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Phase ordering kinetics of the Bose gas
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We study the approach to equilibrium of a Bose gas to a superfluid state. We point out that dynamic scaling,
characteristic of far from equilibrium phase-ordering systems, should hold. We stress the importance of a
nondissipative Josephson precession term in driving the system to a new universality class. A model of
coarsening in dimensioth= 2, involving a quench between two temperatures below the equilibrium superfluid
transition temperaturel(), is exactly solved and demonstrates the relevance of the Josephson term. Numerical
results on quenches from abovE. in d=2,3 provide evidence for the scaling picture postulated.
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The recent observation of Bose condensation in neutratjal coordinate; the phase of the expectation value ifis
trapped atomic gasé4] and excitons in C40 [2] opens up  aligned across the system in the equilibrium Bose-condensed
exciting possibilities on experimental studies of time-state. A key point is that after relatively few atomic colli-
dependent nonequilibrium phenomena in a heretofore inacsions, once the domain sitg) is large enougtte.g., larger
cessible regime. In particular, an issue which could be exthan the de Broglie wavelengttit is permissiblg4] to treat
perimentally investigated, and which we shall address)(r,t) as aclassical field which obeys Hamilton-Jacobi
theoretically in this paper is the following—upon quenchingequations of motior(for a related discussion on the emer-
a Bose gas to a final temperatur€) (below T., how does gence of classical dynamics in the equilibrium properties of
the condensate density grow with time before attaining itsan antiferromagnet, see R¢f]). It must be kept in mind
final equilibrium value? A few recent papd3,4] have ad- that it is only the equations of motion for the collective order
dressed just this question, but they have focused on the earlparameter which are classical—the very existence of the
time (on the order of a few collision timgsnonuniversal complex order parameter is due entirely to quantum mechan-
dynamics. However, as has also been noted recently in Ref;s, and the fact that there is a wave function for the conden-
[5], the interesting experimental questions are instead asssate.
ciated with the long-time dynamics involving the coarsening An important property of the equations of motion fgr
of the Bose condensate order parameter. This dynamics @iscussed below, is that they are not simply relaxational.
“universal” in a sense that will be clarified below. Instead, they contain nondissipative, kinematical “stream-

A natural and precise language for describing the evoluing” or “Poisson bracket” termg8]. One such term is re-
tion of the condensate is offered by recent developments iaponsible for the Josephson precession of the phageabh
the theory of phase-ordering dynamics in dissipative classirate determined by the local chemical potential. A central
cal spin systems, as reviewed in the article by Bf@ly In  objective of this paper is to understand the consequences of
this theory, one considers the evolution of a classical spirsuch terms on the phase-ordering theories of R&f. We
system after a rapid quench from some higlo a lowT in  will argue that the Josephson term constitutes a relevant per-
the ordered phase. The dynamics is assumed to be purelyrbation on the dynamics and that the resulting coarsening
relaxational, and each spin simply moves along the steepeptocess belongs to a new universality class. Specifically, in
downhill direction in its instantaneous energy landscape. Lothe remainder of the paper we wiil) exactly solve a model
cally ordered regions will appear immediately after theof ad=2 Bose gas always in contact with a reservoir, where
guench, but the orientation of the spins in each region will behe temperature of the reservoir is suddenly switched be-
different. The coarsening process is then one of alignment dfveen two temperatures beldly [10]; (ii) present numerical
neighboring regions, usually controlled by the motion andresults on the time evolution of an isolated Bose gas in
annihilation of defectédomain walls for Ising spins, vortices d=2,3, where the initial state has no superfluid fraction,
for XY spins, eto. A key step in the theory is the introduc- while the final state is superfluid.
tion of a single length scalgt), a monotonically increasing We will begin by considering a solvable coarsening prob-
function of the timet, which is about the size of a typical lem which illustrates the possible consequences of the Jo-
ordered domain at time ProvidedI(t) is greater than mi- sephson term in a simple setting.d®2 Bose gas is super-
croscopic length scales, like the range of interactions or thfluid for T<Tyr, the well-known Kosterlitz-Thouless
lattice spacing, it is believed that the late stage morphologyphase-transition temperature; consider the phase-ordering
of the system is completely characterized Ify), and is  process in which the Bose gas is moved at timed from
independent of microscopic details, i.e., it is universal. Thiscontact with a reservoir at an initidll=T,, to a reservoir
morphology is characterized by various time-dependent cormwith a final T="T;, such thafl;<T;<Tgt; a similar quench
relation functions which exhibit universal scaling behavior. was considered in Refl0] for the purely dissipativeXY

