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We study the approach to equilibrium of a Bose gas to a superfluid state. We point out that dynamic scaling,
characteristic of far from equilibrium phase-ordering systems, should hold. We stress the importance of a
nondissipative Josephson precession term in driving the system to a new universality class. A model of
coarsening in dimensiond52, involving a quench between two temperatures below the equilibrium superfluid
transition temperature (Tc), is exactly solved and demonstrates the relevance of the Josephson term. Numerical
results on quenches from aboveTc in d52,3 provide evidence for the scaling picture postulated.
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The recent observation of Bose condensation in neutral,
trapped atomic gases@1# and excitons in Cu20 @2# opens up
exciting possibilities on experimental studies of time-
dependent nonequilibrium phenomena in a heretofore inac-
cessible regime. In particular, an issue which could be ex-
perimentally investigated, and which we shall address
theoretically in this paper is the following—upon quenching
a Bose gas to a final temperature (T) below Tc , how does
the condensate density grow with time before attaining its
final equilibrium value? A few recent papers@3,4# have ad-
dressed just this question, but they have focused on the early-
time ~on the order of a few collision times!, nonuniversal
dynamics. However, as has also been noted recently in Ref.
@5#, the interesting experimental questions are instead asso-
ciated with the long-time dynamics involving the coarsening
of the Bose condensate order parameter. This dynamics is
‘‘universal’’ in a sense that will be clarified below.

A natural and precise language for describing the evolu-
tion of the condensate is offered by recent developments in
the theory of phase-ordering dynamics in dissipative classi-
cal spin systems, as reviewed in the article by Bray@6#. In
this theory, one considers the evolution of a classical spin
system after a rapid quench from some highT to a lowT in
the ordered phase. The dynamics is assumed to be purely
relaxational, and each spin simply moves along the steepest
downhill direction in its instantaneous energy landscape. Lo-
cally ordered regions will appear immediately after the
quench, but the orientation of the spins in each region will be
different. The coarsening process is then one of alignment of
neighboring regions, usually controlled by the motion and
annihilation of defects~domain walls for Ising spins, vortices
for XY spins, etc.!. A key step in the theory is the introduc-
tion of a single length scalel (t), a monotonically increasing
function of the timet, which is about the size of a typical
ordered domain at timet. Providedl (t) is greater than mi-
croscopic length scales, like the range of interactions or the
lattice spacing, it is believed that the late stage morphology
of the system is completely characterized byl (t), and is
independent of microscopic details, i.e., it is universal. This
morphology is characterized by various time-dependent cor-
relation functions which exhibit universal scaling behavior.

We turn then to the Bose gas. The order parameter in this
case is the boson annihilation fieldc(r ,t) ~wherer is a spa-

tial coordinate!; the phase of the expectation value ofc is
aligned across the system in the equilibrium Bose-condensed
state. A key point is that after relatively few atomic colli-
sions, once the domain sizel (t) is large enough~e.g., larger
than the de Broglie wavelength!, it is permissible@4# to treat
c(r ,t) as a classical field which obeys Hamilton-Jacobi
equations of motion~for a related discussion on the emer-
gence of classical dynamics in the equilibrium properties of
an antiferromagnet, see Ref.@7#!. It must be kept in mind
that it is only the equations of motion for the collective order
parameter which are classical—the very existence of the
complex order parameter is due entirely to quantum mechan-
ics, and the fact that there is a wave function for the conden-
sate.

An important property of the equations of motion forc,
discussed below, is that they are not simply relaxational.
Instead, they contain nondissipative, kinematical ‘‘stream-
ing’’ or ‘‘Poisson bracket’’ terms@8#. One such term is re-
sponsible for the Josephson precession of the phase ofc at a
rate determined by the local chemical potential. A central
objective of this paper is to understand the consequences of
such terms on the phase-ordering theories of Ref.@6#. We
will argue that the Josephson term constitutes a relevant per-
turbation on the dynamics and that the resulting coarsening
process belongs to a new universality class. Specifically, in
the remainder of the paper we will~i! exactly solve a model
of ad52 Bose gas always in contact with a reservoir, where
the temperature of the reservoir is suddenly switched be-
tween two temperatures belowTc @10#; ~ii ! present numerical
results on the time evolution of an isolated Bose gas in
d52,3, where the initial state has no superfluid fraction,
while the final state is superfluid.

