas in a perpendicular mag-

netic field, the interaction effects are especially important because of Landau level quantiza-

tion. When electrons are entirely restricted to the lowest Landau level by a large magnetic

field, electron-electron interaction completely dominates the properties of the system as the

electron kinetic energy is quenched to an unimportant constant. One of the most interesting

phenomena in this strongly-correlated system is the quantum Hall (QH) effect, which has

attracted a great deal of experimental and theoretical interest during the last fifteen years1.

Recent advances in materials growth techniques have made it possible to fabricate high-

quality double-layer two-dimensional electron systems with the electrons confined to two

parallel planes separated by a distance comparable to that between electrons within a plane.

With the introduction of this layer degree of freedom, many qualitatively new effects due

entirely to interlayer correlations appear2–9. Many new QH phases in double-layer systems

become real possibilities because of the increased degree of freedom and the complicated

interplay among interlayer tunneling energy, Zeeman energy, and electron-electron Coulomb

interaction energy.

In this paper, we present the details of our earlier theoretical investigations7,9 of the

possible QH phases in a double-layer system at a total Landau level filling factor ν = 2ν1,

where ν1 is a filling factor at which an isolated single layer system forms a fully spin polarized

incompressible QH state (e.g. ν1 = 1, 1/3, etc.) We will discuss three distinct ground states,

and the nature of the zero or finite temperature transitions/crossovers between them:

• A fully polarized ferromagnetic (FPF) QH state in which the spins in each layer are

aligned parallel to the magnetic field. This state is adiabatically connected to the

ground state of well separated layers, each forming a polarized QH state at filling

fraction ν1. We will denote this FPF state also as the FM (for “ferromagnetic”) state.

3



• A spin singlet (SS) state, which can be visualized crudely as consisting of singlet pairs

of electrons in opposite layers. Alternatively, at ν1 = 1, we will discuss the Hartree-

Fock picture of spin up and spin down electrons fully occupying single-particle states

which are symmetric in the layer “pseudospin” index; hence the singlet state will also

be referred to as SYM. In the limit of a vanishing tunneling matrix element between

the layers, this state is simply the pseudospin polarized state of Refs 3,4 for both

spin up and spin down electrons separately. Throughout, we will consider the case

of a non-vanishing tunneling matrix element: in this case the pseudospin polarization

is chosen by the phase of the tunneling amplitude, and not spontaneously. None of

the phase transitions we consider here require a vanishing tunneling matrix element;

on the contrary, changes in the value of the tunneling matrix element can drive the

quantum transitions.

• A canted state (C) in which the average spin moments in the layers have an an-

tiferromagnetic correlation in the plane perpendicular to the magnetic field, and a

ferromagnetic correlation parallel to the magnetic field. Both ferromagnetic and anti-

ferromagnetic moments can vary continuously at zero temperature as parameters are

varied. The planar antiferromagnetic ordering breaks spin rotation symmetry about

the magnetic field axis: as a consequence there is a gapless, linearly dispersing, Gold-

stone collective mode in its excitation spectrum and a Kosterlitz-Thouless transition

at a finite temperature. The C phase is the canted antiferromagnetic phase (CAF)

discussed in our earlier short publications7,9.

We will use two distinct and complementary approaches to understand these phases.

The first is a mean-field Hartree-Fock calculation: this applies only for integer values of ν1,

but has the advantage of working with a precise microscopic Hamiltonian involving only

parameters which are directly known experimentally. The second is a phenomenological,

quantum field-theoretic formulation which applies for general ν1, and allows us to more

precisely understand the consequences of thermal and quantum fluctuations. We will now

4



discuss some of the results of these two approaches in turn.

In the Hartree-Fock approximation10, we are able to show that the canted antiferromag-

netic (C) phase is the energetically favored ground state for ν = 2 at intermediate layer sep-

arations for systems with small Zeeman energy, and that the phase transitions from the C to

the FM or SYM phases are continuous. We evaluate at ν = 2 the intersubband spin density

wave (SDW) dispersions of all phases in the time-dependent Hartree-Fock approximation11

and show that, as the precursor of the phase transitions, the collective intersubband SDW

mode softens at the phase boundaries of the FM and SYM phases to the C phase. The

SDW becomes the linearly dispersing Goldstone mode in the C phase, and the temperature

of the Kosterlitz-Thouless transition is obtained by evaluating its effective spin-stiffness in

the Hartree-Fock approximation. In addition we present results on the stability energetics of

the various phases, the antiferromagnetic order parameter, the phase diagram, the collective

intersubband SDW excitation dispersions, and the specific heat.

The ν = 2 Hartree-Fock results may also be qualitatively applicable to the case of ν = 6 if

the Landau level mixing is ignored (the Landau level mixing may not be negligible at ν = 6,

though.) On the other hand, the situation at ν = 4 is very different from the situation

at ν = 2, since the inter-Landau level excitation energies are comparable to the cyclotron

energy; our results do not apply at ν = 4.

The microscopic Hartree-Fock analysis obviously does not apply to a situation where the

average filling factor ν1 in each layer is fractional (e.g. ν1 = 1/3) with each isolated layer

supporting a spin polarized Laughlin fractional QHE state; such a many-body state will not

appear in any mean-field decoupling of the Hamiltonian. However, an essential property

of the phases we are discussing is that they all have a gap towards charged excitations,

and the transitions between them are driven by changes in the nature of the mean spin

polarizations, and of the spin excitations. This suggests that it may be possible to develop

a more general effective theory which focuses on the spin excitations alone. We will present

such a theory in Section III: it turns out to be the O(3) quantum non-linear sigma model in

the presence of a magnetic field. For the case ν = 2, we are able to use our earlier Hartree-
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Fock computations to precisely obtain all the renormalized parameters which universally

determine the low temperature properties of the non-linear sigma model; for other values

of ν1, including the fractional cases, these parameters remain as phenomenological inputs.

We will present the phase diagram of the sigma model, and describe the nature of the finite

temperature crossovers above the various phases in some details. In particular, we will

obtain explicit predictions for the temperature dependence of the line shape of the inelastic

light scattering spectrum.

We note that our findings from the two approaches are consistent with recent inelastic

light scattering measurement8, where a remarkable (and temperature dependent) softening

of the long wavelength intersubband SDW mode in a ν = 2 double-layer system is observed.

We hope that our other explicit theoretical results may be tested in future experiments. The

experimental situation will be discussed in Section IV.

This paper is organized as follows. The results of the Hartree-Fock theory are presented

in Section II. In Section II A, we study the ground state properties of the ν = 2 double-layer

system in a self-consistent mean-field approximation. The intersubband SDW excitations in

the time-dependent Hartree-Fock approximation and associated mode softening are studied

in Section II B. The thermodynamic properties are discussed in Section II C, and some

further discussion, along with an assessment of the validity of the calculation, appear in

Sections II D and II E. In a long and self-contained Section III we give our non-linear σ

model effective field theoretic description for a generic ν = 2ν1 situation. Comparison of our

theory with recent light scattering experiments is discussed in section IV. A short summary

in section V concludes this paper. We note that the readers who are interested only in

microscopic Hartree-Fock theory could skip Section III, and the readers who are interested

only in our long wavelength effective field theory could skip Section II. We have taken care

in writing the two parts of our work, namely the microscopic Hartree-Fock calculation for

ν = 2 (Section II) and the non-linear σ model description for ν = 2ν1 (Section III) as two

separate self-contained pieces which can be read reasonably independent of each other if so

desired.
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II. HARTREE-FOCK THEORY

We begin by writing down the explicit microscopic Hamiltonian of a double layer quan-

tum Hall system.

Within the lowest Landau level, the single particle eigenstates may be denoted by |αµσ〉,

where α is the intra-Landau-level index in the lowest Landau level, µ = 0, 1 is the pseudospin

index which labels the symmetric and antisymmetric subbands, and the spin index σ = ±1

labels ↑ and ↓ spins.16 The Hamiltonian of the double-layer system is

H = H0 +HI, (2.1)

where the non-interacting Hamiltonian is

H0 = −∆sas

∑
αµσ

(1/2− µ)C†αµσCαµσ −∆z

∑
αµσ

σ

2
C†αµσCαµσ, (2.2)

where the pseudospin splitting ∆sas is the tunneling-induced symmetric-antisymmetric en-

ergy separation, the spin splitting ∆z is the Zeeman energy, and C† (C) is electron creation

(annihilation) operator. The Coulomb interaction Hamiltonian HI is

HI =
1

2

∑
σ1σ2

∑
µ1µ2µ3µ4

∑
α1α2

1

Ω

∑
q

Vµ1µ2µ3µ4(q)e
−q2l2o/2eiqx(α1−α2)l2o

×C†α1+qyµ1σ1
C†α2µ2σ2

Cα2+qyµ3σ2Cα1µ4σ1 , (2.3)

where Ω is the area of the system, lo = (h̄c/eB)1/2 is the magnetic length. The non-zero

Coulomb potential matrix elements are V0000 = V0110 = V1001 = V1111 = V+ and V1010 =

V0101 = V1100 = V0011 = V−, with V±(q) = 1
2
[va(q)± vb(q)], where va(q) = 2πe2

εq
and vb(q) =

va(q)e−qd are the intralayer and interlayer Coulomb interaction potentials, respectively. (The

finite well-thickness corrections can be taken into consideration by including appropriate

form factors10.)

The following subsections will examine various properties of H at ν = 2 by mean-field

and RPA-like treatments of the interactions in HI.
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A. Ground states

In this subsection, we investigate the ground state properties of H, and obtain the three

phases discussed in the Introduction. Performing Hartree-Fock pairing of (2.3), one obtains

the mean-field interaction Hamiltonian as

HHF
I = −

∑
σ1σ2

∑
µ1µ2

Xµ1µ2σ1σ2C
†
µ1σ1

Cµ2σ2 , (2.4)

where Xµ1µ2σ1σ2 = 1
2πl2o

∑
µ3µ4

∑
q Vµ3µ1µ4µ2(q)e−q

2l2o/2 < C†µ3σ2
Cµ4σ1 >, which depends on

the electronic state being sought through the expectation value < C†µ3σ2
Cµ4σ1 >. We self-

consistently search for the symmetry broken states where, in addition to < C†µσCµσ >6= 0,

the possibility that < C†µ↑C1−µ↓ >6= 0 is also allowed. Because of the complete Landau

level degeneracy, the Hartree-Fock Hamiltonian HHF = H0 + HHF
I in a uniform state is a

4× 4 matrix, representing the dimension of the subspace associated with the spin and layer

degrees of freedom. It thus has four eigenenergies εi± and four eigenstates φi± (i = 1, 2),

which are obtained as shown below. In the non-interacting base (|0 ↑〉, |1 ↓〉, |0 ↓〉, |1 ↑〉),

HHF becomes

HHF =



E1 ∆1 0 0

∆1 E2 0 0

0 0 E3 ∆2

0 0 ∆2 E4


, (2.5)

where

E1 = −∆sas + ∆z

2
− U+(n1+ sin2 θ1

2
+ n1− cos2 θ1

2
)

−U−(n2+ cos2 θ2

2
+ n2− sin2 θ2

2
),

E2 =
∆sas + ∆z

2
− U+(n1+ cos2 θ1

2
+ n1− sin2 θ1

2
)

−U−(n2+ sin2 θ2

2
+ n2− cos2 θ2

2
),

E3 =
∆z −∆sas

2
− U+(n2+ sin2 θ2

2
+ n2− cos2 θ2

2
)
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−U−(n1+ cos2 θ1

2
+ n1− sin2 θ1

2
),

E4 =
∆sas −∆z

2
− U+(n2+ cos2 θ2

2
+ n2− sin2 θ2

2
)

−U−(n1+ sin2 θ1

2
+ n1− cos2 θ1

2
),

∆1 = U+
n1− − n1+

2
sin θ1 + U−

n2− − n2+

2
sin θ2,

∆2 = U+
n2− − n2+

2
sin θ2 + U−

n1− − n1+

2
sin θ1. (2.6)

where θ1 and θ2 are associated with the Hartree-Fock eigenstates φi± which need to

be obtained self-consistently, ni± are electron occupation numbers 〈φ†i±φi±〉, and U± =

1
Ω

∑
p e
−p2l2o/2V±(p). The off-diagonal matrix elements ∆i represent the possibility of the

broken symmetry (〈C†µ↑C1−µ↓〉 6= 0) mentioned above. By diagonalizing the Hartree-Fock

Hamiltonian HHF of Eq. (2.5), one obtains the eigenstates

(φ1+, φ1−, φ2+, φ2−) =



sin(θ1/2) cos(θ1/2) 0 0

cos(θ1/2) − sin(θ1/2) 0 0

0 0 sin(θ2/2) cos(θ2/2)

0 0 cos(θ2/2) − sin(θ2/2)


, (2.7)

and the eigenenergies

ε1± =
E1 + E2

2
±
√

(E1 − E2)2

4
+ ∆2

1,

ε2± =
E3 + E4

2
±
√

(E3 − E4)2

4
+ ∆2

2. (2.8)

Eqns. (2.5) to (2.8) form the complete self-consistent Hartree-Fock equations which need

to be solved numerically. In fact, the only quantities to be determined in this self-consistent

manner are the two parameters θ1 and θ2, which, in turn, uniquely define the eigenstates

through Eq. (2.7). The eigenenergies always satisfy εi− < εj+ (i, j = 1, 2), so the ground

state at ν = 2 is given by |〉 = Πiφ
†
i−|v〉, where |v〉 is the vacuum state. The ground state

energy is given by E = 〈H0 + 1
2
HHF

I 〉.

