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‘We introduce an effective field theory for the vicinity of a zero-temperature quantum transition
between a metallic spin glass (“spin-density glass”) and a metallic quantum paramagnet. Following
a mean-field analysis, we perform a perturbative renormalization-group study and find that the
critical properties are dominated by static disorder-induced fluctuations, and that dynamic quantum-
mechanical effects are dangerously irrelevant. A Gaussian fixed point is stable for a finite range of
couplings for spatial dimensionality d > 8, but disorder effects always lead to runaway flows to
strong coupling for d < 8. Scaling hypotheses for a static strong-coupling critical field theory are
proposed. The nonlinear susceptibility has an anomalously weak singularity at such a critical point.
Although motivated by a perturbative study of metallic spin glasses, the scaling hypotheses are
more general, and could apply to other quantum spin glass to paramagnet transitions.

I. INTRODUCTICON

Electronic systems with strong randomness and strong
interactions! have been studied in a number of experi-
mental systems including doped semiconductors, metallic
alloys, and most recently in the doped cuprate and doped
heavy-fermion compounds. Some of the most interesting
physics in these materials arises from the complex in-
terplay of the fermionic, charge-carrying excitations and
the spin fluctuations. A number of distinct equilibrium
thermodynamic phases are possible, even at zero tem-
perature (T'). In the charge sector, we may have metallic
and insulating phases (within the insulator we may also
distinguish further between a Mott insulator, with a true
T = 0 charge gap, and a Fermi glass, which has local-
ized, gapless, charged excitations). In the spin sector,
the ground state can either be a spin glass, in which each
spin has an infinite-time memory of its spatially random
moment, or a quantum paramagnet, in which the spin
correlations decay to zero in the long-time limit. There
does not appear to be any fundamental principle con-
straining the relative positions of the transitions in the
charge and spin sectors, leading to a rich phenomenoclogy
of possible T = 0 phases and critical points.

Previous work has examined the quantum paramag-
net phase both in the Mott insulator? (where the spin
fluctuations can be described by a quantum Heisenberg
spin model) and the metal.® Studies of the spin-glass
phase and its onset have, however, been mostly restricted
to the insulating phase. In an infinite-range Heisenberg
model of the Mott insulator an instability of the quantum
paramagnet to a possible spin-glass was noted.? Greater
progress has been made in elucidating the quantum para-
magnet to spin-glass transition in insulating models of
Ising spins in a transverse field (which may be appropri-
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ate for insulators with strong crystalline anisotropy) and
quantum rotors.5 7 The methodology of a recently devel-
oped Landau theory for this transition in the Ising and
rotor models? will be very useful to us below.

In this paper, we shall analyze systems in the vicin-
ity of a T' = 0 transition between a spin glass and a
quantum paramagnet occurring while the charge sector
is metallic. Our motivation for this study comes partly
from recent experiments in heavy-fermion compounds
like Y1--U.Pds,® which appear to show a paramagnet
to spin-glass transition with increasing doping (x) in a
metallic regime. “We shall make a few remarks about
these experimental systems at the end of the paper.

We will begin by introducing in Sec. IT a quantum field
theory, A, for metallic spin glasses; our approach suggests
the identification “spin-density glass” for such systems.
In Sec. III we will determine the mean-field phase dia-
gram of A as a function of a quantum coupling, tempera-
ture, and an external magnetic field. Fluctuations about
mean field will be studied in Sec. IV, first by a pertur-
bative renormalization group (RG) analysis (Sec. IV A),
which finds flows to strong coupling for spatial dimen-
sions d < 8. These results will then be used (Sec. IV B)
to motivate a scaling scenario for the strong-coupling re-
gion in which the critical fixed point involves only static
fluctuations induced by the quenched randomness. Dy-
namic, quantum fluctuations are dangerously irrelevant
at this static fixed point, and their effects are controlled
by a crossover exponent —8,, < 0. The critical singular-
ity of the nonlinear susceptibility, xni, is weakened by a
positive 6, thus a nondivergent, cusplike, critical singu-
larity in xn is possible. This scaling scenario generalizes
one proposed earlier for insulating Ising and rotor spin
glasses7 which had 6, = 0. Indeed, there is no funda-
mental reason why the insulating spin glasses should not
also have 6, > 0.