We will begin by considering a solvable coarsening prob-
lem which illustrates the possible consequences of the Jo-
sephson term in a simple setting. Ad52 Bose gas is super-
fluid for T,TKT , the well-known Kosterlitz-Thouless
phase-transition temperature; consider the phase-ordering
process in which the Bose gas is moved at timet50 from
contact with a reservoir at an initialT5Ti , to a reservoir
with a finalT5Tf , such thatTf,Ti,TKT ; a similar quench
was considered in Ref.@10# for the purely dissipativeXY
model. In the long-time limit, all vortices and fluctuations in
the amplitude ofc can be neglected, and we may param-
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etrizec5eif. The free-energy density in the purely dissipa-
tive XY model @10# is now determined simply by the gradi-
ents of the phase;(¹f)2. In the case of the Bose gas, it is
also necessary to take the conserved number density into
account. Letm be proportional to the deviation of the par-
ticle density from its mean value; then the free-energy den-
sity we shall work with is

F5
1

2E d2r @~¹f!21m2#. ~1!

We have rescaled spatial coordinates andm to obtain conve-
nient coefficients inF. The Josephson precession term,
whose effects we wish to study, is contained in the Poisson
bracket

$m~r !,f~r 8!%5g0d~r2r 8!, ~2!

whereg0 is a constant. The method reviewed in Ref.@8# now
leads to thelinear equations of motion@11#

]f

]t
5G0¹

2f1g0m1u,
]m

]t
5l0¹

2m1g0¹
2f1z,

~3!

where the coefficientsG0 ,l0.0 represent the dissipation
arising from the coupling of the system to the reservoir. The
effects of the reservoir are also contained in the Gaussian
noise sourcesu and z with zero mean and~for t.0)
correlations appropriate toT5Tf : ^u(r ,t)u(r 8,t8)&
52G0Tfd(r2r 8)d(t2t8),^z(r ,t)z(r 8,t8)&522l0Tf¹

2d(r
2r 8)d(t2t8), and^z(r ,t)u(r 8,t8)&50 (kB51). Equations
~3! are linear, can be easily integrated, and all correlations
can be computed exactly.

Let us first recall the structure of the solutions expected
from naive scaling@6# for d>2. For our models we expect
the domain sizel (t);t1/z wherez is a nonequilibrium dy-
namic exponent. We consider the behavior of two correlation
functions: ~i! The equal-time correlator G(r ,t)
5^c* (r ,t)c(0,t)& ~the k50 component of the spatial Fou-
rier transform ofG is proportional to the condensate frac-
tion!. Under scaling we expect for larger and t,
G(r ,t);r2h fg(r /t1/z) whereg is a universal scaling func-
tion h f50 for d.2 while in d52, h f (5Tf /2p for F1) is
the equilibrium exponent of the quasi-long-range order at
T5Tf . ~ii ! The unequal-time correlation function
C(r ,t)5^c* (r ,t)c(0,0)& for which we expect for larger
and t, C(r ,t);t2l/zf (r /t1/z) where f is a universal scaling
function, andl is a dynamic exponent.

It turns out that our modelF does not completely obey
the simple scaling hypotheses as stated above. This becomes
clear upon considering the two-time correlationC which
turns out to depend upontwo large length scales
l 1(t);(at)1/2 and l 2(t);g0t ~with a5(G01l)/2): it obeys
the scaling form C(r ,t);t2(3h i1h f )/4f̃ (r /(at)1/2,r /(g0t))
~whereh i5Ti /2p). The dependence of these scales ong0
suggests thatg0 is a relevant perturbation with renormaliza-
tion group eigenvalue 1, in the language of Ref.@6#. The
scaling functionf̃ was determined to be

f̃ ~x1 ,x2!5expF2h iE
0

`dy

y
$12J0~y!%cos~y/x2!e

2y2/x1
2G .

~4!

For r; l 1(t), we use f̃ (x1 ,x2→0)51: this shows that the
autocorrelationC(0,t);t2(3h i1h f )/4 in contrast to the result
in the model of Ref.@10# C(0,t);t2(h i1h f )/4. On the con-
trary, one could insist on a scaling picture using only the
single larger length scaler; l 2(t), and would then need
f̃ (x1→`,x2) which equals@11A12x2

2#2h i for x2,1 and
equalsx2

2h i for x2>1. It can also be checked that one recov-
ers the initial equal-time equilibrium result forC(r ,t) when
r→` with t large but fixed. We also note that the relevance
of g0 is evident in the autocorrelations ofm. We find
^m(0,t)m(0,0)&;(1/t) f 1(g0At/a) where

f 1~t!54p2h iF12E
0

`

sinye2y2/2t2dyG ; ~5!

clearly, forg050, this autocorrelator decays as 1/t for large
t, while for nonzerog0 it decays faster ast22. Finally, re-
sults on the equal-timec correlatorG. It has a crossover at a
time t1;ã/g0

2 with ã5uG02l0u; this time is similar to the
crossover time in̂m(0,t)m(0,0)&, except thatã has replaced
a. Both for t!t1 and for t@t1, G obeys a scaling form
similar to that obtained in the relaxational model of Ref.@10#
~which hasg050): G(r ,t);r2h fg(r /(gt)1/2) whereg is a
scaling function described in Ref.@10#; however, the rate
g5G0 for t!t1 andg5a for t@t1.