There are several sets of θ1 and θ2 which make Eq. (2.7) the self-consistent solutions

to the mean-field Hartree-Fock equations. One is θ1 = 0 and θ2 = 0, which corresponds
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to the symmetric (SYM) state. Another is θ1 = 0 and θ2 = π, which corresponds to the

spin polarized ferromagnetic (FM) state. These two are the spin-ferromagnets (FM) or layer

pseudospin-‘ferromagnets’3,4 (SYM) whose existence is naturally expected in the presence

of finite Zeeman and tunneling energies. More interesting is that, for ∆sas > ∆z, there

exists a solution at intermediate interlayer separations with 0 < θi < π. As we shall see

shortly, this new state possesses a canted antiferromagnetic ordering (the C phase), i.e. an

interlayer inplane antiferromagnetic spin ordering with the inplane spin magnetic moment

in each layer being equal in magnitude and opposite of each other. The energies of these

different states are shown in Fig.1. It is clear from this figure that the energetically favored

ground state is the SYM state at small interlayer separations, the C state at intermediate

separations, and the FM state at large interlayer separations. The ν = 2 double-layer QH

system thus undergoes two quantum phase transitions as the layer separation is increased

from d = 0 to d→∞ at a fixed magnetic field.

To show the antiferromagnetic spin correlations, we rearrange the eigenstates as

φi± = (1/
√

2 )
(
|L〉SL

i± + |R〉SR
i±

)
, (2.9)

where S
L(R)
i± , electron spin configurations in the left (right) layer in the eigenstate φi±,

are SL
i− = cos(θi/2)| ↑〉 − sin(θi/2)| ↓〉, SR

i− = cos(θi/2)| ↑〉 + sin(θi/2)| ↓〉, and satisfy

(SL
i+)†SL

i− = (SR
i+)†SR

i− = 0. We immediately obtain the canted antiferromagnetic spin order

as

〈SR
x 〉 = −〈SL

x 〉 =
1

4
(sin θ1 + sin θ2), (2.10)

where SL(R) is the electron spin operator in the left (right) layer, and x denotes the spin

alignment direction within the two dimensional plane. This canted interlayer antiferromag-

netic spin ordering is shown schematically in Fig. 2. Note that the total spin magnetic

moment still points in the direction of the magnetic field as required by symmetry. It is

obvious that this antiferromagnetic order breaks the U(1) symmetry associated with the

spin-rotational invariance of the system. Its consequences on the low temperature thermo-

dynamic properties will be discussed later. The numerical result of this order parameter
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|〈SL
x 〉 − 〈SR

x 〉| is shown in Fig.3. One can see that when Zeeman energy ∆z is increased,

the range of the layer separations where the canted antiferromagnetic state exists shrinks in

favor of the ferromagnetic state, as the Zeeman energy obviously favors the spin polarized

state. It is clear that the phase transition is continuous.

The phase diagram, shown in Fig. 4, can be constructed from this mean-field approx-

imation. The states |0 ↑〉 and |1 ↑〉 are occupied in the FM phase, |0 ↑〉 and |0 ↓〉 are

occupied in the SYM phase, and the C phase interpolates between them. The SYM phase

exists for ∆sas > ∆z and d < dc1, the C phase exists for ∆sas > ∆z and dc1 < d < dc2, and

the FM phase exists for either ∆z > ∆sas or d > dc2. The FM phase is favored when ∆z is

increased, while the SYM phase is favored when ∆sas is increased. In the next subsection,

the same phase diagram will be obtained by studying the softening of the intersubband SDW

excitations in the time dependent Hartree-Fock approximation.

In this subsection we have studied the ground state properties of ν = 2 double-layer

QH systems in a mean-field Hartree-Fock approximation and showed the existence of three

stable QH phases. The most interesting observation is the existence of a canted antiferro-

magnetic phase, with a broken spin rotation symmetry, in between the symmetric and the

ferromagnetic phases.

B. Intersubband SDW excitations and mode softening

In this section, we study collective intersubband SDW spectrum of ν = 2 double-layer

QH systems in the time-dependent Hartree-Fock approximation.11 These excitations involve

flipping both spin and pseudospin of the electron and are the lowest energy excitations at

ν = 2. The phase instability is studied by investigating the softening of the collective inter-

subband SDW excitations. The results obtained in this section are in complete quantitative

agreement with the results obtained from the ground state studies in the previous section,

as, of course, they should be if the calculations are done correctly.

In the absence of interaction, the two branches of the intersubband SDW excitations

11



which correspond to transitions |0 ↑〉 ↔ |1 ↓〉 and |0 ↓〉 ↔ |1 ↑〉 have excitation energies

|∆sas ±∆z|, where ∆sas and ∆z are interlayer tunneling and Zeeman energies, respectively.

Interaction renormalizes the excitation energies in two ways. One is a self-energy correction

to the polarizability due to the loss of exchange energy when an electron is excited to a higher

but empty level, which raises the excitation energies. The other is the vertex correction to

the polarizability due to an excitonic attraction between the electron excited to the higher

level and the hole it leaves behind, which lowers the excitation energies. In diagrammatic

perturbation theories, the effect of the exchange energy on the excitation energies is ac-

counted for by including the corresponding self-energy in electron Greens functions, and the

effect of the excitonic attraction is represented by vertex corrections. The self-energy and

the vertex correction must be consistent with each other obeying the Ward identity. The

direct Hartree term does not influence the SDW excitations because Coulomb interaction

is spin-rotationally invariant. Since the Coulomb interaction potentials are subband-index

dependent, they may introduce mode-coupling between the two branches of the intersub-

band SDW excitations. This mode-coupling pushes down the frequency of the low-lying

excitation and hence helps mode softening.

The intersubband SDW excitation spectra are obtained as the poles of the retarded

intersubband spin-density response function

χret(q, ω) = −i
∫ ∞

0
eiωt〈[ρSD(q, t), ρ†SD(−q, 0)]〉, (2.11)

where the intersubband SDW operator is defined as

ρSD(r) =
2∑
i=1

φ†i−(r)φi+(r). (2.12)

ρSD(r) recovers to familiar forms ρSD(r) =
∑
µ C

†
µ↑(r)C1−µ↓(r) in the spin polarized state

(θ1 = 0 and θ2 = π), and ρSD(r) =
∑
σ C

†
0σ(r)C1−σ(r) in the symmetric state (θ1 = θ2 = 0).

χret(q, ω) is evaluated in the time-dependent Hartree-Fock approximation,11 which we

adapt to double-layer systems and, for simplicity, we ignore all the higher Landau levels. As

argued earlier, this should be a good approximation for our problem. In this approximation,
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one includes the single-loop self-energy and the ladder vertex diagrams in the theory, which

satisfies the Ward identities. This time-dependent Hartree-Fock approximation, therefore,

corresponds to solving the vertex equation shown in Fig.5, where the electron propagators

are the self-consistent Hartree-Fock Green’s functions obtained from the mean-field approx-

imation discussed in the previous section. Due to the fact that the Coulomb interaction is

frequency independent and that the Landau levels are completely degenerate, the integral

vertex equation can be transformed into an algebraic matrix equation.11 The matrices can

be further block diagonalized into 4× 4 matrices, from which the poles of the spin-density

response function can be (almost) analytically calculated.

Combining Eqns. (2.11) and (2.12), one obtains the spin density response function in

the Matsubara frequencies17

χ(q, iω) = e−q
2l2o/2

∑
iα

e−iqxαl
2
oDi+(iω)Γi+(q, iω, α), (2.13)

where

Diλ =
1

β

∑
n

Giλ(ipn + iω)Gi−λ(ipn)

=
ni−λ − niλ

iω + εi−λ − εiλ
=

1

λiω + εi− − εi+
for T = 0, (2.14)

where β = 1/kBT , Giλ is the Green’s function corresponding to the self-consistent Hartree-

Fock eigenstate φiλ and eigenenergy εiλ given in Eqns. (2.7) and (2.8), respectively. The

ladder diagram vertex function is

Γiλ(q, iω, α)= eiqxαl
2
o − 1

Ω

∑
pxi′α′λ′

e−[p2
x+(α−α′)2]l2o/2eipxqy l

2
o (2.15)

×Di′λ′Γi′λ′(q, iω, α
′)〈iλ; i′ − λ′|V (px, α − α′)|i− λ; i′λ′〉,

where the interaction matrix element is

〈i1λ1; i2λ2|V (q)|i3λ3; i4λ4〉=
1

2
[1 + (−1)i1+i2+i3+i4 ]

(
(SLi1λ1

)†SLi4λ4

) (
(SLi2λ2

)†SLi3λ3

)
× [V+(q)δi2i3 + V−(q)(1− δi2i3)] , (2.16)
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where SLiλ is the electron spin states given in Eq. (2.9).

To solve the vertex equation, we perform the following Fourier transformations11

Γiλ(k) =
∑
α

Γiλ(α)e−ikαl
2
o, (2.17)

and

Ṽiλ;i′λ′(q) =
1

Ω

∑
p

e−p
2l2o/2eip∧ql2oViλ;i′λ′(p), (2.18)

where p ∧ q = pxqy − pyqx and Viλ;i′λ′ = 〈iλ; i′ − λ′|V (q)|i− λ; i′λ′〉, as given by Eq. (2.16).

After an analytical continuation, one obtains

χret(q, ω) = e−q
2l2o/2

∑
i=1,2

Υi+(q, ω), (2.19)

where

Υ = (D−1 + Ṽ )−1N, (2.20)

N and Υ are 4 × 1 matrices, with Niλ = Ω/2πl2o, the number of magnetic flux passing

through the system, and Υiλ = Diλ(ω)Γiλ(q, ω). D and Ṽ are 4× 4 matrices, with Diλ;i′λ′ =

δii′δλλ′Diλ(ω), and Ṽiλ;i′λ′ defined in Eq.. (2.18).

The intersubband SDW dispersion ω(q), which occurs as the pole of the retarded spin

density response function χret, is the solution to det|D−1(ω) + Ṽ (q, ω)| = 0. After a lengthy

but straightforward algebraic manipulation, the two intersubband SDW dispersions ω±(q)

are obtained as

ω2
± = A2 +B2 − Ṽ 2

− cos(θ1 + θ2)

±
√[
Ṽ− (1− cos(θ1 + θ2))A

]2
+ 4B2(A+ C)(A− C) , (2.21)

where A = 1
2
(a+ b), B = 1

2
(a− b), and C = 1

2
Ṽ− (1 + cos(θ1 + θ2)), with

a =
√

(∆sas + ∆z + U+ cos θ1 − U− cos θ2)2 + (U+ sin θ1 + U− sin θ2)2 − Ṽ+,

b =
√

(∆sas −∆z + U+ cos θ2 − U− cos θ1)2 + (U+ sin θ2 + U− sin θ1)2 − Ṽ+. (2.22)
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The intersubband SDW dispersions in both the canted antiferromagnetic QH phase (C)

and the normal QH phases (FM or SYM) can be obtained from the above expression by

incorporating appropriate values of θ1 and θ2. In the following, we show ω±(q) only at

zero temperature for the sake of simplicity, although the formalism applies equally at finite

temperatures.

In Fig. 6, we show the dispersion of the intersubband SDW above the FM ground state.

As mentioned earlier, these two intersubband SDW modes ω±(q) correspond respectively to

transitions |0 ↑〉 → |1 ↓〉 and |1 ↑〉 → |0 ↓〉. The frequencies ω± increase as functions of q,

approaching asymptotic values ω±(q → ∞) = ω0
± + |vx|, where ω0

± are the non-interacting

excitation energies and vx is the exchange energy of the electron in the ground state. Mode

coupling, which pushes down ω−(q) and hence helps mode softening, is most visible at

q → 0. At zero layer separation, mode-coupling disappears, and we recover previously

known results.11,12 In Fig. 7, we show the intersubband SDW dispersion above the SYM

state. The results are qualitatively similar to those in Fig. 6, except that there is no mode

coupling in the symmetric state because Coulomb interaction is spin independent. The

important thing to be noticed is that the long wavelength collective excitations are gapped

in both the symmetric phase and the spin polarized phase. However, the mode softening

does occur at the phase boundaries, as we show below.