10 286 ©1995 The American Physical Society



32 QUANTUM FIELD THEORY OF METALLIC SPIN GLASSES

Static, or & = 0, fixed points have also arisen in stud-
ies of some other spin systems. A model of quantum
rotors in a random field was studied some time ago by
Boyanovsky and Cardy,’ and their results can be inter-
preted in terms of such a fixed point. However, they did
not realize that the crossovers, and positions of phase
boundaries, at finite T are modified by a positive ,;
the required modification is related to that discussed by
Weichmann et al.!® and Millis!! in a rather different
physical context, and will also be discussed in this pa-
per. More recently, Fisher!? has studied the random Ising
model in a transverse field in d = 1 and shown that the
results are consistent with a %A = 0 fixed point: his scal-
ing results, however, involve an exponential relationship
between energy and length scales, unlike the more usual
power-law relationship which we shall find. Finally, in
very recent work, Kirkpatrick and Belitz'® have proposed
a scaling scenario for the metal-insulator transition which
appears to have many similarities to our results below on
the metallic spin glass to paramagnet transition.

II. EFFECTIVE ACTION

An initial analysis of metallic spin glasses was per-
formed some time ago by Hertz,* although he did not
focus on the vicinity of the T = 0 quantum transition.
We will study models, similar to those in Ref. 14, de-
scribed by the following class of Hamiltonians:

Z tz] zacza - E J,

i<j,a i<j,u

Siy_Sj“ + Hing, (2.1)

where c¢;, annihilates an electron on site ¢ with spin
a =t,], and the spin operator S;, = Eaﬂ cfaaaﬁczg/2
with o# the Pauli matrices. The sites 4,5 lie on a
d-dimensional lattice, the hopping matrix elements ¢;;

are short-ranged and possibly random, and the ij are
Gaussian random exchange interactions, possibly with
spin anisotropies. The remainder Hi,; includes other pos-
sible short-range interactions between the electrons: we
constrain them so that the ground state of H is metallic.
J

- -/ { /dTZT“Q##(“’ TT) - —/dr1d722
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A version of H with infinite-range hopping and exchange
was studied recently!® using a static ansatz for the or-
der parameter but with no additional approximations.
We will provide below a theory which includes dynamic,
quantum effects and also applies to models with finite-
range interactions in finite dimensions. Our analysis of H
will be similar in spirit to the Stoner model approaches to
the appearance of spin-density-wave order in clean metal-
lic systems,'® except that we now consider condensation
into a density wave with a random orientation of spms,
or a “spin-density glass.”

We now derive a low-energy field theory for H in the
vicinity of the spin glass to paramagnet transition. The
procedure is similar to that of Ref. 7. The metallic nature
of the system expresses itself mainly through the modi-
fication of a single term, which, however, has important
consequences. We begin by defining the spin-glass order
parameter

p.u(m T1,T2) =° Z (7'1) L (72),

i€EN (z) .

(2.2)

where a,b = 1...n are replica indices (the limit n — 0
is taken at the end), 71,72 are Matsubara times, and
N(z) is a coarse-graining region around z. At T = 0,
the Edwards-Anderson spin-glass order parameter, gga
is the expectation of the replica-diagonal part of @ in the
limit |y — 72| — 0o; however, it is necessary to retain the
time dependence and all replica components of Q to cap-
ture the full structure of the field theory 7 The effective
action for Q is obtained by averaging over the J;; ran-
domness in H after introducing replicas, decoupling the
resulting eight Fermi term by a Hubbard Stratonovich
field @, and integrating out the fermions. This proce-
dure has been carried out in Ref. 7 for the quantum rotor
spin glass, and in Ref. 16 for spin-density-wave forma-
tion in metallic systems. It is simple to combine these
methods and we omit all intermediate steps. The final
effective action, .A, is expressed in terms of a shifted field
Q — Q — C,,6%8(11 — 72) where the subtraction only
modifies the uninteresting short-time behavior, and the
constants C,,,, are chosen so that the resulting @ is small
at low ﬁ'equencies near the critical point:”

p,y,(m 715 7-2)

7'1—7’2

+ /dT]_d’Tz z VQ,UJ((B ’7'1,7’2) - —/dTldedT3 Z Qw(w Tl,Tz)Qup((B ‘7'2,7'3)Qpﬂ($ T3,T1)

abpy

4 /d'rz v Q3 (z, 7, T)Qs (2,7, T) + v

apy

—53 /dd /dﬁd‘rz ZQ (ﬂ?,Tl,Tl)Q{‘fL(w,Tz,Tz)+"' .