We turn then to the Bose gas. The order parameter in thimodel. In the long-time limit, all vortices and fluctuations in
case is the boson annihilation fiefe(r,t) (wherer is a spa- the amplitude ofys can be neglected, and we may param-
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etrize y=e€'®. The free-energy density in the purely dissipa- =dy 5 2
tive XY model[10] is now determined simply by the gradi- f(lexz)ZeXF{ - ﬁif —{1-Jo(y)}cogy/x,)e Y.
ents of the phase (V¢)?. In the case of the Bose gas, it is oY 4
also necessary to take the conserved number density into

account. I__etm be _proportional to. the deviation of the par- g, F~1,(t), we use?(xl,x2—>0)=1: this shows that the
ticle density from its mean value; then the free-energy denéutocorrelatiorC(O,t)~t*(3’7i+”f)’4 in contrast to the result

sity we shall work with is in the model of Ref[10] C(0t)~t~ (7" 70/ On the con-
1 trary, one could insist on a scaling picture using only the
_ ingle larger length scale~I,(t), and would then need
F= —f d?r[(V¢)?+m?]. n N9 , 2
2 (V) ! @ f(X1—00,X5) which equals[1+\/1—x22]*’7i for x,<1 and

equalsx, " for x,=1. It can also be checked that one recov-
We have rescaled spatial coordinates antb obtain conve-  ers the initial equal-time equilibrium result f@(r,t) when

nient coefficients inF. The Josephson precession term,r .« with t large but fixed. We also note that the relevance
whose effects we wish to study, is contained in the Poissogf g, is evident in the autocorrelations ofi. We find

bracket (m(0,t)m(0,0))~ (1/t) f1(go\t/a) where

{m(r), $(r')}=god(r—r"), @ f1()=dnln, 1—J:Si”ye_y2/272dy - ©

whereg is a constant. The method reviewed in H&f. now
leads to thdinear equations of motiofi11] clearly, forgy=0, this autocorrelator decays a$ fdr large
t, while for nonzerog, it decays faster as 2. Finally, re-
b am sults on the equal-time correlatorG. It has a crossover at a
E=F0V2¢+ gom-+ 6, W:"OVZ”H 9oV2e+¢, time t;~a/g§ with &= |T'o—\|; this time is similar to the
(3y  crossover time igm(0,t)m(0,0)), except thak has replaced
a. Both for t<t, and fort>t;, G obeys a scaling form

.- ... similar to that obtained in the relaxational model of R&D]
e acbresent e dissaton (uich hasgy0): G101 "9y whereg i

9 piing y . X " . scaling function described in Refl10]; however, the rate
effects of the reservoir are also contained in the Gaussian

) . v=Tg for t<t, and y=a for t>t,.
noise sourcesd and ¢ with zero mean andfor t>0) . . L 5
correlations appropriate  toT=T,: (6(r,)6(r' ')} While this phase only modefF is not relevant for study

, p O ing quenches from above the transition temperatsirece it
=20 T¢8(r—r")8(t—t") (L(r,t)Z(r' ,t"))=—2NoT;V25(r : : o
—r")8(t—t"), and({(r,t)6(r’,t'))=0 (kg=1). Equations neglects the nonlinear terishe exact solution of this linear

3 i b iy int ted d all lati model is quite instructive. It clearly emphasizes the impor-
aré finear, can be easily integrated, and all correlaliong,,q of the nondissipative Josephson coupling term. In fact
can be computed exactly.

Let us first recall the structure of the solutions expectecﬁS seen above, the presence of this teggw{0) changes the

f ; ling6] for d=2. F del i niversality class of the system. Thus it is reasonable to ex-
rom naive scaiin Szr = <. 70T our models we expec pect that even for quenches from above the transition tem-
the domain sizd(t)~t** wherez is a nonequilibrium dy-

; ) : .__perature, this term would play an important role. In this case,
namic exponent. We consider the behavior of two correlatior) ¢ tha quench the system has deféetg., vortices in two-
functions: (i) The equal-time correlator G(r,t) N

= B . dimensiong As time progresses, these defects move around
T<¢*(r’t) Y(01)) (t_he k=0 component of the spatial Fou- 4 anpihilate each other and the system becomes more and
rier transform ofG is proportional to the condensate frac-

. d i for | d more ordered. To study this coarsening process that proceeds
tion). ‘Under scaling we expect for large and t, ;s the annealing of defects it is necessary to study the evo-
G(r,t)~r~ 7ig(r/t~*) whereg is a universal scaling func-