To illustrate the phase instability, we show, in Fig.8, the lower-energy branch of the

intersubband SDWs at q = 0 as a function of interlayer tunneling. We see that ω−(q = 0)

indeed softens when approaching the phase boundaries from both the symmetric phase and

the spin polarized phase, and remains zero inside the canted antiferromagnetic phase. The

canted antiferromagnetic order parameter, calculated in the previous section, is also shown

in Fig.8 for comparison purpose. We notice that the phase boundaries determined from

these two independent approaches agree completely, as shown in the figure. The softening

of the collective mode and the appearance of the antiferromagnetic order parameter implies

that we have discovered a quantum phase transition in double-layer QH systems.

In Fig.9, the collective intersubband SDW dispersions in the canted antiferromagnetic
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QH state are shown. The first thing to be noticed is that the lower energy branch ω−(q) is a

gapless mode. The existence of such a gapless Goldstone mode is due directly to the canted

antiferromagnetic spin ordering which spontaneously breaks the spin-rotational symmetry

of the Hamiltonian. This Goldstone mode is found to be linear in the long wavelength limit,

consistent with the fact that it describes antiferromagnetic fluctuations. The existence of the

gapless excitation in the canted antiferromagnetic phase implies that some thermodynamic

quantities, such as specific heat, have power-law temperature dependence in the canted

antiferromagnetic phase in contrast to their exponential temperature dependence in the

normal (symmetric or ferromagnetic) phases.

Simple expressions governing the phase boundaries can be derived from the mode soften-

ing. The boundary between the symmetric (SYM) phase and the canted antiferromagnetic

(C) phase is found to satisfy the following equation

(∆sas − U−)2 = U2
− + ∆2

z, (2.23)

where U− = Ṽ−(q = 0) = 1
Ω

∑
p e
−p2l2o/2V−(p). It should be noted that, for any given ∆sas,

the critical layer separation at this boundary is considerably smaller than the critical layer

separation where the charge density excitation in the ν = 1 state becomes soft.12 The reason

for this is the absence of Hartree contribution to the SDW excitations. The boundary

between the spin polarized (FM) phase and the canted antiferromagnetic (C) phase is found

to satisfy

(∆z + U−)2 = U2
− + ∆2

sas. (2.24)

The simplicity of Eqns. (2.23) and (2.24) makes the phase diagram easy to construct. It

is worthwhile to note that the phase boundaries are determined by only three energy scales

∆z, ∆sas, and U− in spite of the fact that the Hamiltonian is determined by four independent

energy scales ∆z, ∆sas, and V±(q), of which the inter- and intra-layer interactions V±(q) are in

fact continuous functions of wavelength q. This unexpected dependence of the phase diagram

(Fig. 10) on just three energy scales which are entirely determined by the magnetic field, the
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sample parameters (i.e. inter-layer separation, well width, etc.), and the tunneling strength,

is a specific result of the Hartree-Fock approximation. The zero temperature phase diagram

can thus be expressed as a function of two independent dimensionless variables ∆z/∆sas and

U−/∆sas, as shown in Fig. 10. This phase diagram applies to all double-layer quantum Hall

systems at ν = 2 which may have any values of Zeeman energy, tunneling energy, layer

separation, layer-thickness, etc. We believe, however, that this remarkable scaling in the

phase diagram (which enables us to reduce an infinite number of ∆sas versus d diagrams

for various values of ∆z, of which examples are shown in Fig. 4, to just one phase diagram

shown in Fig. 10) remains approximately valid, although the relative size of various phases

in the universal phase diagram of Fig. 10 may very well be quantitatively not particularly

accurate. We also mention here that this phase diagram is topologically identical to that of

a (2 + 1)–dimensional quantum O(3) nonlinear σ-model in a magnetic field,9 as discussed in

section III of this paper.

In this subsection, we have studied the collective intersubband SDW excitations for

ν = 2 double-layer QH systems in the time dependent Hartree-Fock approximation. We

have presented the dispersions of the collective SDW excitations in both the normal QH

phases (FM and SYM) and in the canted antiferromagnetic QH phase, and investigated the

mode softening which signals the phase instabilities. We have rederived the same phase

diagram as that obtained in the previous section, and obtained analytic equations for the

two phase boundaries separating the new canted antiferromagnetic phase from the normal

FM and SYM phases.

C. Kosterlitz-Thouless transition

In this subsection, we discuss some thermodynamic properties of ν = 2 double-layer

systems which arise from the spontaneous symmetry-breaking associated with the breaking

of U(1) planar spin rotational symmetry in the canted antiferromagnetic quantum Hall

phase. There should be a finite temperature Kosterlitz-Thouless transition in the canted
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antiferromagnetic phase, since the spin-rotational U(1) symmetry is broken. Below the

critical temperature, the system supports a linear Goldstone mode, which gives rise to a

power-law temperature dependence for the specific heat. Above the critical temperature

the U(1) symmetry is restored and the system is paramagnetic. These properties are, in

principle, experimentally observable and provide direct ways to test our theory.

We can estimate the Kosterlitz-Thouless transition temperature for our problem in the

following manner. In the canted antiferromagnetic phase, the low temperature thermo-

dynamics is governed by long wavelength phase fluctuations of the order parameter. Let

Eφ = 〈φ|H|φ〉 − 〈|H|〉, where |〉 is the ground state of the canted antiferromagnetic phase,

and |φ〉 = exp(i
∑
j S

z
jφj)|〉, with Szj as the spin operator of the j-th electron and ẑ is the

(magnetic field) direction normal to the two dimensional plane. In the long wavelength limit,

one obtains

Eφ =
ρs(∆z)

2

∫
d2r| 5 φ(r)|2, (2.25)

with

ρs(∆z) =
l2o

16π2

∫ ∞
0

q3e−l
2
oq

2/2

va(q)
(

sin θ1 + sin θ2

2

)2

+ ve(q)

(
sin θ1 − sin θ2

2

)2
 dq, (2.26)

where lo is the magnetic length and va (ve) is intralayer (interlayer) Coulomb potential.

For future convenience, we have written the stiffness as an explicit function of ∆z, which

arises from the dependence of the angles θ1,2 on the Zeeman splitting. The effective pla-

nar XY model defined by Eq. (2.25 undergoes a Kosterlitz-Thouless phase transition18 at

approximately kBTc = (π/2)ρs(∆z). Finite temperature spin-wave and vortex-antivortex

polarizations reduce the transition temperature to approximately3,4,19

kBTc ≈ 0.90ρs(∆z). (2.27)

These finite temperature renormalizations can be much larger in the vicinity of the C–N

and C–SYM phase boundaries: the expression (2.27) can then no longer be used, and we

will discuss modifications near these boundaries later in Section III.
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Since we know ρs(∆z) exactly within the microscopic Hartree-Fock approximation, the

Kosterlitz-Thouless transition temperature can be easily determined for our problem. In

Fig. 11, we show the calculated Kosterlitz-Thouless critical temperature in ν = 2 double-

layer quantum Hall systems within the mean-field Hartree-Fock approximation (i.e. from

Eq. (2.26) for ρs(∆z)). The phase transition exists only in the canted antiferromagnetic

quantum Hall phase. The critical temperature vanishes at the phase boundaries as the

symmetry-breaking order parameter drops continuously to zero as the phase boundaries are

approached from within the canted antiferromagnetic phase. We notice that the calculated

Kosterlitz-Thouless temperature (∼ 1K) is well within the experimentally accessible regime

for typical AlGaAs/GaAs–based double-layer systems. The effective spin-stiffness ρs(∆z)

given in Eq. (2.26) is obtained in the mean-field Hartree-Fock approximation, i.e. using the

results from sections II A and II B, where quantum fluctuation effects are not included. The

results in Fig. 11 should thus be regarded as the upper bound for the Kosterlitz-Thouless

critical temperature. We emphasize that the Kosterlitz-Thouless transition discussed here is

present even in the presence of interlayer tunneling (in fact, the presence of finite interlayer

tunneling is essential to stabilize the canted antiferromagnetic phase, as described in the

last two sections), unlike the case associated with the pseudospin transition3,4 at ν = 1/m

(m odd integers) where interlayer tunneling suppresses Kosterlitz-Thouless transition.

Below the Kosterlitz-Thouless transition temperature, the specific heat in the antiferro-

magnetic phase has qualitatively different temperature dependence from those of the normal

quantum Hall phases. This is of practical significance since it is possible to experimentally

measure the specific heat of quantum Hall systems.20 At low temperatures, the main con-

tribution to the specific heat comes from long wavelength low energy intersubband SDWs.

With their dispersions calculated in each of the quantum Hall phases, the heat capacity is

easily obtained: C = (∂/∂T )
∑

k〈n−(k)〉ω−(k), where ω−(k) is the energy of the low-lying

intersubband SDW excitation and 〈n−(k)〉 is its Bose occupation factor. The results are

shown in Fig. 12. It is clear that the specific heat has an activated behavior in the normal

quantum Hall phases because of the existence of excitation gap in its spin wave spectra,
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and a quadratic power-law temperature dependence in the canted antiferromagnetic phase

because of the existence of the linear Goldstone mode in the symmetry broken phase. The

spin stiffness goes to zero discontinuously at Tc, and for T > Tc we have the usual disordered

X–Y phase of the Kosterlitz-Thouless transition.

D. Multicritical points

Our analysis so far has obtained solutions for the FM, SYM and C phases obtained by

varying the parameters ∆z, ∆sas, d in the Hamiltonian (see Figs. 4 and 10) which modify the

relative strengths of the Zeeman energy, the tunneling energy, and the Coulomb interaction

energy, respectively. Generically, these phases separated by phase boundaries representing

second-order quantum transitions. However, there are also special quantum multicritical

points in Figs 4 and 10 whose physical significance we will now discuss.

The first quantum multicritical point is apparent in Fig. 4 where the FM, C and SYM

phases come together at a single point on the abscissa corresponding to vanishing interlayer

separation (d = 0). It is easily noted from Fig. 4 that this quantum multicritical point is in

fact defined by

∆sas = ∆z; d = 0, (2.28)

which is equivalent to the conditions

∆sas = ∆z; V−(q) = 0, (2.29)

using the definition of V±(q) given immediately following Eq. (2.3) in section II A. The

simple physical reason for the vanishing of V−(q) along the d = 0 line is that the intra- and

interlayer Coulomb interactions are identical in the limit of vanishing interlayer separation

d. Note also that the vanishing of V− ( and consequently of U−) pushes the quantum mul-

ticritical point to an infinite value of the abscissa ( ∆sas/U− → ∞) in the scaled universal

diagram given in Fig. 10— in Fig. 10 the two phase boundaries separating the three phases
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approach each other asymptotically as ∆sas/U− →∞ and ∆z/∆sas → 1 at the multicritical

point. Note that the condition ∆z = ∆sas for the quantum multicritical point is a particu-

larly interesting criterion because, in the absence of our predicted canted antiferromagnetic

phase (i.e. if the ν = 2 double-layer QH systems allowed only the ferromagnetic and the

symmetric phases, as was assumed in the literature before our work), the condition of the

equality of the Zeeman splitting and the symmetric-antisymmetric gap (i.e. ∆z = ∆sas) is

precisely the single particle level crossing criterion where, at ν = 2, one would make a tran-

sition from the ferromagnetic phases where the two up-spin symmetric and antisymmetric

levels are occupied and the down-spin levels are empty for ∆z > ∆sas to the symmetric (spin

singlet) phase where the spin-up and spin-down symmetric subbands are occupied (and the

antisymmetric levels are empty ) for ∆sas > ∆z. What our theory definitely predicts is that

such a simplistic one particle level crossing picture (which appears to be obvious intuitively)

does not occur in a double-layer QH system at ν = 2— instead Coulomb interaction breaks

the SU(2) spin rotational symmetry and drives the system into an intervening antiferro-

magnetic phase where spin and pseudospin levels are intrinsically mixed. The fact that the

intuitively expected level crossing phenomenon (at ∆z = ∆sas) has never been observed38

in a ν = 2 double-layer QH system in spite of systematic efforts39 is, in our opinion, rather

strong indirect evidence in support of our phase diagram.