abuv

We have only displayed the small subset of terms which
will be important near the critical point. We have allowed
a p dependence in r,, to reflect possible spin anisotropies;
the less-important u dependence of other couplings has

abcuvp

(2, T, T)Qs (2, T, 'r)} }

(2.3)

[

been suppressed. The metallic nature of the system
is reflected in the second term which has a long-range
1/(m1 — 72)? interaction in time; the power-law decay is a
consequence of the gapless particle-hole spin excitations
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which lead to the dependence
(82 (11)Si (m2))] ~ 8y (11 — 2) 2

in any metallic paramagnet!:® (the angular brackets rep-
resent an average over quantum and thermal fluctuations,
and the square brackets are an average over randomness).

This behavior is of course only valid at large |7, — 73| and
we cut it off at short-time differences such that its Fourier
transform is ~ —|w| for small w. The remaining terms in
A are identical to those obtained in Ref. 7 for the rotor
model. These are the most general terms, of low order in
@, which are local in space-time and consistent with un-
derlying symmetries. In particular, the time arguments
of @ associated with different replica indices must al-
ways be integrated independently because the disorder
is static. “Quantum-mechanical” interactions occur only
within the same replica, allowing a gradient expansion
about the equal-time point for such terms. A more de-
talled discussion of these criteria can be found in Ref. 7.
The particle-hole continuum will induce nonlocal correc-
tions to these terms, but none are as important as that in
the term linear in ). The symmetries also allow a “mass”
term ~ [Q% (z,71,72)]%, but such a term is redundant as
it can be removed by the shift Q = Q — C,,,§%%6(1y —72);
the shift has a delta function in time and thus does not
modify the long-time, low-frequency behavior that we are
interested in.

We now discuss the physical significance of the cou-
plings in A; for more details the reader is referred again
to Ref. 7 and we highlight only the main points here.
First note that there are more terms than coupling con-
stants, but it is easy to check that rescalings of z and 7
always allow one to reach the form chosen. The coupling
T, tmultiplies what turns out to be the “thermal opera-
tor” which tunes the system across the transition. The
important nonlinearity is the cubic & coupling which is
induced by disorder effects and involves no exchange of
energy between the @ fields; there is a 1/« in the linear
term to ensure that the bare Q propagator is independent
of k. The only terms involving energy exchange are the
ghadratic v and v terms which represent the “quantum-
mechanical” interactions between the fermions. Finally,
the 1/t term in A represents disorder fluctuation effects
and arises from fluctuations in the local position of the
critical point as determined by r,.

(2.9)

ITI. MEAN-FIELD THEORY

We now consider the mean-field (or tree-level} proper-
. ties of A. We will only consider two extreme limits of
the spin anisotropy—Ising-like, when r; « 73,73, and
Heisenberg-like, when r;y = r; = r3. We will drop the
vector p index except where necessary, and represent the
effective number of components by M (= 1 for the Ising
case, and = 3 for the Heisenberg case).

In Ref. 7 we found that, as in the classical spin glass,
a theory with only a cubic nonlinearity was replica sym-
metric, even in the spin-glass phase; replica symmetry
breaking appeared only upon including a certain quar-
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tic coupling which was formally irrelevant at the quan-
tum critical point. Much of this structure carries over
unchanged to the metallic spin glass, and we shall not
dwell on it here. We will restrict our considerations
to the replica symmetric theory which contains all of
the dynamic effects which lead to the important dif-
ferences between metallic and insulating spin glasses.
We therefore make the following replica-symmetric, z-
independent ansatz for the mean-field value of @: in
Matsubara frequencies (which are integral multiples of
2rkpT/k as usual) we write

Q** (w1, w2) (3.1)

where 8 = #%/kgT, and x is the local dynamic spin
susceptibility (we will absorb a factor of kp/A into T
from here on). The first term is the spin-glass order
parameter—note that it is independent of replica indices,
and, therefore, the replica diagonal and off-diagonal com-
ponents of g are equal and ¢ = gga. In a theory with only
a cubic nonlinearity (to which we shall restrict ourselves
here) the equality of all the replica components of ¢ holds
at all T; upon including higher-order terms in .4, the
equality between all the replica components persists at
T = 0, but there are thermal corrections at any nonzero
T which distinguish the diagonal and off-diagonal com-
ponents and which also break replica symmetry.”