; B S a ; lution of both the phase and amplitude f This growth of
tion 7¢=0 for d>2 while ind=2, 7; (=T¢/2m for /1) IS |5ng.range order in the system can be studied in two differ-

the equilibrium exponent of the quasi-long-range order ag¢\ways. In one case one considers the time evolution of an
T=Ts. ("*) The —unequal-time correlation function jsoatedBose gas, not in contact with a reservoir. Though the
C(r,t)=(y (r,tlz}\p/(0,0))l/for which we expect for larg€  gynamics in this case is nondissipative, the system still ex-
andt, C(r,t)~t™"*f(r/t"%) wheref is a universal scaling pipjts an irreversible approach to equilibrium. In the other
function, and\ is a dynamic exponent. case, the Bose gas is in contact with a heat bath. These are
It turns out that our modef does not completely obey the analogues of microcanonical and canonical ensembles in
the simple scaling hypotheses as stated above. This becomggilibrium statistical mechanics. It is reasonable to expect
clear upon considering the two-time correlati@hwhich  that poth descriptions would lead to the same results for
turns out to depend uportwo large length scales ynjyersal scaling properties. Most previous studies on coars-
11(t)~ (at)? andl5(t) ~got (with a=(I'q+))/2): it obeys  ening have been done in the “canonical’ ensemble. How-
the scaling form C(r,t)~t~ G774 (r/(at)¥2r/(got))  ever in this paper, we use the “microcanonical” approach.
(where 7;=T;/2m). The dependence of these scalesggn To the best of our knowledge, this approach has never been
suggests thag, is a relevant perturbation with renormaliza- used before to study coarsening in any system. As we will
tion group eigenvalue 1, in the language of Ré]. The  see below, the dynamics in the “microcanonical” ensemble
scaling functionf was determined to be is completely specified by the Hamiltonian of the system
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with no additional phenomenological parameters. The “ca- We discretized(6) on a lattice, and integrated in time
nonical” dynamics, on the other hand, needs several phedsing a fast Fourier transform based algorithm which con-
nomenological constants as input parameters. served energy and particle number to a high accuracy. We
For the isolated Bose gdSmicrocanonical” ensemblg  work in units where the lattice spacing is unity and choose
an excellent approximation for the total energy of an orderthe scale of the lattice field to make the density one. We set
parameter ~ configuration ¢(r,t) is H=[d[|V¥]*> | to be approximately 0.25 so that we are considering a
+ ¥ |¥]*], where we have rescaled lengths to make the codilute gas. We choose an ensemble of initial conditions with
efficient of the gradient term unity, ana>0 is the two- a narrow distribution of energy, whose width goes to zero in
particle T matrix at low momentum. The Hamilton-Jacobi the thermodynamic limit. We assign initial values to the
equation of motion fory follows from the Poisson bracket Fourier components (k,0) as follows: w(k,0)
{gy* =i = Jno(k)exfi#(K)] where thep(k)’s are independent ran-
dom variables chosen from a uniform distribution with range
ia_wz[_VZjL uly|?y, (6) [0,27r] and the functiomg(k) is chosen to ensure that initial
ot real-space correlations are short-rangeotresponding to a
“high-temperature” configuration while still having low
enough energy so that the equilibrium state corresponding to

term to H, and it leads to a term linear ig in the GP this energy is superfluid. Though the ensemble of initial con-

equation; however this linear term can be eliminated by arffitions is not strictly the Gibbs distribution at any tempera-
innocuous global phase changeyn The GP equation con- f[u.rt.a, it is hqwever expected that the precise detall§ of the
serves the total number of particl§g®r| |2, the total mo-  initial conditions do not matter for the late time universal
mentum, and, and hence there is no global dissipation of Properties as long as the initial correlations are short ranged.
energy. Nevertheless, in the thermodynamic limit, the GP More  specifically ~we  chose no(k)=c/([e(k)
equation does display irreversible coarsening, as will bet 1](exf(e(K)—u2)/T]+1)) wheree(K) is the Fourier rep-
abundantly clear from our numerical results to be describediesentation of the lattice version of the Laplacian arskts
later: a random initial state with a negligible number of par-the overall scale ofiy(k). Here one chooses the parameters
ticles in the zero momentunk] state(i.e., short-range initial w4, u», andT to achieve the appropriate trade-off between
correlation$, evolves eventually to a state with a condensateenergy and correlation length. Note that this careful choice
fraction equal to that expected at equilibrium in the micro-of initial conditions is needed as the GP equation does not
canonical ensemble at the total energy of the initial state. have any explicit dissipation and the system evolves in phase
In the “canonical” approach on the other hand, it is per- space on a constant energy surface.
missible to add dissipative terms to the equation of motion of * \ye ysed finite-size scaling to model the results in a finite
. A simple additional damping term to the GP equationgystem of linear dimensioi.: it predicts a scaling form
leads to a model expected to be in the same universality cla§§(r,t) —L~"dg[r/Lt/L?] for the equal-time correlation
of the so-called Model A8,6]; this model is, however, not ¢ - ion Ind=3 the exponenty=0, while in d=2, it is

acceptable: it violates local conservation of the particle denEissociated with the final equilibrium state and varies continu-

sity, and, as discussed ne@, it is necessary8, 13 to in- ously with temperature. The structure fact®(k,t) is ob-