The second multicritical point becomes apparent only in the universal phase diagram

shown in Fig. 10 (and can be inferred implicitly from the trend that can be seen in the

phase diagrams shown in Fig. 4). Its existence is a consequence of the intriguing finding

that our antiferromagnetic state, in fact, persists all the way to ∆z = 0 (as can be clearly seen

in Fig. 10 where a finite region of the antiferromagnetic state exists along the ∆z = 0 line)

where the spin-polarized ferromagnetic phase no longer exists, and the antiferromagnetic

phase is separated from the spin singlet phase by a multicritical point (M) defined by the

condition

∆sas = 2U− with ∆z = 0. (2.30)
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Thus the critical line defining the phase boundary between the antiferromagnetic and the

symmetric phases for ∆z 6= 0 ends at a critical point (M) for ∆z = 0. It is evident that in

the absence of any Zeeman energy (∆z = 0) the spin magnetic moment in each layer lies

completely in the 2D plane of the electron gas where they must be equal and opposite in

the two layers. Therefore, the ∆z = 0 antiferromagnetic phase of Fig. 10 is not a canted

phase, but is a purely Néel phase (N); indeed the Hamiltonian has full SU(2) spin rotation

symmetry for ∆z = 0, and spin moments in the N phase can point in any two anti-parallel

directions. The N, C, and SYM phases meet at the multicritical point M. This multicritical

point will take on special significance in our effective field theoretical formulation in the next

section.

Let us also note that the existence of this purely Néel QH antiferromagnet at ν = 2

double-layer system may not be just a theoretical curiosity because it is possible to obtain

vanishing Zeeman splitting in a GaAs double-layer system in a finite magnetic field situation

by applying external pressure which under suitable conditions could lead to the vanishing

of the effective gyromagnetic ratio (the g-factor) due to band structure effects.

E. Comparison with earlier work

Before concluding this section, and going on to the effective field theoretic description of

the double-layer QH system, we will discuss the relationship of our results to some earlier

work on double layer systems. We will also use this opportunity to comment on the validity

of the Hartree Fock approximation in our and earlier work.

Most earlier studies,2–4,12 however, have focused on ν = 1 (with some work5 on ν =

1/2). Although the ν = 1 and the ν = 2 QH systems exhibit some similarities such as

the softening of their low energy collective excitations under certain conditions, there are

important distinctions between them. At ν = 1, the spin degree of freedom is normally frozen

out by the external magnetic field. The relevant low energy excitations in the ν = 1 QH

state are therefore intersubband charge-density-wave excitations, and the properties of the
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system are determined by the interplay between interlayer tunneling energy and Coulomb

interaction energy. In this sense, the ν = 1 system is in fact a single-layer system with a layer

pseudospin-dependent interaction.3,4,12 At ν = 2, both the spin degree of freedom and the

layer degree of freedom are relevant, and the low energy excitations are intersubband SDW

excitations. Consequently, the properties of the system are determined by the interplay

among tunneling energy, Zeeman energy, and Coulomb interaction energy. Because of the

increased degree of freedom, the system has more ways to optimize the total energy, and new

states which are not possible at ν = 1 become possible at ν = 2. The symmetric QH state

is energetically favored at small layer separations because it optimizes the tunneling energy;

The spin polarized QH state is favored at large layer separations because it optimizes the

Coulomb interaction energy; The canted antiferromagnetic state is energetically favored at

intermediate layer separations. The reason for this is that the canted antiferromagnetic state

tends to simultaneously optimize both the tunneling energy and the Coulomb interaction

energy, which prevails at intermediate layer separations where the tunneling energy and the

Coulomb interaction energy are equally important. Both the canted antiferromagnetic state

and the symmetric state exist only for systems with small enough Zeeman energy, as the

Zeeman energy clearly favors the spin polarized state.

Another important distinction between the ν = 1 systems and the ν = 2 systems is that

although at ν = 1 the mode softening destroys the QH effect12, and there is no reliable

description of the electronic state in the non-QH phase because beyond the critical layer

separation the system becomes effectively a pair of isolated layers with compressible half-

filled Landau level states; in contrast, at ν = 2, the QH effect prevails at all phases because

there is always a charge gap in both layers (even as d→∞), and we have good understanding

of the ground state and the low energy excitations in each phase due to the existence of

incompressible filled Landau levels. Nevertheless, the mode softening and the associated

phase transitions at ν = 2 are likely to be observable through inelastic light scattering

experiments8,13 and thermodynamic measurements.

Our work has studied ν = 2 double-layer systems by numerically solving the self-
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consistent mean-field equations10, and obtained collective excitation dispersions using many-

body diagrammatic techniques.11 Both approaches are, however, based on the Hartree-Fock

approximation. In single-layer integer QH systems, calculations11 in the Hartree-Fock ap-

proximation agree well with experiments.13 In double-layer systems, the Hartree-Fock ap-

proximation is less accurate because Coulomb interaction potential is layer-index dependent.

Nevertheless, we expect that the Hartree-Fock approximation remains a reasonably good de-

scription for a double-layer system at ν = 2, since the Hartree-Fock ground state, which is

non-degenerate and separated in energy from higher levels, is a good approximation for the

real many-body ground state at ν = 2 due to the existence of incompressible filled Landau

level states with charge excitation gaps at any layer separations. We want to especially

emphasize the difference in the validity of the Hartree-Fock approximation between ν = 1

and ν = 2. The approximation is valid at ν = 1 only at small layer separations and fails

completely beyond a critical layer separation where the system becomes effectively a pair

of isolated layers with compressible half-filled Landau level state in each layer. At ν = 2,

incompressible states with filled Landau levels exist at any layer separations. In particular,

there is still one filled Landau level in each layer at d → ∞. This fact, namely the exis-

tence of an incompressible energy gap at all layer separations, ensures that the Hartree-Fock

approximation, upon which our calculations are based, is a reasonable formalism at ν = 2

regardless of the value of the layer separation.

III. CONTINUUM FIELD THEORY AND QUANTUM CRITICAL PHENOMENA

The Hartree-Fock analysis used in the previous sections has the advantage of working

with a realistic microscopic Hamiltonian and of making definite quantitative predictions for

experimental observables in realistic samples. In this section, we will present an alternative

analysis based upon a continuum effective quantum field theory for the low-lying spin exci-

tations of a double layer quantum Hall system. We will find that the global phase diagrams

obtained in the two approaches are very similar, and are, in fact, topologically identical, and
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that detailed additional predictions for the temperature dependence of various observables

can be made by a combination of the two methods. In particular, some advantages offered

by the continuum approach are:

• It will become clear from the analysis below that there are two basic ingredients

necessary to obtain the phases of Fig 10: two well separated layers form fully polarized

ferromagnets with a gap towards charged excitations (i.e. an incompressible QH effect

gap), and the primary coupling between the layers is an antiferromagnetic exchange

(i.e. a superexchange) interaction. As such, we expect a similar phase diagram to

apply not only at filling ν = 2, but also at any ν = 2ν1, where ν1 is any filling fraction

where a single layer has a charge gap, and is fully polarized. In particular, this criterion

is satisfied at ν = 2/m, m an odd integer, where each layer forms a polarized Laughlin

fractional quantum Hall state. The Hartree-Fock analysis clearly cannot be applied

for m > 1, as the single layer charge gap appears only after inclusion of the non-trivial

correlations implicit in the Laughlin state.

• The Hartree-Fock theory significantly overestimates the energy of the spin-unpolarized

symmetric (SYM) or the spin singlet (SS) state, as we will refer to it in this section.

Spin up and spin down electrons are simply placed into the same orbitals which are

symmetric in the layer index. This is costly in Coulomb energy as there are no cor-

relations in the layer positions of the up and down spin electrons. It is clearly more

advantageous to form a spin singlet states between electrons which are localized in

opposite layers. The non-linear sigma model continuum field theory to be discussed

below does this in a natural way. From now on in this section we refer to this symmetric

or the spin singlet phase as the SS to emphasize its correlated singlet nature.

• A number of quantum-critical points have been uncovered in the Hartree-Fock analy-

sis. There is the ∆z = 0 quantum critical point between the spin singlet (SS or SYM)

and the Néel (N) phases, and a critical line between the SS and the canted antiferro-

magnetic (C) phases. Our continuum approach will obtain the critical theory for these
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transitions, and we will find that they have dynamic critical exponents40 z = 1 and

z = 2 respectively. There is also a second critical line between the C and the fully spin

polarized ferromagnetic (FM) phases: this transition has z = 2 and will be discussed

only in passing, as the critical theory is rather similar to one of the models discussed

in detail in Ref 27.

• The continuum theory offers not only provides us the zero temperature quantum phase

diagram but also a streamlined approach to the study of properties at non-zero tem-

perature, especially in the vicinity of the quantum critical points where effects of

fluctuations cannot be neglected. The price one pays is that in general the param-

eters defining the effective field theory are quantitatively unknown and can only be

calculated from a microscopic theory such as the Hartree-Fock theory of the previous

sections.

We motivate our formulation of the continuum theory by consideration of the physics

of two well-separated identical layers at ν = 2/m. More specifically, the layer separation,

d, is much larger than the magnetic length, `o. Then the two layers (labeled 1,2) are

approximately decoupled, and each separately has filling fraction ν1 = ν2 = 1/m. Their

ground states will be the familiar Laughlin states for m > 1, or a fully filled lowest Landau

level at m = 1, both of which are incompressible states with large energy gap to all charged

excitations. These states are also fully spin polarized; the spin polarization is induced not

just by the Zeeman coupling to the external magnetic field, but also by the significantly larger

intralayer ferromagnetic exchange3,4,22. The low-lying excitations in each layer are spin waves

which have a small excitation gap given precisely by the Zeeman energy ∆z = gµBB. For

small g, a complete description4,24 of the low energy excitations of each layer can be given

in terms of an action for unit vector fields ~n1,2 ( ~n2
1,2 = 1) representing the orientation of the

ferromagnetic orders. Spin waves are small fluctuations of ~n1,2 about an ordered state, while

charged quasiparticles are Skyrmion4,21–23 textures of ~n1,2. The effective action describing

the two layers is3,4,22,24 (in units with h̄ = kB = 1)
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S0 =
∫
d2x

∫ 1/T

0
dτ (LF [~n1] + LF [~n2])

LF [~n] ≡ iM0
~A(~n) · ∂~n

∂τ
+
ρ0
s

2
(∇x~n)2 −M0∆znz (3.1)

Here

M0 =
1

4πm`2o
(3.2)

is the magnetization density per layer, with lo the magnetic length. The spin stiffness

of each well separated layer is represented by ρ0
s; for m = 1, we have the exact result11

ρ0
s = e2/(16

√
2πε`o), while for m > 1 numerical estimates of ρ0

s are given in Ref22. The term

involving ~A accounts for the Berry phase accumulated under time evolution of the spins;

here ~A is any functional of ~n which satisfies

εijk
∂Ak(n)

∂nj
= ni. (3.3)

This Berry phase term also has a “dual” interpretation in the picture in which LF is viewed

as an action for Skyrmions24,35: it represents the coupling of the Skyrmion current to a

“magnetic field” of strength 4πM0.

Now imagine reducing the value of d to couple the two layers. As there is a charge gap in

each layer, we can neglect all charge transfer processes, and focus solely on spin exchange.

Because of the strong repulsive interactions within each layer, we expect by an extension

of the familiar arguments made in the context of the Hubbard model that there will be

an antiferromagnetic superexchange coupling between the layers. This can also be inferred

easily by considering the leading effect of interlayer tunneling and Pauli principle, which

immediately provides a superexchange coupling between the layers. The complete double

layer action is therefore

S1 =
∫
d2x

∫ 1/T

0
dτ (LF [~n1] + LF [~n2] + J~n1 · ~n2) (3.4)

The value of the interlayer exchange, J , is not known precisely; we expect that it is of order

J ∼ M0∆2
sas/U where ∆sas is the tunneling matrix element (see Eq. (2.2), for example)
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between the layers, and U ∼ e2/ε`o is the Coulomb repulsion energy. In addition to the

imprecisely known J , the present approach also requires knowledge of the nature of the short

distance cutoff at lengths of order `0 beyond which present continuum approach cannot be

applied. We will show later that our ignorance of these quantities can be reduced entirely

to uncertainties in the value of a certain renormalized energy scale. This energy scale can

be either measured directly in an experiment, or computed by any microscopic theory such

as the Hartree-Fock approach (appropriate at ν = 2) described in sections II A–II C. Apart,

from this single energy scale, however, all of the predictions of the present effective field

theoretical approach will be quantitative and precise.

Some potentially important terms have been omitted from S0 and our analytic compu-

tations: the Hopf term which endows the Skyrmions with fractional statistics, and the long-

range Coulomb interaction between the Skyrmions. We believe this is permissible because

of the charge gap. Further25, as the layers are antiferromagnetically correlated, Skyrmions

in one layer will be correlated with anti-Skyrmions in the other, and this neutralizes the

leading contribution of both terms. This latter argument should continue to hold even if

the charge gap were to vanish at a quantum critical point (the charge gap remains non-zero

at the quantum critical points in both our present calculations). Note also that no new

term is necessary to induce charge transfer between the layers: a hedgehog/anti-hedgehog

pair in the two layers corresponds to an event transferring Skyrmion number between them.