We now insert (3.1) into .4 and determine the sad-
dle point. This determines the spin glass to paramagnet
phase boundary at r = r;(T') and the order parameter

= 826.,,0015,00 + B6*%0usy 4wy 0x(iws),

¢= { [re(T) — r]/(gn(u + Mv)] fo;'t;’lej‘:i,;g") (3.2)
with
me(T) = 7o — c(u + Mv)T3/?, (3.3)

where ¢ = /m/2((3/2), . = r:(0) ~ AY? is dependent
on the large frequency cutoff A,, (see Fig. 1). The local,
dynamic spin susceptibility has imaginary part

PARAMAGNET .

FIG. 1. Phase diagram of the action A [Eq. (2.3)] as a
function of temperature T and r which measures the strength
of quantum fuctuations. The full line is the only phase tran-
sition and dashed lines denote crossovers between different
regimes, which are described in the text.
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(3.4)

Note that the spin fluctuations are gapless, and the
crossover from paramagnetic to critical fuctuations oc-
curs at a frequency scale A; A also determines the cor-
relation length ¢ ~ A~Y/% that appears in spatial cor-
relation functions, which can be found as Gaussian fluc-
tuations around the saddle point. The value of A has a
rather complicated dependence on T' and r and we de-
scribe its limiting behavior in the five different regimes
of Fig. 1—there are smooth crossovers between these
regimes. Within the spin-glass phase, we have A = 0,
x" ~ sgn(w)w'/? everywhere and there are no crossovers
in the present approximation. However, we expect that
there will be a crossover between a region characterized
by the quantum ground state (I) to a region dominated
by thermal, critical fluctuations (II) and such a crossover
boundary has been shown in Fig. 1. In the paramag-
netic phase the present approximation is much richer,
and shows all the expected crossovers. The scale A is
determined by the equation

A=r— (u+Mv)%Z(]w|»+ A2, (3.5)

Solution of (3.5) yields four different regimes of behavior
(II-V) which we describe in turn.

(ID) |r — re(T)| < (= + Mv)*T?: this is closest to the
phase boundary, and is the region with classical fluctu-
ations. We have A = {[r —r.(T)]/[T (v + Mwv)]}*—note
that A depends on the square of the distance r» — r.(T')
from the transition (as shown in Ref. 7, this is crucial for
obtaining the classical exponent v = 1/2).

i
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(III) {|r —1‘c|/(u+Mv)]2/3 & T: this is the “quantum-
critical” region in that T is the most significant energy
scale and the system behaves as if it is at the critical cou-
pling r = r,. Here we find, to lowest order in u,v that
A = c(u + Mv)T?/2. Note that the expected quantum-
critical scaling A ~ T (Ref. 17) is violated. This is a
consequence of the fact that all T dependent corrections
are controlled by quantum interactions u, v which are ir-
relevant at the critical point (see below)—in other words
0. > 0 spoils the naive A ~ T scaling. A similar in-
terpretation can be given to the position of the phase
boundary r.(T).

IV)r—r. K T K [(r=re)/(u+Mv))*? and (V) T <
7~ these are the “quantum-disordered” regions in that
T dependent corrections are secondary and to leading
order in T,u,v we have A = r — r.. The subleading
terms in A are different in the two regimes: in regime IV,
A(T)~A(0) = c(u+Mv)T3/2, while in regime V, A(T)—
A(0) = (u+Mv)nT?/(6+/7 — r.). This subdivision of the
quantum-disordered region is similar to that found in a
different context in Ref. 11, and is also a consequence of
the dangerous irrelevancy of u,v.

All of the above crossover boundaries and exponents
are of course characteristics of the mean-field theory,
which can, in general, be modified by fluctuations—we
will indicate the nature of these modifications in the dis-
cussion in Sec. IV B.

Phases in a magnetic field

We complete our discussion of mean-field theory by
discussing the effect of an external magnetic field, H,, on
A. The additional terms induced by H can be deter-
mined following Refs. 18 which examined the effects of
H on spin-density wave formation in clean systems—by
this method we found

A— A /ddwdﬁdeZQW(f” ™1, 72) Hu Hy

ab

1 . ' Q%% (x, 11, T:
—?/ddmhza: (mleuuAHA 09 1y 72)

+as(H, H, — H)\H,\J#,,)QZ;‘j(m, T, 7')) .