While this phase only modelF is not relevant for study-
ing quenches from above the transition temperature~since it
neglects the nonlinear terms!, the exact solution of this linear
model is quite instructive. It clearly emphasizes the impor-
tance of the nondissipative Josephson coupling term. In fact
as seen above, the presence of this term (g0Þ0) changes the
universality class of the system. Thus it is reasonable to ex-
pect that even for quenches from above the transition tem-
perature, this term would play an important role. In this case,
after the quench the system has defects~e.g., vortices in two-
dimensions!. As time progresses, these defects move around
and annihilate each other and the system becomes more and
more ordered. To study this coarsening process that proceeds
via the annealing of defects it is necessary to study the evo-
lution of both the phase and amplitude ofc. This growth of
long-range order in the system can be studied in two differ-
ent ways. In one case one considers the time evolution of an
isolatedBose gas, not in contact with a reservoir. Though the
dynamics in this case is nondissipative, the system still ex-
hibits an irreversible approach to equilibrium. In the other
case, the Bose gas is in contact with a heat bath. These are
the analogues of microcanonical and canonical ensembles in
equilibrium statistical mechanics. It is reasonable to expect
that both descriptions would lead to the same results for
universal scaling properties. Most previous studies on coars-
ening have been done in the ‘‘canonical’’ ensemble. How-
ever in this paper, we use the ‘‘microcanonical’’ approach.
To the best of our knowledge, this approach has never been
used before to study coarsening in any system. As we will
see below, the dynamics in the ‘‘microcanonical’’ ensemble
is completely specified by the Hamiltonian of the system
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with no additional phenomenological parameters. The ‘‘ca-
nonical’’ dynamics, on the other hand, needs several phe-
nomenological constants as input parameters.

For the isolated Bose gas~‘‘microcanonical’’ ensemble!,
an excellent approximation for the total energy of an order-
parameter configuration c(r ,t) is H5*ddr @ u¹cu2

1 u
2 ucu4#, where we have rescaled lengths to make the co-

efficient of the gradient term unity, andu.0 is the two-
particle T matrix at low momentum. The Hamilton-Jacobi
equation of motion forc follows from the Poisson bracket
$c,c* %5 i

i
]c

]t
5@2¹21uucu2#c, ~6!

and is the well-known@12# Gross-Pitaevski~GP! or nonlin-
ear Schro¨dinger equation. We can also add a quadraticucu2
term to H, and it leads to a term linear inc in the GP
equation; however this linear term can be eliminated by an
innocuous global phase change inc. The GP equation con-
serves the total number of particles*ddr ucu2, the total mo-
mentum, andH, and hence there is no global dissipation of
energy. Nevertheless, in the thermodynamic limit, the GP
equation does display irreversible coarsening, as will be
abundantly clear from our numerical results to be described
later: a random initial state with a negligible number of par-
ticles in the zero momentum (k) state~i.e., short-range initial
correlations!, evolves eventually to a state with a condensate
fraction equal to that expected at equilibrium in the micro-
canonical ensemble at the total energy of the initial state.

In the ‘‘canonical’’ approach on the other hand, it is per-
missible to add dissipative terms to the equation of motion of
c. A simple additional damping term to the GP equation
leads to a model expected to be in the same universality class
of the so-called Model A@8,6#; this model is, however, not
acceptable: it violates local conservation of the particle den-
sity, and, as discussed near~3!, it is necessary@8,13# to in-
troduce the density fluctuation field,m(r ,t); the value of
uc(r ,t)u2 is then the contribution to the particle density from
low-momentum states, whilem(r ,t) represents the density
fluctuation from all states; the Poisson bracket in this case is
$m(r ),c(r 8)%5 ig0c(r )d(r2r 8). This is model F in the
language of Ref.@8# ~see also@9#!. Note that the strength of
the crucial precession term in the dynamics is controlled by
g0 which is an adjustable phenomenological parameter
~however, in the Hamiltonian dynamics considered earlier,
there is no such freedom!. Numerical study of coarsening
using model F could thus be complicated by crossover ef-
fects associated with the adjustable value ofg0 (g050 cor-
responds to the purely dissipative model-A dynamics, which
is clearly in a different universality class!.

We therefore restrict our numerical study here to the GP
model. All of the numerical results obtained so far are con-
sistent with the simplest naive scaling hypotheses described
earlier, and do not require the introduction of two length
scales, as was necessary in the linear model above~though
we have not yet obtained numerical results on unequal-time
correlations, for which the linear modelF clearly displayed
two length scales!. We will present results both ind52 and
d53. Thed52 system allowed us to study larger sizes with
better finite-size scaling properties.