Such spacetime singularities are absent in the strict continuum limit but appear when a

short-distance regularization is introduced.

For completeness, we note that the purely ~n field formulation becomes incomplete for

m > 1 and larger g, as the spin zero Laughlin quasiparticles can become the lowest energy

charged excitations. These should, in principle, be accounted for by a separate complex

scalar field. However, these can also be neglected for the same reasons presented above for

non-zero spin charged excitations.
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We now manipulate the effective action into a form more suitable for our subsequent

analysis. We solve the constraints ~n2
1,2 = 1 by representing

~ni = (−1)i(1− ~L2)1/2~n+ ~L (3.5)

where ~n and ~L are vectors satisfying

~n2 = 1 ~L · ~n = 0. (3.6)

Note that this representation is so far exact. Next, we insert (3.5) into S1. Because the

layers are antiferromagnetically correlated we expect that ~L will not be too large, and it is

therefore permissible to expand the resulting action to quadratic order in ~L. This is clearly

an approximation: in Appendix A we examine a model solvable Hamiltonian by the same

method in order to assess the damage done by neglecting terms higher order in ~L—we find

that this procedure obtains the low energy spectrum correctly but introduces some spurious

states at higher energies. To quadratic order in ~L, S1 takes the form

S1 =
∫
d2x

∫ 1/T

0
dτ

[
2iM0

~L ·
(
~n × ∂~n

∂τ
+ i∆zẑ

)
+ ρ0

s (∇x~n)2 + 2J~L2

]
, (3.7)

where ẑ is a unit vector in the direction of the magnetic field. Now we integrate out ~L

while maintaining the constraint ~L · ~n = 0 by adding an additional term to the energy

∼ C(~L · ~n)2 and then taking the limit C →∞. This yields the following effective action for

the antiferromagnetic order parameter ~n

S2 =
c

2t

∫
d2x

∫ 1/T

0
dτ

(∇x~n)2 +
1

c2

(
∂~n

∂τ
− i∆zẑ × ~n

)2
 (3.8)

where

t =

(
J

2ρ0
sM

2
0

)1/2

c =

(
2ρ0

sJ

M2
0

)1/2

. (3.9)

This is precisely the action of the 2+1 dimensional quantum O(3) non-linear sigma model

in a field B coupling to the conserved global O(3) charge.26–29 It is expected to apply to

double-layer quantum Hall systems with ν = 2/m at length scales larger than Λ−1 ∼ `o.
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The remainder of this section consists of a detailed analysis of the properties of S2. The

techniques and some results have already been presented earlier in Refs 26,27,29: we shall

present here a unified treatment with a special emphasis on dynamical properties at non-zero

temperature. We begin in Section III A by developing a simple mean-field phase diagram of

S2.

A. Mean field theory

This section will summarize the results of the application of the mean field theory of

Ref 27 to the action S2. Formulation of the mean field theory requires some short distance

regularization, and we choose to place the continuum theory on a square lattice in the spatial

directions, with a lattice spacing a ∼ `o; a continuum formulation is maintained along the

time direction. The resulting action is equivalent to the following lattice quantum rotor

Hamiltonian

H =
∑
i

(
f

2
~̂L

2

i −∆z ẑ · ~̂Li
)
−K

∑
<i,j>

~̂ni · ~̂nj (3.10)

where the coupling constants in H are

f =
ct

a2
K =

c

t
(3.11)

The Hamiltonian is expressed in terms of operators ~̂ni which represent the orientation of

the rotors, and ~̂Li which are the rotor angular momenta. The operators on different sites

commute, while those on a single site obey the commutation relations (dropping the site

indices)

[
L̂α, L̂β

]
= iεαβγL̂γ[

L̂α, n̂β
]

= iεαβγn̂γ

[n̂α, n̂β ] = 0 (3.12)

We will describe the properties of H by choosing the best among the mean field Hamil-

tonians given by27
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HMF =
∑
i

(
f

2
~̂L

2

i −∆z ẑ · ~̂Li −KZ ~N · ~̂ni
)

(3.13)

Here Z (= 4) is the lattice co-ordination number, and ~N is a variational parameter to be

chosen so that the expectation value of H in the ground state of HMF is as low as possible;

by the usual argument, this is expected to happen when ~N = 〈~̂n〉.

As in Ref 27, we numerically diagonalized HMF by truncating its spectrum at some large

angular momentum, and then optimized the value of ~N . The resulting phase diagram is

shown in Fig 13. We discuss the properties of the various phases in turn:

1. Spin Singlet (SS or SYM)

Each rotor is in its non-degenerate ` = 0 state, ~N = 0, and there is a gap to all excitations.

The ground state is a spin singlet, and is therefore unaffected by variations in the value of

∆z.

2. Quantized Ferromagnets (QF`)

Again, ~N = 0, each rotor now has azimuthal angular momentum m = ` and this value

remains pinned as various parameters are varied. Each rotor is also in precisely the state

with ~̂L
2

= `(` + 1), although this latter feature is a special property of mean field theory

which will not survive fluctuations. Of these phases, only the ` = 1 case is actually allowed

for the double layer action S1, and it is clearly the FM phase of Fig 10. The other phases are

an artifact of the approximations made in mapping S1 to S2: this should be clear from the

discussion in Appendix A where we show that expanding in powers of ~L introduce spurious

higher angular momenta states.

3. Canted (C) and Néel (N) States

These states have ~N 6= 0 and varying continuously as the parameters are varied; we have

Nx 6= 0, Ny 6= 0 and Nz = 0. From (3.5), this implies that the two layers have opposite spin
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polarizations in the x− y plane. The two layers also have an identical ferromagnetic polar-

ization, given by 〈~̂L〉 which is oriented along the z direction. This ferromagnetic moment

varies continuously as parameters are varied, and vanishes when ∆z → 0. So for general

∆z 6= 0 this state is canted (C), while for ∆z = 0 it is a pure Néel (N) antiferromagnet.

The C phase has a single linearly dispersing spin wave mode in the x − y plane, while the

N phase has two spin waves27.

In the remainder of this section, we will present a detailed theory of the universal prop-

erties of the system in the vicinity of the multicritical point M. This is the same quantum

multicritical point (M) which exists in the universal Hartree-Fock phase diagram of Fig. 10

where the N phase (along the ∆z = 0 line), the C phase and the SYM (SS) phase come

together at ∆sas = 2U−. We point out in this context that the other distinct multicritical

point of the Hartree-Fock theory where the canted antiferromagnetic phase, the ferromag-

netic phase, and the symmetric phase coexist (the point on the abscissa defined by d = 0

and ∆z = ∆sas in Fig. 4) is not accessible within the effective field theory due to the long

wavelength restriction d > lo. (We mention that in our notations ∆z in the Hartree-Fock

theory corresponds to just B in the field theory due to our choice of units.)

Note that the C, N, and SS phases meet at M, and so we will also discuss the universal

second-order transitions between them. We will not discuss the nature of the second-order

transitions between the QF` and C phases: very closely related transitions, in the same

universality class, have been discussed in some detail in Ref 27.

B. Zero temperature critical properties

A first study of the properties in the vicinity of the point M has appeared in Ref 26

using a large N expansion in a non-linear sigma model with N component fields. The issues

of interest here are more conveniently obtained using a recently developed expansion29 in

spatial dimensionality, d, in powers of ε = 3− d. The latter approach is expressed in terms

of a soft-spin field theory, and we therefore begin with a soft-spin version of the non-linear
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sigma model S2:

Sφ =
∫
ddx

∫ 1/T

0

[
1

2

{
(∂τφx − i∆zφy)

2 + (∂τφy + i∆zφx)
2 + (∂τφz)

2 + c2(∇x
~φ)2

+r~φ2
}

+
u0

4!
(~φ2)2

]
(3.14)

Here ~φ ≡ (φx, φy, φz) ∼ ~n is the soft-spin field which measures the staggered moment of the

two layers. We have taken the magnetic field to point in the z direction. We will also be

interested in the uniform ferromagnetic moment density of the system, M , and this is given

by

M ≡M0〈n1z + n2z〉 = − ∂F
∂∆z

(3.15)

where F is the free energy density associated with the action Sφ. We have introduced two

new coupling constants, r and u0 in Sφ; these are related to the coupling t of S2, and its

short-cutoff ∼ `o. We will not specify the precise values of these parameters here, as they

merely appear at intermediate stages of our computation, and not in our final results.

Let us first discuss the mean field properties of Sφ, obtained simply by minimizing the

action while ignoring all spatial and time dependence of ~φ. For r−∆2
z > 0, the ground state

has 〈~φ〉 = 0, and is therefore in the quantum paramagnetic SS phase. For r −∆2
z < 0, the

ground state has 〈~φ〉 6= 0 and in the x− y plane. This is the C phase and the fields have the

expectation values

~φ =

(6(∆2
z − r)
u0

)1/2

, 0, 0

 M =
6∆z(∆

2
z − r)

u0
, (3.16)

or any rotation of ~φ in the x − y plane. Notice that M vanishes for ∆z = 0, and therefore

the line r < 0, ∆z = 0 is the N phase. The resulting mean field phase diagram is shown in

Fig 14. Notice that the vicinities of the points M are very similar in Figs 13 and 14. The

quantum critical point M is at ∆z = 0, r = 0, and it is clear from the Lorentz-invariant

structure of Sφ at ∆z = 0 that this point has dynamic exponent z = 1. Rotations of the

order parameter ~φ in the x− y plane have associated with them a stiffness ρs(∆z) given by

ρs(∆z) =
6(∆2

z − r)
u0

. (3.17)
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This is the same stiffness which was computed in Section II C and Eqn 2.26 in the Hartree-

Fock theory.

We now include the effects of fluctuations at one loop. We will quote results for the

dynamic longitudinal and transverse susceptibilities of the ~φ field which are measured in

light scattering. Recall that in terms of the spin polarizations of the two layers ~n1, ~n2, we

have ~φ ∼ ~n1−~n2. We define (with T as the temperature kB = 1 in our units in this section)

χ‖(iω) =
∫
ddx

∫ 1/T

0
dτe−iωτ 〈φz(x, τ )φz(0, 0)〉 (3.18)

and

χ⊥(iω) =
1

2

∫
ddx

∫ 1/T

0
dτe−iωτ 〈(φx(x, τ ) + iφy(x, τ ))(φx(0, 0) − iφy(0, 0))〉 (3.19)

We can use the methods of Ref 29 to compute the one loop values of these susceptibilities

in the SS phase (this is the phase with no broken symmetry) in the vicinity of the point M;

we obtain

χ‖(ω) =
1

∆2 − ω2

χ⊥(ω) =
1

∆2 − (ω −∆z)2
(3.20)

Here the quantity ∆ is an observable defined by

∆ ≡ Spin gap of the SS phase at T = 0 for r > 0 and ∆z = 0. (3.21)

The value of ∆ should either be measured experimentally, or computed by a detailed mi-

croscopic calculation like the Hartree-Fock theory discussed earlier in the paper. We will

express all our results for r > 0 completely in terms of universal functions of parameters ∆,

T and B (so that the microscopic couplings r and u0 do not appear anywhere in our results.)

Clearly, in the mean field theory ∆ =
√
r; at one loop order, we have ∆ ∼ rν , where the

exponent ν = 1/2 + 5ε/44.

We need a separate experimental observable to measure the deviation of the system from

the point M at ∆z = 0 for r < 0. A convenient choice, also used in Refs 28,29 is the spin

stiffness. We therefore define

34



ρs(0) ≡ Renormalized spin stiffness of the N phase at T = 0 for r < 0 and ∆z = 0. (3.22)

All our results for r < 0 will be expressed in terms of ρs(0). Again ρs(0) ∼ |r|ν , and the

actual value of ρs(0) should be measured experimentally or computed in Hartree-Fock or

microscopic numerical studies of the double-layer Hamiltonian.

Before closing this subsection, we draw attention to the fact that there are two phase

boundaries that terminate at the point M: the SS to C transition and the N to C transition.

In the vicinity of these transitions the response functions computed near the critical point

M should turn into reduced scaling functions29,36 characteristic of the respective phase tran-

sitions. In the following subsections, we discuss simplified versions of the action Sφ which

can be used to compute these reduced scaling functions.