troduce the density fluctuation fielan(r,t); the value of tained by a spatial Fourier transform@(r,t), and the num
|4(r,t)|# is then the contribution to the particle density from ber of particles in thi=0 mode is clearkS(01): the latter

low-momentum states, whilen(r,t) represents the density ) e .
fluctuation from all states; the Poisson bracket in this case ighould ;atlsfyz 3_(0I)~L2 ”CID[t/L_Z] in _d=2 and
{m(r), ¢(r")y=igoy(r)8(r—r'). This is model F in the S(0t)~L°®[t/L?] in d=3. The scaling functlo@ goes to
language of Ref[8] (see alsd9]). Note that the strength of @ c_onstant fot>LZ% and the system attains equilibrium after
the crucial precession term in the dynamics is controlled by timet~L~
go Wwhich is an adjustable phenomenological parameter Results ford=2 are shown in Fig 1. We performed finite-
(however, in the Hamiltonian dynamics considered earliersize scaling analysis for =16, 32, and 64 and found rea-
there is no such freedomNumerical study of coarsening Ssonable data collapse with~0.27 andz~1.1. The value of
using model F could thus be complicated by crossover ef# indicates that we are at a nonzero temperature close to
fects associated with the adjustable valueggf(go=0 cor-  Tkr; strictly speaking we must have<1/4, but the value of
responds to the purely dissipative model-A dynamics, which is relatively T independent neafr, and the discrepancy
is clearly in a different universality class is within our numerical errors. The value afis in sharp
We therefore restrict our numerical study here to the GReontrast to the=2 (with logarithmic correctionsresult ob-
model. All of the numerical results obtained so far are contained by various groupgl4,15 for the purely dissipative
sistent with the simplest naive scaling hypotheses describgdodel-A dynamics[8] (obtained from Model F by setting
earlier, and do not require the introduction of two lengthgo=0 and ignoringm) of classicalXY spins. Although we
scales, as was necessary in the linear model alineigh  have determined the value offor a quench to a particular
we have not yet obtained numerical results on unequal-timéemperatureT;, we expect thatz is the same for all
correlations, for which the linear modd clearly displayed O0<T;<Ty. Results ford=3 are shown in Fig. 2 for linear
two length scales We will present results both id=2 and  sizesL=16,32. The data collapse is not as good as that in
d=3. Thed=2 system allowed us to study larger sizes withd=2, but again we obtained z=1.1. Thus our numerical
better finite-size scaling properties. results, both ind=2 and 3, are consistent with a value of

and is the well-knowrj12] Gross-PitaevskiGP) or nonlin-
ear Schrdinger equation. We can also add a quadrpfié
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FIG. 2. Numerical results for the GP equationds3. The

FIG. 1. Numerical results from the simulation of the GP equa- i et g

tion in d=2. The number of particles in the zero momentum state ig"0tation is as in Fig. 1, with the exponent1.15.

S(0,t) and the figure shows its scaling properties as a function of

system sizd_ and timet. The inset shows the scaling of the equi-

librium equal-time correlation functio(r,t—). The best scal- 0f oppositely charged vortices, apart from attracting each

ing collapse was obtained in both plots fg=0.27 andz~1.1. The  other, also interacts with the spin-wave background. In addi-
tion, it experiences a Magnus force which causes the pair to

move with uniform velocity in a direction perpendicular to
the line joining them. These qualitative differences in the

scale of all axegexcept the values af/L) are arbitrary.
YRature of the defect dynamics change the universality class

latlEi?]é\rI]I;h%ghcﬁsgeowi)t/hms%drgg physical discussion on rea: of the coarsening process. ; ;
P In summary, we have presented evidence, both analytical

sons for the difference between the GP model, and quencheg, numerical, that the phase-ordering dynamics of the Bose
gas belongs to a new universality class. A particular conclu-

sion of this work is that the condensate density of the Bose

as, following a sudden quench from the normal to the su-

erfluid phase in dimensiorks=2, will grow at late times as

ftd’z. We have presented evidence, both analytical and nu-

z=1, which is also the result suggested by the exact calc

in the purely dissipative Model A14,15. The dynamics in
the GP model proceeds via the annihilation of nearby vortex
antivortex pairgin d=2) as in Model A. However there is
an important difference between the two in the details of th
vortex motion. In Model A, oppositely charged vortices at-
tract each other with a force that falls off as the inverse o
their separatior(apart from logarithmic correctionsSince

the dynamics is overdamped, this impligs)~t*2. In the
GP model, on the other hand, the situation is more complexproblem, and M.P.A. Fisher and A. Bhattacharya for useful
In addition to vortices, the system also has a propagatingiscussions. This research was supported by NSF Grants

merical, thatz=1.
We thank D. Kleppner for stimulating our interest in this

“spin-wave” mode arising from the streaming terms. A pair DMR-92-24290 and DMR-91-20525.
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