We discretized~6! on a lattice, and integrated in time
using a fast Fourier transform based algorithm which con-
served energy and particle number to a high accuracy. We
work in units where the lattice spacing is unity and choose
the scale of the lattice field to make the density one. We set
u to be approximately 0.25 so that we are considering a
dilute gas. We choose an ensemble of initial conditions with
a narrow distribution of energy, whose width goes to zero in
the thermodynamic limit. We assign initial values to the
Fourier components c(k,0) as follows: c(k,0)
5An0(k)exp@if(k)# where thef(k)’s are independent ran-
dom variables chosen from a uniform distribution with range
@0,2p# and the functionn0(k) is chosen to ensure that initial
real-space correlations are short-ranged~corresponding to a
‘‘high-temperature’’ configuration! while still having low
enough energy so that the equilibrium state corresponding to
this energy is superfluid. Though the ensemble of initial con-
ditions is not strictly the Gibbs distribution at any tempera-
ture, it is however expected that the precise details of the
initial conditions do not matter for the late time universal
properties as long as the initial correlations are short ranged.

More specifically we chose n0(k)5c/(@e(k)
1m1#„exp@(e(k)2m2)/T#11…) wheree(k) is the Fourier rep-
resentation of the lattice version of the Laplacian andc sets
the overall scale ofn0(k). Here one chooses the parameters
m1, m2 , andT to achieve the appropriate trade-off between
energy and correlation length. Note that this careful choice
of initial conditions is needed as the GP equation does not
have any explicit dissipation and the system evolves in phase
space on a constant energy surface.

We used finite-size scaling to model the results in a finite
system of linear dimensionL: it predicts a scaling form
G(r ,t)5L2hFG@r /L,t/Lz# for the equal-time correlation
function. In d53 the exponenth50, while in d52, it is
associated with the final equilibrium state and varies continu-
ously with temperature. The structure factorS(k,t) is ob-
tained by a spatial Fourier transform ofG(r ,t), and the num-
ber of particles in thek50 mode is clearlyS(0,t); the latter
should satisfy S(0,t);L22hF@ t/Lz# in d52 and
S(0,t);L3F@ t/Lz# in d53. The scaling functionF goes to
a constant fort@Lz and the system attains equilibrium after
a time t;Lz.

Results ford52 are shown in Fig 1. We performed finite-
size scaling analysis forL516, 32, and 64 and found rea-
sonable data collapse withh'0.27 andz'1.1. The value of
h indicates that we are at a nonzero temperature close to
TKT ; strictly speaking we must haveh,1/4, but the value of
h is relativelyT independent nearTKT , and the discrepancy
is within our numerical errors. The value ofz is in sharp
contrast to thez52 ~with logarithmic corrections! result ob-
tained by various groups@14,15# for the purely dissipative
Model-A dynamics@8# ~obtained from Model F by setting
g050 and ignoringm) of classicalXY spins. Although we
have determined the value ofz for a quench to a particular
temperatureTf , we expect thatz is the same for all
0,Tf,TKT . Results ford53 are shown in Fig. 2 for linear
sizesL516,32. The data collapse is not as good as that in
d52, but again we obtained az'1.1. Thus our numerical
results, both ind52 and 3, are consistent with a value of
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z51, which is also the result suggested by the exact calcu-
lation in the phase only model.

Finally, we close with some physical discussion on rea-
sons for the difference between the GP model, and quenches
in the purely dissipative Model A@14,15#. The dynamics in
the GP model proceeds via the annihilation of nearby vortex-
antivortex pairs~in d52) as in Model A. However there is
an important difference between the two in the details of the
vortex motion. In Model A, oppositely charged vortices at-
tract each other with a force that falls off as the inverse of
their separation~apart from logarithmic corrections!. Since
the dynamics is overdamped, this impliesl (t);t1/2. In the
GP model, on the other hand, the situation is more complex.
In addition to vortices, the system also has a propagating
‘‘spin-wave’’ mode arising from the streaming terms. A pair

of oppositely charged vortices, apart from attracting each
other, also interacts with the spin-wave background. In addi-
tion, it experiences a Magnus force which causes the pair to
move with uniform velocity in a direction perpendicular to
the line joining them. These qualitative differences in the
nature of the defect dynamics change the universality class
of the coarsening process.

In summary, we have presented evidence, both analytical
and numerical, that the phase-ordering dynamics of the Bose
gas belongs to a new universality class. A particular conclu-
sion of this work is that the condensate density of the Bose
gas, following a sudden quench from the normal to the su-
perfluid phase in dimensionsd>2, will grow at late times as
td/z. We have presented evidence, both analytical and nu-
merical, thatz51.
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