The field has several different competing effects. The first
term, proportional to the coupling g, is the static para-
magnetic susceptibility of the fermions which polarizes
the spins along the field, and which always dominates
at small H. The o terms account for the precession of
the spins in the plane perpendicular to H and the en-
ergetic contribution of quantum fluctuations about the
static spin directions: as in clean antiferromagnets!® we
expect these terms to prefer magnetic order in a plane
perpendicular to H (and so a3 > 0). We now consider
some cases separately:

(i) Ising spins, H along easy aris—only the term pro-

37'1

+ aZHAH)\QZ‘:L(m7 T, T)

T1=T2=T

(3.6)

[
portional to g in (3.6) need be considered as the a: terms
are never important. The finite field phase diagram, the
field dependence of observables, and the position of the
Almeida-Thouless boundary,?° are essentially identical to
that for the insulating Ising model considered earlier,”
and will therefore not be considered here. The only dif-
ference in the metallic case is that no logarithms are
present—e.g., the free energy at r = v, and 7" = 0 that
dep/ended on H as H%/3/1n'/® H in Ref. 7, here varies as
H?/3,

(i1) Ising spins, H perpendicular to easy axis—now the
g term in (3.6) couples only to noncritical components of
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Q and is not important; after integrating out the noncrit-
jcal @ we find that the main consequence of the a terms
is to induce a shift ry — r{ + o' H? in the position of the
critical point.

(i%) Heisenberg spins—in finite field we now have to
allow for the possibility of spin-glass order appearing in
the plane perpendicular to H; the onset of this order
is the Gabay-Toulouse transition at H =  Hgr.2? Let
us take a field H pointing along the ¢ = 3 direction.
The subsequent mean-field theory is most convenient in
a circularly-polarized basis for the vector components of
Q: we take Q33 = Qr, Q11 = Q22 = (Q+- +Q-1)/2,
Qiz = —Q21 = i(Q4+- —Q_4)/2, and all other vector
components of @ = 0. We make the same ansatz as
in (3.1) for the frequency and replica dependence of Qp,
Q.- and @ by introducing the quantities gz, XL, g+—»
etc. It is then not difficult to solve the resulting mean-
|

kgH
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field equations. It is slightly more convenient to approach

the Gabay-Toulouse boundary from the Gabay-Toulouse
phase with spin-glass order in the transverse direction:
@+- = g—+ # 0. The solution of the mean-field equations
for this case are

9+—- = @y =41,
, 1 )

=x*, (lw) = ——E(Iw| + icy Hw)?,
_ gH?
&= 4/A

i
- _= A 1/2

L(jwl + a2,

X+~ (iw)

xrL(iw) (3.7
where the Gabay Toulouse spin-glass order parameter gr
and the frequency scale A are determined by the solu-
tions of the two equations

A =1‘+d2H2 + (u.+'u) (4\/_ 6 Z(l I+A)1/2) + 2v (quv — Xw:(l(UI +ia1Hw)1/2> ,

rkgH

0=r+(az —az)H + v (4\/_ 5 Z(Iw[ +A)1/2) + (u+ 2v) (an - % Zw:(lw| +ia1Hw)1/2) .

The Gabay-Toulouse boundary is determined by impos-
ing the condition g7 = 0 on these two equations, which
gives us a line H = Hgr(r) in the » — H plane. The re-
sult of such a computation at T' = 0, is shown in Fig. 2.
For small H, the first term in (3.6) dominates and we
find Hgt ~ (rc — r)3/4. For large H, the o terms take
over, and for az > 0 we find that Hgt furns over and
extends to 7 > 7, as Hay ~ (r — r.)1/? (see Fig. 2); for
sufficiently negative a3 this turn over will not occur.

IV. FLUCTUATIONS

We begin by a perturbative RG analysis of fluctua-
tions, which will unfortunately not be of much direct

q,#0
HGT
q.#0
H q9,+#0
q.=0
rc ;
FIG. 2. T = 0 phase diagram of A for the Heisenberg

case, in a field H. Hgr is the Gabay-Toulouse boundary,
= [(S,,)z] for i along the field direction, and similarly

qr = [(S,,)z] for u perpendicular to the field.

(3.8)

[

utility as there is runaway flow to strong coupling be-
low d = 8. Nevertheless, the structure of this analysis
will help motivate a general scaling scenario which we
will describe subsequently.

A. Perturbative RG

The perturbative RG analysis is quite similar to that
of Ref. 7. The main difference at tree level will be that
the dynamic exponent z is z = 4 rather than 2 = 2. This
difference has the important consequence of now making
the u,v couplings dangerously irrelevant, which in turn
leads to a positive 8,,.