1. SS-C transition, |∆−∆z| � ∆, r > 0

In this region we can neglect φz fluctuations and focus only on the φx + iφy which is

undergoing Bose condensation. Further, it can also be shown that the second-order time

derivative in Sφ can be dropped. Making these approximations, and defining

Ψ =
φx + iφy√

∆z

, (3.23)

we see that Sφ reduces to

SΨ =
∫
d2x

∫ 1/T

0
dτ

[
Ψ∗
∂Ψ

∂τ
+

c2

2∆z
|∇xΨ|2 + (∆−∆z)|Ψ|2 +

u0

24∆2
z

|Ψ|4
]
. (3.24)

This action has been previously studied in some detail30,34: it has a z = 2 quantum critical

point at ∆ = ∆z, and we will use the existing results later. Thus the SS-C transition is a

line of z = 2 critical points terminating in z = 1 critical end-point M.

2. N-C transition, B � ρs(0), r < 0

Both the N and C phases are ordered, and it is sufficient to simply focus on static, ther-

mal, orientational fluctuations of the order parameter. We therefore quench the magnitude
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fluctuations of ~φ and return to the fixed length vector ~n. The effective action for static ~n

fluctuations can be deduced from Sφ to be

Sn =
1

2T

∫
d2x

[
ρs(0)(∇x~n)2 + γn2

z

]
. (3.25)

As noted earlier, ρs(0) is the spin stiffness of the Néel state, fully renormalized by quantum

fluctuations. The anisotropy γ = 6∆2
z(∆

2
z − r)/u0 to lowest order in u0, and we expect

γ ∼ ∆2
z more generally. The action Sn has been studied in Ref 32, and we will use their

results in the following subsection.

C. Non-zero temperature response functions

A number of new phenomena occur at non-zero temperatures, and these are addressed

in a relatively straightforward manner using the present continuum effective field theory

approach.

• There is a broken x−y symmetry in the C phase, and therefore a non-zero temperature

(Tc) at which this order disappears in a Kosterlitz-Thouless transition. An estimates

Tc was given earlier (sections II C and Fig. 11) in the Hartree-Fock theory which is

valid when the system is well away from one of the T = 0 phase boundaries of the C

phase in Figs 13, and 14. We expect Tc to vanish continuously as the system in the

C phase approaches the T = 0 boundaries to the N or the SS phase: there is nonzero

temperature phase transition above the N or the SS ground state. We discuss below

the behavior of Tc near the C-N and C-SS T = 0 phase boundaries. Near the point M,

Tc is determined completely and universally by the two energy scales which measure

the deviation of the ground state from M. So for r > 0 we expect

Tc = ∆zΨ>

(
∆

∆z

)
(3.26)

where Ψ> is a fully universal function; because the SS-C phase boundary occurs pre-

cisely at ∆ = ∆z, we have
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Ψ>(u ≥ 1) = 0. (3.27)

Similarly for r < 0 we have

Tc = ∆zΨ<

(
ρs(0)

∆z

)
(3.28)

where Ψ< is also a universal function. Clearly the two functions should agree at r = 0,

and therefore we have Ψ>(0) = Ψ<(0); actually it is possible to say much more—for

∆z > 0 we expect that Tc is a smooth and analytic as a function of r through r = 0,

and so using the dependencies of ∆ and ρs(0) on r, it is possible to express Ψ>,<

as analytic continuations of each other. We will give explicit expressions for Ψ>,< to

leading order in the expansion in ε = 3− d below.

• The one-loop T = 0 results for the SS phase (3.20) predict infinitely sharp absorption

peaks in χ‖ at ω = ∆, and in χ⊥ at ω = ∆ ±∆z. As the SS phase has a spin gap,

we expect these infinitely sharp peaks to survive at higher orders in the perturbation

theory at T = 0. For T > 0 two qualitatively new features will arise. First, thermal

damping will lead to a broadening of the peaks. Second, the peak positions will

themselves become temperature dependent. We will describe these processes below in

the vicinity of the point M, where both the broadening and the T -dependent shifts

are quite significant. Deep inside the SS phase, well away from the M point, these

T -dependencies are exponentially activated, and therefore much weaker.

We will restrict our results for the most part to the paramagnetic phase, although results

in the magnetically ordered phases can be obtained by very similar methods. This means

that we are working at T > 0 above the SS phase, and at T > Tc above the C phase, all

within the vicinity of the point M. The results are obtained using methods discussed in

some detail in Ref 29: the only change is that the Zeeman splitting ∆z has to be included in

the propagators for the φx,y fields, and this modifies the values of the Matsubara frequency

summations in the loop diagrams by replacing an energy ε by ε±∆z. The reader may also
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consult Appendix D of Ref 33 where a simpler derivation of just the one loop results of

Ref 29 is given.

The non-zero T generalization of (3.20) takes the form

χ‖(ω) =
1

−ω2 +m2
‖ − iΓ‖(ω)

χ⊥(ω) =
2

−(ω −∆z)2 +m2
⊥ − iΓ⊥(ω)

Here m‖,⊥ and Γ‖,⊥ depend implicitly upon the energy scales T , ∆z, and ∆ (ρs(0)) for r > 0

(r < 0) in a manner we shall describe below to lowest order in ε. Clearly, the “masses” m‖,⊥

represent the peak absorption frequency, while Γ‖,⊥ are the absorptive pieces which lead to

a T -dependent broadening of the line.

First we describe the behavior of m⊥,‖.

For r > 0, the masses are universal functions ∆, T and ∆z. They can be written as

m2
‖ = R‖ − ε

2πT

11

(
3
√
R‖ + 2

√
R⊥

)
m2
⊥ = R⊥ − ε

2πT

11

(√
R‖ + 4

√
R⊥

)
(3.29)

where

R‖ = ∆2
[
1 +

5ε

11
ln
T

∆

]
+
εT 2

11

[
3G

(
∆2

T 2
, 0

)
+ 2G

(
∆2

T 2
,
∆z

T

)]

R⊥ = ∆2
[
1 +

5ε

11
ln
T

∆

]
+
εT 2

11

[
G

(
∆2

T 2
, 0

)
+ 4G

(
∆2

T 2
,
∆z

T

)]
. (3.30)

The function G(y, h) represents the value of the one-loop momentum integral; it was com-

puted in Refs 29,33 for the zero magnetic field case h = 0. The generalization to non-zero

h is

G(y, h) = −2
∫ ∞

0
dq

ln

(
2q2 cosh(

√
q2 + y)− cosh h

q2 + y − h2

)
− q − y

2
√
q2 + 1/e

 (3.31)

This integral has to be evaluated numerically in general, but we have the limiting value

G(0, 0) = 2π2/3. Stability of the paramagnetic state requires that m⊥ ≥ ∆z; this require-

ment leads to an expression for Tc, which is determined by solving m⊥ = ∆z. Analysis of
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this equation in powers of ε shows that Tc ∼ 1/
√
ε. This implies that ∆/T,∆z/T ∼

√
ε, and

so to leading order we can just use the value of G(0, 0) in (3.30) to obtain

T 2
c =

33(∆2
z −∆2)

10π2ε
(3.32)

for ∆z > ∆. For ∆z < ∆ the system is in the SS phase, and therefore Tc = 0. Notice that

(3.32) agrees with the scaling form (3.26). This result is expected to be the leading order

result in powers of ε, except in the region |∆z−∆| � ∆ where the ε expansion fails and the

reduced action SΨ of Section III B 1 has to be used. Using results of Ref 30 for the latter

action we have the exact asymptotic form

Tc =
(∆z −∆) ln[∆z/(∆z −∆)]

4 ln ln[∆z/(∆z −∆)]
for ln[∆z/(∆z −∆)]� 1 (3.33)

Closely related results can be obtained for r < 0. In this case, the masses are universal

functions of ρs(0), ∆z and T . However, considerable ambiguity arises in the ε expansion

for the result because ρs(0) does not simply have the dimensions of energy for all d. The

appropriate scaling variable29 is (ρs(0))1/(d−1), and it is necessary to keep the full 1/(d− 1)

power, rather than expand it in powers of ε in order to make the engineering dimensions of

the results come our correct. This then leads to ambiguities as to precisely which numerical

factors should be raised to the power 1/(d−1) and which to 1/2+ ε/4. A convenient choice,

which leads to the most compact expressions is to define

ρ̃s ≡
(

2ε

(n+ 8)

ρs
Sd+1

)1/(d−1)

(3.34)

where we have written the general expression for the n-component order parameter: in

the present case n = 3. The factor Sd+1 is a phase-space factor and is given by Sd =

2/[Γ(d/2)(4π)d/2] (this factor was inadvertently omitted in Ref 29). Notice that ρ̃s has the

dimensions of energy in d = 2 (which is of interest here). The value of ρ̃s, however must be

regarded as subject to large systematic corrections, in view of the ambiguities noted above.

Using the methods and results of Ref 29 for r < 0, and expressing them in terms of ρ̃s, we

find that the results (3.29) still hold, but (3.30) are replaced by
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R‖ = − ρ̃
2
s

2

[
1− ε

22
+

5ε

11
ln
T

ρ̃s

]
+
εT 2

11

[
3G

(
− ρ̃2

s

2T 2
, 0

)
+ 2G

(
− ρ̃2

s

2T 2
,
∆z

T

)]

R⊥ = − ρ̃
2
s

2

[
1− ε

22
+

5ε

11
ln
T

ρ̃s

]
+
εT 2

11

[
G

(
− ρ̃2

s

2T 2
, 0

)
+ 4G

(
− ρ̃2

s

2T 2
,
∆z

T

)]
. (3.35)

Notice that G(y, h) is now needed for negative values of y. Despite appearances, the expres-

sion (3.31) actually also holds for y < 0—one simply uses the identity cosh(ix) = cos(x)

when the square root becomes purely imaginary. Indeed, it is not difficult to show that the

expression in (3.31) is actually analytic for all real −∞ < y <∞ provided h > 0. We can

use the same stability condition used for r > 0 to now obtain the leading order ε-expansion

result for Tc:

T 2
c =

33(∆2
z + ρ̃2

s/2)

10π2ε
, (3.36)

which is of the scaling form (3.28). The ε expansion fails when ∆z � ρs(0) where the system

approaches the C-N phase boundary; here, we use the effective action Sn of Section III B 2,

and results for it in Ref 32 to obtain

Tc =
2πρs(0)

ln(ρs(0)/∆z)
for ln(ρs(0)/∆z)� 1. (3.37)

Finally, we obtain the damping coefficients Γ⊥,‖. This requires evaluation of two-loop

diagrams and the results are extremely lengthy. We will be satisfied here by simply quoting

the results valid for ∆z/T � 1, (∆ or ρs(0))/T � 1 which were obtained in Ref 29:

Γ⊥(ω) = Γ‖(ω) =
10πε2

121

(
ω2

8
+ π2T 2 + 6T 2Li2(e−ω/2T )

)
(3.38)

where Li2(x) is the dilogarithm function

Li2(x) = −
∫ x

0

dy

y
ln(1− y) (3.39)

D. Connection to the Hartree-Fock theory

The effective field theory for the double-layer QH system at a filling factor of ν = 2/m

( with m an odd integer) that we develop above is entirely built on the effective action
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S2, defined by Eq. (3.8). In particular, we make use of the fact that this effective action

for our problem is identical to the action of the 2 + 1 dimensional O(3) quantum non-

linear σ model26–33 with the additional feature of an external magnetic field coupled to the

conserved global O(3) charge. Once this precise mapping of our effective action to that

of the 2 + 1 dimensional O(3) quantum nonlinear σ model becomes explicit, the rest of

the results derived in sections IIIA–C follow naturally. The question now arises about the

correspondence between our effective field theory results in this section and the microscopic

Hartree-Fock results (for ν = 2) described in sections II A–II C.

It is to be noted that both the microscopic Hartree-Fock theory (sections II A–II C) and

the effective nonlinear σ model field theory predict the same number of zero temperature

quantum phases, namely the fully spin polarized ferromagnetic, the canted antiferromag-

netic, the Néel, and the symmetric spin singlet phase, for the double-layer QH system at

ν = 2. (The effective field theory, in addition, enables us to predict that the double-layer

system at all fillings ν = 2ν1, where ν1 = 1/m with m odd, has these four phases with the

spin singlet phase in the general case being a non-trivial correlated SS phase rather than

just the pseudospin-symmetric spin-antisymmetric SYM phase of the ν = 2 Hartree-Fock

theory.) It should also be noted that both the Hartree-Fock theory and the effective field

theory predict the existence of a finite temperature Kosterlitz-Thouless phase transition in

the canted antiferromagnetic phase with the planar antiferromagnetic ordering disappearing

above the Kosterlitz-Thouless transition temperature. The underlying physics in both the

theories is that the system is essentially an X–Y antiferromagnet in the layer (i.e. in the

plane perpendicular to the magnetic field direction) in the new canted phase.