The RG begins with the rescalings

'z =z/s, 7 =1T1/5%,

‘tr — ts”g, Q' = Qs(d—9+2z—2+1i)/2.

(4.1)
The exponents z,n have their usual meaning, while 8
is introduced to allow for violations of hyperscaling: we
will have @ > 0 causing t to flow to 0, and behave as a
dangerously irrelevant variable. The irrelevant coupling
t and its exponent # should not be confused with the
couplings controlling quantum-mechanical effects and the
exponent 8, which will be discussed momentarily. At tree
level (or equivalently, at-the Gaussian fixed point), the

~above rescalings leave A invariant provided we modify

the couplings

1’/=1'8z, « _58(6+9 —d— 311)/2
2—z—7n
)

u = us

2—z—7 —_
s v = vs

(4.2)

and choose the exponents
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z=4, n=0, 0= 2. (4.3)

Thus the cubic nonlinearity x becomes relevant for d be-
low 8, and the rescaling of r gives us the Gaussian ex-
ponent ¥ = 1/4; note the correlation length is given by
& ~ A~/% in the notation of Sec. III. The most impor-
tant point, and the key difference from Ref. 7, is that u
and v are now irrelevant with exponent —2. As these are
the only couplings associated with quantum effects, we
introduce a new crossover exponent, —8, which will con-
trol the “dangerously irrelevant” consequences of quan-
tum fluctuations. At tree level we clearly have 0, = 2.
Finally, note that for d above 8, x also becomes danger-
ously irrelevant about the Gaussian fixed point.

It is straightforward to extend the above analysis to

include one-loop diagrams. Using the diagrams discussed

in Ref. 7, we find (s = €f)

2(f) =4+8:%() , n=26%(0) , 0=2, (44)
and the flow equations
dr(f) _ 9 . dr(f)  8-—d
7 = z'r(f) ar (f) ; al = —ﬁ(l) + 9!“\7 (l).

(4.5)

‘We have absorbed various phase-space factors into the
couplings (see Ref. 7), and a is an uninteresting positive
constant. The irrelevant couplings u,v were set equal to
0 at the outset. There is no stable fixed point of (4.5)
for real k below d = 8. Above d = 8, the Gaussian fixed
point is stable, but its domain of attraction is limited to a
region which vanishes as d approaches 8 from above. For
|

G(m—yﬂ'l — 72,73 —7'4)
py

= I
n]i.&)'n,(n—l

Z <<QW($ TI)T3)Q;1,u(y1 T3,Ta)))

a#b,ur

d < 8, and for all physical initial conditions,‘the coupling
« flows to strong coupling, making quantitative compu-
tation of exponents impossible in the present approach.

B. Scaling hypotheses

We will now discuss a nonperturbative scaling scenario
for quantum spin glasses, assuming that the structure of
the dangerously irrelevant variables remains similar to
that found in the perturbative analysis above. We will
consider a static strong-coupling critical theory with two
dangerously irrelevant directions: one associated with a
coupling analogous to ¢ which controls disorder fluctu-
ation effects and has exponent —6, and a second asso-
ciated with dynamic, quantum-mechanical effects (cou-
plings u,v) and exponent —@,. In the previous analysis
of insulating spin glasses” only ¢, the first of these dan-
gerously irrelevant couplings, was present; our present
scaling relations reduce to_the earlier ones upon putting
6. = 0. As we shall see below, a positive 8, has impor-
tant physical consequences. Although the analysis below
is clearly motivated by our mean-field theory of metallic
spin glasses above, there is no fundamental reason why
the insulating models considered in Ref. 7 should not also
have 6, > 0.

It is helpful to discuss nonperturbative effects by con-
sidering the scaling behavior of observable correlation
functions. Among two-point correlators of @, there
are three independent observables:” in the paramagnetic
phase these are the spin-glass susceptibility, G,

=D [(Sin(71)Siu(72)} (Siv (73) S (74))]

(4.6)

(the double angular brackets represent averages with a replicated, tra.nslatlonally invariant action like A); the quantum

mechanically disconnected correlator, G¢,

Gd(”‘ - j) T1L — T2,7T3 — 7-4) =

[(Siu (’7'1) Siu(72)) (Sju(73) S, (74))] — subtractions

- 1—1,,_>0 'n('n. Z <<QIL.U- z Tl,Tz)Qw, Y,73, Ty >> - (47)
a.;éb
and the connected correlation function, G¢,
Grvpo(t — 3y T — Tay T2 — T4, T3 — Ta) = [( iu('rl) S0 (72) 85(73) Sje(T4))] — subtractions
= lim ~ E (@2 (2,71, 72) Qe (y, 75, Ta))) — -+ (4-8)
I
The nonlinear susceptibility, xm, is given by the inte- Gz, 7, T) ~ g~ (dF2z—0-24m) (4.9)
gral over space and time of G°. The correlator G¢ is
nonzero only because of the “quantum interactions” u, v, Gz, 7,7) ~ g~ (d+2z—24m) (4.10)

and therefore carries a prefactor of u, v; in contrast G and
G*? are nonzero even in a purely static theory. Under the
rescalings (4.1) we may conclude from arguments similar

to those in Ref. 7 that G¢ and @ scale as

for fixed 7/2* at criticality. The scaling dimensions of G
and G¢ differ because G carries a prefactor of the dan-

gerously irrelevant variable ¢, while G¢ does not. Finally,
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G€ carries a prefactor of £, and an additional prefactor of
the irrelevant quantum interactions: hence
GS(z, T, T, T) ~ @2 —24n) (4.11)
Indeed, one can consider the three equations (4.9)-(4.11)
as the deﬁmtlon of the three mdependent exponents 7,
#, and 6,,. In the previous analysis,” 8, = 0 and hence
G’ and G° had the same scaling dimension. By taking
the space-time integral of (4.8), we can deduce that the

. nonlinear susceptibility x, behaves as

Xnl ~ [7' - rc]~(2—n—9u)v

(4.12)
near the T = 0 quantum critical point. For sufficiently
large 8., Xa need not diverge.

The existence of a static critical theory, and the asso-
ciated positivity of @,, has important consequences for
the finite T behavior away from the critical point. Recall
that T only appears as a finite-size length, 1/T, along the
time direction, and hence scaling® implies that its scaling
dimension is z. However, some power of a combination
of interactions like w,v must appear in any frequency
scale and hence we expect that the naive scaling of fi-
nite w correlators as functions of w/T (Ref. 17) will now
be modified. A related modification of naive scaling has
been discussed in Refs. 10, 11 for some clean systems, and
we will now present a similar analysis. It is useful to con-
sider a simple model of the renormalization-group flows
near the quantum-critical point at low temperatures. Let
us move away from the quantum critical point (r = r,
T =.0) by perturbing the system along the single, rele-
vant eigendirection by the amount r — r., and along the
least irrelevant eigendirection which involves terms with
frequency exchange by the amount u. For small r, u, and
T we expect flow equations like

ar(e) _
“ﬂ““%<“
dr(f)
du(f)
7 =—0,u{f) , (4.13)

where f(T') [f(0) = 0] is some function arising from ther-
mal occupation of the short distance modes of the order
parameter fluctuations which are being integrated out.
The key property of (4.13) is that a T dependence is in-
duced into the flow of the relevant coupling r only via
the irrelevant coupling u. The integral of (4.13) is

() ~r. = (r— rc)e‘/"

. :
+uet/v f df'e=Cutl/V)E f(Teal’y (4.14)
]

[2s is customary, we have abbreviated r(0) = r, u(0) = u,
and T'(0) = T]. We now change integration variables to
¢ = Te*'| and integrate to the correlation length £ =
e*=*" at which r(£*) — r. = 1 to obtain
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WTOut1/v)/z

z

1=£1/”|:r—rc+

e d( (utl/v)/2
x/ =3 0.

T

(4.15)

It is now possible to deduce scaling properties provided
it is permissible in the critical region to set the lower
and upper limits of the integral in (4.15) to zero and
infinity, respectively. As f(T') represents thermal contri-
bution of short distance modes we expect it to vanish as
T — 0; these modes, however, do mix with the particle-
hole continuum of the metal, leading us to expect a linear
density of states at low energies even at short distances,
and therefore f(T) ~ T2 for small T. In the opposite
large T hnut all modes must become classical, and there-
fore f(T') ~ T For these asymptotic behawors in f(T),
the limits on the integration can be extended provided
2v < 14 6,0 < 2zv. We then obtain at r = re but T
finite &1 ~ w¥T(1+%¥)/2 Ty this same region, a similar
reasoning implies that the local dynamic spin suscepti-
bility will scale as