On a more quantitative level it is easy to show that both theories predict the same

topology of the zero temperature quantum phase diagram. This is demonstrated in Fig.

15 where we have redrawn the Hartree-Fock phase diagram (Fig. 15a) of Fig. 10 inverting

abscissa (from ∆sas/U− to U−/∆sas) and have somewhat reconfigured the effective field

theory phase diagram (Fig. 15b) from Fig. 13 by keeping only the QF1 phase and by

modifying the relative size of the various phases (which are arbitrary within the effective
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field theory). Using the definitions t = (J/ρosM
2
o )1/2 from Eq. (3.9) to define the abscissa, the

effective field theory phase diagram in t −∆z space (Fig. 15b) can be seen to be identical

topologically to the quantitatively calculated Hartree-Fock phase diagram (for ν = 2) in

the ∆sas/U− − ∆z/∆sas space (Fig. 10). Note that, in addition to the identical topology

involving four distinct quantum phases as shown in Fig. 15 of the two phase diagrams

with the effective coupling parameter t of the field theory (the abscissa in Fig. 15b) being

proportional to the parameter ∆sas/U− (the abscissa in Fig. 15a) of the Hartree-Fock theory

(which is expected, because t ∼ ∆sas/U with J being the interlayer superexchange coupling)

and the ordinate (∼ ∆z) being the same in both Figs. 15a and 15b, the multicritical point M

on the zero magnetic field line shows up in both phase diagrams. At the (zero temperature)

quantum multicritical point M, the canted, the spin singlet, and the Néel phase coexist.

(The other distinct multicritical point of the Hartree-Fock theory, which is apparent on the

abscissa of Fig. 10 where ∆sas = ∆z and d = 0, where the ferromagnetic, the canted and

the symmetric phase coexist is not accessible within the effective field theory because of its

long wavelength approximation, and can not be seen in Fig. 15a as it is pushed to the point

U−/∆sas = 0, ∆z/∆sas = 1 where the two Hartree-Fock phase boundaries of Fig. 15a come

together.) It is, therefore, obvious that, except for very small values of d (where the effective

field theory which applies only when d > lo), the quantum phase diagrams predicted by the

two theories are topologically identical.

Finally, we can actually estimate the ν = 2 double-layer Kosterlitz-Thouless transition

temperature, Tc of section IIIC, in the effective field theory by using the microscopic param-

eters obtained within the Hartree-Fock theory. This calculation9, where one incorporate the

calculated Hartree-Fock parameters for ∆ and ε = 1 in Eq. (3.36), leads37 to an estimated

effective field theory Tc ≈ 3K which is somewhat larger than the critical temperature Tc (Eq.

(2.27)) estimated within the long wavelength mean field Hartree-Fock treatment of section

II C. In general, we believe the ε–expansion leads substantial overestimates of transition

temperatures because it does not properly account for the low-dimensional vortex effects
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responsible for the transition.

IV. COMPARISON WITH EXPERIMENTS

In this section, we discuss some recent double-layer ν = 2 inelastic light scattering ex-

periments whose findings are consistent with our theoretical results. A detailed quantitative

comparison between our theory and the experiment requires an accurate knowledge of the

temperature dependence of the related experimentally relevant response functions as the sys-

tem undergoes a finite temperature phase transition at Tc. Such a quantitative description

is at present lacking, and therefore we restrict ourselves mostly to a qualitative discussion.

In a recent inelastic light scattering experiment,8 the long wavelength ω0 mode of the

intersubband SDW triplet (see Fig. 16 for schematic details of the various possible SDW

modes in the system), which corresponds to transition |0σ〉 → |1σ〉, is measured for ν = 2

double-layer quantum Hall systems. The double-layer samples used in the experiment are by

design in the canted antiferromagnetic phase according to our zero temperature Hartree-Fock

phase diagram, i.e., the ground state of the experimental system is the canted antiferromag-

netic quantum Hall state (see Figs. 4, 10, and 15 for the location of the experimental sample

in our theoretical diagram). The experiment8 shows two important and striking features:

One is that there is a threshold temperature (∼ 0.5K) below which the ω0 mode becomes

unobservable as it seems to lose all spectral weight, the other feature is that the excitation

energy ω0 approaches the Zeeman energy ∆z when the threshold temperature is approached

from the above, i.e. ω0 ≈ ∆z. We argue below that these experimental observations are

completely consistent with our predicted Kosterlitz-Thouless transition in the canted anti-

ferromagnetic phase being the observed experimental transition at Tc.

First, we notice that the ω0 mode, which involves a no-spin-flip transition with δSz = 0,

has a maximum spectral weight in the symmetric phase, where there are as many spin-up

(down) empty states as there are spin-up (down) electrons. The spectral weight of the ω0

mode is identically zero in the ferromagnetic phase, where all spin-up states are occupied
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and all empty states are spin-down, and hence the ω0 mode (which does not involve any spin

flip) is forbidden. The spectral weight of the ω0 mode should be nonzero but small in the

antiferromagnetic phase. This is because the canted antiferromagnetic phase lies between

the symmetric phase and the ferromagnetic phase in the phase diagram and its spin-flip

dynamics should thus be intermediate. More over, the canted antiferromagnetic phase is

not an eigenstate for either spin or pseudospin, so the small spectral weight of the ω0 mode

is shared by many allowed transitions, spreading the mode intensity over these transitions

and thus making the spectral weight of each transition even smaller. It is thus plausible

to regard the observed disappearance of the ω0 mode at the threshold temperature as the

transition to the canted antiferromagnetic phase at lower temperatures (where the spectral

intensity for the ω0 mode becomes very small). Above the transition temperature the system

is essentially a disordered planar X-Y magnet, and thus behaves like a paramagnet whose

SDW properties should be very similar to the paramagnetic spin-singlet symmetric phase.

Next, we notice that, in the symmetric phase, the excitation energies of the intersubband

SDW triplet have the following simple relationship

ω± = ω0 ±∆z. (4.1)

This expression can be derived explicitly, using either the diagrammatic time-dependent

Hartree-Fock approximation or the single-mode approximation. It is a direct consequence

of the fact that Coulomb interaction is spin independent. The above relationship bears a

clear physical meaning: ω0 → ∆z means that ω− → 0, i.e. mode softening (see Fig. 16).

Thus, the experimental observation that ω0 approaches the Zeeman energy as the threshold

temperature is reached from above suggests that there is mode softening (ω− = 0) at the

phase boundary, as predicted by the computations of the T -dependent peak positions in

Section III C.

Finally, we note that the critical temperature (the threshold temperature) in the

experiment8 is Tc ≈ 0.52K, which is reasonably close to our calculated Kosterlitz–Thouless

critical temperature Tc ≈ 1.8K in the Hartree-Fock theory (Eq. (2.27)) using the ac-
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tual experimental sample parameters.9 This discrepancy between the experiment and the

Hartree-Fock theory is small when compared with the energy scale of Coulomb interaction,

which is about 70K in this particular sample. In addition, quantum fluctuations neglected

in the Hartree-Fock theory should lower the calculated critical temperature and reduce this

discrepancy.

From the above discussions, we conclude that our theoretical predictions are consistent

with the recent light scattering experimental results. The most dramatic aspect of the

experimental observations which give us confidence in believing that the experiment is really

seeing the canted antiferromagnetic phase are (i) the unambiguous observation of a mode

softening (i.e. ω0 → ∆z implying ω− → 0); (ii) the observed temperature dependence

indicating a finite temperature phase transition; (iii) the location of the experimental sample

in our calculated phase diagram and (iv) the ω0 → ∆z collapse being observed precisely at

ν = 2.

While the recent inelastic light scattering experiment8 provides, in our opinion, rather

compelling evidence in favor of there being a finite temperature (Kosterlitz-Thouless) tran-

sition in the ν = 2 double-layer system with the low temperature phase being the canted

antiferromagnetic phase (by virtue of the vanishing of the ω− mode at the phase boundary, as

discussed in section II B of this article), a complete verification of our theory awaits further

more conclusive and direct experimental measurements, especially heat capacity measure-

ments which should shown (Fig. 12) power law temperature dependence in the canted phase

due to the existence of the Goldstone mode and exponential temperature dependence in the

two normal phases due to the existence of gaps in the excitation spectra, would be par-

ticularly well-suited in verifying our phase diagram. The direct observation of a gapless

Goldstone mode (Fig. 9) in the inelastic light scattering measurement in the (low tempera-

ture) canted phase would also be rather definitive in establishing the existence of the canted

phase. In this context we mention that the SDW softening indicating a phase transition to

the canted phase is a long wavelength instability, and therefore optical spectroscopy41 may

also be useful in studying our proposed ν = 2 double-layer phase diagram. Both of these pro-
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posed direct experiments are fraught with considerable (experimental) difficulties, however.

Electronic heat capacity measurements in quantum well structures are notoriously difficult

by virtue of the extremely small magnitude of the (2D) electronic heat capacity compared

with the background (lattice) contribution. As for the direct experimental observation of

the Goldstone mode, the experimental inelastic light scattering spectroscopy is severely re-

stricted by the selection rules inherent in the resonant light scattering spectroscopy, and at

this stage it is unclear whether the problems associated with the selection rules would allow

to directly observe the Goldstone mode.

One striking difference between the physics of ν = 2 double-layer system and the cor-

responding ν = 1 situation is the existence of a charge gap in the ν = 2 case for all values

of d and ∆sas: the system is always incompressible (in all its quantum phases including the

canted phase). Thus the quantized Hall effect exists throughout our phase diagram unlike

in the corresponding ν = 1 situation.3,4,12,42 The existence/nonexistence of the QH effect,

which has been useful in mapping out the ν = 1 double-layer phase diagram42 would not

work in our problem in a direct sense. We do, however, speculate that the activation en-

ergy (i.e. the effective value of the incompressible charge gap) for the ν = 2ν1 double-layer

QH effect may very well show observable structure at our calculated phase boundaries even

though all the phases (ferromagnetic, canted, symmetric) would exhibit ν = 2ν1 QH effect.

We suggest systematic experimental investigations of ν = 2ν1 double-layer ( ν1 = 1/m with

m = 1, 3, 5, ...) QH activation energies by tuning ∆sas, ∆z, and d to look for signatures of

our proposed zero and finite temperature phase transitions.

In this context we point out that there is already some experimental evidence38,39 that

the naive ∆z = ∆sas level crossing in ν = 2 double-layer QH systems does not exist (as

our theory proposes and clearly demonstrates in our calculated phase diagrams). The ex-

perimental observation38,39 has been that the naive ν = 2 level crossing phenomenon (at

∆z = ∆sas) between ferromagnetic and symmetric phases, which would exist in the absence

of our intervening canted phase, if it happens at all in double-layer systems, must happen

at magnetic fields much lower than that satisfying ∆z = ∆sas condition. This is, of course,
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exactly what our phase diagram (see Fig. 4)) predicts — nothing interesting happens for

finite d at ∆z = ∆sas or for that matter even for ∆sas = 3∆z at d = 2lo in Fig. 4a for

example— the system remains in the fully spin polarized ferromagnetic phase and the naive

expectation of a level crossing transition to the symmetric phase simply does not occur.

In this sense, our phase diagram for the ν = 2 double-layer system may have already been

verified in 1990!42 Further experiments along this line at ν = 2ν1 double-layer systems would

be useful.

V. SUMMARY

In summary, we have studied both zero and finite temperature properties of the ν = 2

double-layer QH systems within the framework of Hartree-Fock approximation. We show

that, in addition to the fully polarized state adiabatically connected to the well separated

layer state, there are two other double-layer quantum Hall phases: the first is a spin singlet,

and the second is characterized by a finite interlayer inplane canted antiferromagnetic spin

ordering. The transition between the different quantum Hall phases is continuous, and is

signaled by the softening of collective intersubband spin density excitations. Because of

the broken U(1) symmetry in the canted antiferromagnetic phase, the system has a finite

temperature Kosterlitz-Thouless transition (Tc ∼ 1K). Below the critical temperature, the

canted antiferromagnetic phase supports a linear Goldstone mode. Above, the system is

essentially a paramagnet similar to the symmetric phase. Our findings are consistent with

recent light scattering spectroscopic experimental results. We present detailed results of

our study, including the stability energetics of various phases, the antiferromagnetic order

parameter in the canted phase, the phase diagram, the collective excitation dispersions, the

specific heat, and the Kosterlitz-Thouless critical temperature, and suggest various experi-

ments which could, in principle, probe the rich double-layer phase diagram predicted by our

theory.

In addition to the microscopic ν = 2 Hartree-Fock theory, we have developed a rather
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general long wavelength effective field theory for the ν = 2ν1, where ν1 = 1/m with m

an odd integer, double-layer system. The essential inputs for this effective field theory are

the existence of charge gaps in the two layers and an effective interlayer antiferromagnetic

(superexchange) interaction. By mapping the effective action for this problem to that of

an O(3) quantum nonlinear σ model, we have been able to show that the qualitative phase

diagram calculated within the Hartree-Fock theory for ν = 2 is actually generically valid

(topologically) for any ν = 2ν1 (with ν1 = 1, 1/3, 1/5, ...) double-layer system with the

symmetric phase of the Hartree-Fock calculation being replaced by a highly non-trivial cor-

related spin singlet phase ( of which the ν = 2 symmetric phase is a rather trivial example).

Thus, there could be rather non-trivial canted (and perhaps even Néel, if one can apply suf-

ficient external pressure to produce vanishing gyromagnetic ratio) antiferromagnets at, for

example, ν = 2/3 in a double-layer system, where each single fully spin polarized Laughlin

state spontaneously develops in-plane antiferromagnetic spin ordering. Observation of the

canted or the spin-singlet phase in a ν = 2/3 double-layer QH system would significantly

enrich the many-body strong correlation physics associated with QH systems.

We conclude by pointing out that, although we have confined ourselves in this article to

the ν = 2/m case, with m an odd integer, it is obvious that the physics we are considering

here applies, in principle, to all double-layer QH systems with ν = 2ν1 where a single layer at

filling ν1 forms a fully spin polarized incompressible QH state with a charge gap. Thus, the

same physics as at ν = 2 should apply, in principle, at ν = 6 (but not at ν = 4, 8, ... where

the charge gap is the cyclotron gap not ∆z,∆sas.) in double-layer system. In principle,

however, our approximations which neglect all (orbital) Landau level couplings become

progressively worse at higher Landau levels. In this respect, it is very gratifying that the

experimental light scattering measurements8 find qualitatively similar (but quantitatively

much suppressed) behavior at ν = 6 as at ν = 2, but the ν = 4 situation is qualitatively

different.
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APPENDIX A: TWO SPIN PROBLEM

Here we will assess the validity of the mapping from the action S1 in (3.4) to S2 in (3.8)

by examining a simple toy model of two spins. We consider the Hamiltonian

H = J ~S1 · ~S2 −∆zẑ · (~S1 + ~S2) (A1)

where ~S1,2 are two quantum spins of spin S. The energy spectrum of B is clearly

E` =
J

2
`(` + 1) −∆zm+ E0 , ` = 0, 1, . . . 2S ; m = −`,−`+ 1, . . . `− 1, `

(A2)

where E0 is an overall constant we shall not be interested in.

Let us attempt to obtain this result using the coherent state path integral. First, we

transcribe H into the effective action

S =
∫
dτ

[
iS ~A( ~n1) ·

∂ ~n1

∂τ
+ iS ~A( ~n2) · ∂ ~n2

∂τ
+ JS2~n1 · ~n2

]
(A3)

where ~n2
1,2 = 1. Notice that this is the analog of the action S1 in (3.4) with only the spatial

gradient spin stiffness terms now being absent. Now insert the parameterization (3.5) into

(A3), and expand to quadratic order in ~L. The neglect of terms higher order in ~L is the

only approximation being made here. This gives us the analog of (3.7)

S ≈
∫
dτ

[
2iS~L ·

(
~n× ∂~n

∂τ
+ i∆zẑ

)
+ 2J~L2

]
(A4)

Now we integrate out ~L as described above (3.8) to obtain

S ≈
∫
dτ

1

2J

(
∂~n

∂τ
− i∆z ẑ × ~n

)2

(A5)
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where recall that the functional integral is over the unit vector field ~n(τ ) satisfying ~n2 = 1

for all τ . This last form of S is the effective action for a quantum rotor in a field ∆z ẑ. This

action is equivalent to the Hamiltonian

HR =
J

2
~̂L

2

−∆zẑ · ~̂L (A6)

where ~̂L is the rotor angular momentum operator. The eigenvalues of HR are easily seen to

be identical to those of H in (A2) with one simple difference. The allowed values of ` now

extend over all non-negative integers. Thus the only effect of dropping terms higher order

in ~L in the functional analysis is that the upper bound ` ≤ 2S has disappeared. This only

introduces additional states at relatively high energies and is therefore not expected to be

of importance in our study of the low energy properties of S2.

50



REFERENCES

1 Quantum Hall Effect, edited by R.E. Prange and S.M. Girvin (Springer-Verlag, New York,

1987); Perspectives in Quantum Hall Effects, edited by S. Das Sarma and A. Pinczuk

(Wiley, New York, 1997).

2 S.Q. Murphy J.P. Eisenstein, G.S. Boebinger, L.N. Pfeiffer, and K.W. West, Phys. Rev.

Lett. 72, 728 (1994)

3 K. Yang, K. Moon, L. Zheng, A.H. MacDonald, S.M. Girvin, D. Yoshioka, and Shou-

Cheng Zhang, Phys. Rev. Lett. 72, 732 (1994); X.G. Wen and A. Zee, Phys. Rev. Lett.

69, 1811 (1992); Z.F. Ezawa and A. Iwazaki, Phys. Rev. B 47, 7295 (1993).

4 K. Moon, H. Mori, Kun Yang, S.M. Girvin, A.H. MacDonald, L. Zheng, D. Yoshioka, and

Shou-Cheng Zhang, Phys. Rev. B 51, 5138 (1995).

5 Y.W. Suen, L.W. Engel, M.B. Santos, M. Shayegan, and D.C. Tsui , Phys. Rev. Lett.

68, 1379 (1992); J.P. Eisenstein, G.S. Boebinger, L.N. Pfeiffer, K.W. West, and Song He,

ibid. 68, 1383 (1992); D. Yoshioka, A.H. MacDonald, and S.M. Girvin, Phys. Rev. B 39,

1932 (1989); Song He, S. Das Sarma, and X.C. Xie, ibid. 47, 4394 (1993).

6 S. Das Sarma and P.I. Tamborenea, Phys. Rev. Lett. 73, 1971 (1994); R.J. Radtke, P.I.

Tamborenea, and S. Das Sarma, Phys. Rev. B 54, 13832 (1996).

7 Lian Zheng, R.J. Radtke, and S.. Das Sarma, Phys. Rev. Lett. 78, 2453 (1997).

8 V. Pellegrini, A. Pinczuk, B.S. Dennis, A.S. Plaut, L.N. Pfeiffer, and K.W. West, Phys.

Rev. Lett. 78, 310 (1997).

9 S. Das Sarma, S. Sachdev, and L. Zheng, Phys. Rev. Lett. 79, 917 (1997).
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FIGURES

FIG. 1. The energy per magnetic flux in the symmetric (SYM) state, the spin polarized

ferromagnetic (FM) state, and the canted antiferromagnetic (C) state for a ν = 2 double-layer

system with ∆sas = 0.07e2/εlo, ∆z = 0.01e2/εlo, and the well-thickness dw = 0.8lo.

FIG. 2. Schematic display of electron spin orientations in the canted antiferromagnetic quan-

tum Hall phase.

FIG. 3. The canted antiferromagnetic order parameter versus layer separation for the indicated

tunneling and Zeeman energies. The well-thickness d = 0.8lo.

FIG. 4. The zero temperature phase diagrams at ν = 2 within the Hartree-Fock approximation

at two different values of the Zeeman energy: (a) ∆z = 0.01e2/εlo and (b) ∆z = 0.01e2/εlo. The

quantum well thickness is dw = 0.8lo for both the figures. Three phases are present: the symmetric

phase (SYM), the spin polarized ferromagnetic phase (FM), and the canted antiferromagnetic phase

(C). The ‘+’ in (a) denotes the experimental sample parameters of Ref. 8. The vertical dotted line

in each figure indicated the ∆z = ∆sas condition, which is the naive phase boundary between the

FM (∆z > ∆sas) and the SYM (∆z < ∆sas) phase with an expected level crossing at ∆z = ∆sas.

FIG. 5. Feynman diagram for the intersubband spin density response function in the

time-dependent Hartree-Fock approximation, where solid lines are the self-consistent Hartree-Fock

electron Greens functions and wiggled lines are Coulomb interaction potentials.

FIG. 6. The inter-subband SDW dispersion ω±(q) in the spin polarized ferromagnetic (FM)

phase at ν = 2 with tunneling energy ∆sas = 0.02e2/εlo, Zeeman energy ∆z = 0.01e2/εlo, layer

separation d = 1.15lo, and the well-thickness dw = 0.8lo.

FIG. 7. The inter-subband SDW dispersion ω±(q) in the symmetric (SYM) phase at ν = 2 with

layer separation d = 0.85lo, Zeeman energy ∆z = 0.08e2/εlo, tunneling energy ∆sas = 0.35e2/εlo,

and the well-thickness dw = 0.8lo.
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FIG. 8. The low energy intersubband SDW mode ω−(q = 0) and the canted antiferromagnetic

order parameter (COP) versus tunneling energy with layer separation d = 1.0lo, Zeeman energy

∆z = 0.08e2/εlo, and the well-thickness dw = 0.8lo.

FIG. 9. The inter-subband SDW dispersion ω±(q) in the canted antiferromagnetic (C) phase

at ν = 2 with layer separation d = 1.15lo, tunneling energy ∆sas = 0.14e2/εlo, Zeeman energy

∆z = 0.01e2/εlo, and the well-thickness dw = 0.8lo.

FIG. 10. Zero temperature phase diagram of a ν = 2 double-layer quantum Hall system within

the Hartree-Fock approximation. The phase diagram is expressed in terms of scaled dimensionless

variables. The ‘+’ mark represents the experimental sample of Ref. 8. The Néel phase (N) at

∆z = 0 and ∆sas < 2U− is represented by the thick line. The M-point represents the quantum

critical point at ∆z = 0.

FIG. 11. The calculated Kosterlitz–Thouless critical temperature Tc versus tunneling energy

∆sas at different interlayer separations: dotted line d = 1.4 lo, solid line d = 1.2 lo, and dashed line

d = 1.0 lo. Zeeman energy ∆z = 0.04 e2/εlo. The layer-thickness dw = 0.8 lo.

FIG. 12. The heat capacity per magnetic flux of a ν = 2 double-layer quantum Hall sys-

tem as functions of temperature in the symmetry phase (SYM), in the spin-polarized ferromag-

netic phase (FM), and in the canted antiferromagnetic phase (C). The inset shows C/T 2, where

T = kBT/(e2/εlo), versus T in the C phase.

FIG. 13. Mean field phase diagram of the quantum rotor HamiltonianH in (3.10). The phases

are described in Section III A. Only the QF1 phase is expected to appear for the two-layer model

under consideration here, and is referred to elsewhere as the FM: the QF2 phase is an artifact of

the approximations made in deriving the rotor model. The SS phase was also called the SYM

phase in the Hartree Fock computations.
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FIG. 14. Mean field phase diagram of the soft-spin action Sφ in (3.14). The SS phase was also

called the SYM phase in the Hartree Fock computations. Notice that it captures the vicinity of the

point M in the rotor mean field phase diagram in Fig 13. The multicritical point M is described by

a relativistic continuum field theory with dynamic exponent z = 1. The SS-C boundary is a line

of second order transitions with dynamic exponent z = 2 and is described by action SΨ in (3.24).

The position of this boundary is given exactly by ∆ = ∆z, where ∆ ∼ rν is the ∆z = 0 spin gap of

the SS phase (ν is the correlation length exponent of M). The action SΨ holds for |∆−∆z| � ∆.

The N state has T = 0 spin stiffness ρs(0) ∼ (−r)ν, and for ∆z � ρs(0), the action Sn in (3.25)

describes low T fluctuations.

FIG. 15. (a) The Zero temperature phase diagram of a double-layer quantum Hall system

at ν = 2 within the Hartree-Fock approximation. This is the same diagram as Fig. 10. It is

redrawn here with the abscissa inverted. The ‘+’ mark represents the experimental sample of Ref.

8. The Néel phase (N) at ∆z = 0 and ∆sas < 2U− is represented by the thick line. (b) Zero

temperature phase diagram of a double-layer quantum Hall system at ν = 2ν1 derived from the

effective Lagrangean S2 (Eq. (3.8)). The inset shows the topologically identical Hartree-Fock phase

diagram of Fig. 10. The FPF, C, and SS phases in the main figure correspond to the FM, AF, and

SYM phases in the inset, respectively.

FIG. 16. The intersubband spin excitation transitions in a double-layer quantum Hall system

at ν = 2 in the (a) symmetric phase, (b) ferromagnetic phase, and (c) the canted antiferromagnetic

phase. The spin conserved transition (ω0 mode) has large spectral weight in the symmetric phase

and is prohibited in the ferromagnetic phase.
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