Kw
" — ,.,(d—6—-24n)/2z
X (w) =w 7 qs (uzuTl-FGuy') ’

for some universal scaling function ¢, and nonuniversal
constant K. At tree level this gives us a frequency scale
~ T3/2 which is consistent with the results of Sec. III.
Similarly, the position of the finite temperature spin glass
to paramagnet boundary [at r = r.(T)] will scale near the
quantum critical point at r =7, and T =0 as

(4.16)

e — 1e(T) ~ uTI+6ur)/2v (4.17)
Again, this agrees with the tree-level result (3.3). A very
similar result applies to the boundary between regions III
and IV of Fig. 1 which occurs at+ — r, ~ T (1+6=7)/2v,
while the boundary between regions IV and V is at r —
To ~ Tl/z".

All of the results discussed so far in this section have
been obtained using only rather general scaling ideas. In
particular, they do not rely on the particular form of the
action A. We will now obtain a few results which do rely
on explicit features of A, and their validity is therefore
somewhat more questionable.

A simple argument can be given to fix the value of z,
using the manner in which time dependence enters into
A. Consider a correlator of the @ fields in which all ex-
ternal frequencies have been fixed at the same frequency
w. As the critical field theory is static, and because the
@ field is bilocal in time, w will act simply as an external
source which shifts the value of the “thermal” coupling
T — 7+ |wl|, as is apparent from the first two terms in A;
for insulating Ising and rotor models the correspondmg
shift is 7 — r + w?. As the scaling dimension of r is 1/v,
this gives us the scaling relation

1 metallic spin glasses
zv =< 1/2 insulating Ising
and rotor spin glasses .

(4.18)
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We emphasize that both results rely on the assumption
of a static critical theory; this assumption was not made
in the analysis of Ref. 7. We also note in passing that
the present argument fixing the value of 2z cannot be ap-
plied to the random-field quantum rotor model of Ref. 9
(which also had a static critical point), because the same
external frequency w does not flow through all internal
propagators in this case, and some propagators are al-
ways at zero frequency.

We now ask whether there is a classical statistical me-
chanics field theory which is also described by the static
critical point postulated above. We are only able to an-
swer this question within the confines of perturbation
theory: a perturbative expansion in & suggests that the
relevant field theory is that describing singularities along
the imaginary field, ¢k, axis in a d-dimensional randomly
diluted Ising ferromagnet.?! The latter model has a Yang-
Lee edge singularity®® at the same value, b = h9 as
the nondiluted Ising ferromagnet.?® Note, however, that
h2 = 0 in random Ising ferromagnets with an unbounded
probability distribution for the local randomness. It has
been argued?! that there is critical field, h = A, such
that for h2 < h < h,, the zeros of the partition function
are analogous to the localized states in the band tail in
Anderson localization. [The “Griffiths effects” (Ref. 23)
leading to this region also have a parallel in the paramag-
netic phase of the quantum spin glass.] The singularity
at h = h, is then analogous to a mobility edge.?! It is this
singularity at A = h. > 0, called the “pseudo Yang-Lee
edge” (Ref. 21), that interests us here. The field theory
for this singularity is:2425:21

av = [ dda:{% > [iE6%@) + (V6% + il (o)l

o > @) } (4.19)

where ¢° is the replicated order parameter for the Ising
model. This field theoretic model was also considered
earlier by Parisi and Sowrlas,?® who argued that for «
imaginary, Ay, describes the statistics of lattice animals.
As we will argue shortly, the perturbative RG equations
for Ayy, are given precisely by (4.5), and a perturbative
fixed point with & imaginary can indeed be obtained in
the 8 — d expansion. However, in this paper we are only
interested in the case of x real, which also describes the
“pseudo Yang-Lee edge” (Ref. 21) in a random Ising fer-
romagnet.

Now we discuss the perturbative connection between
models defined by Avyy, and A. Consider the Feynman
graph expansions with the action Ayy, for the correlators

Gru(e—1) = 7 3 (*(@)6°®) - Gu(z — ),

n_(n—l—T) > (8*(@)6°w))) -

aFb

GYL(z—y) = (4.20)

Compare this with the Feynman graph expansion with
the action A of zero frequency correlators G and G¢, re-
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spectively. It is not difficult to show, term by term, that
these two expansions are identical to all orders in x and
to leading order in ¢. The fact that .4 involves a matrix
field (two replica indices) while Avyr, has scalar field (one
replica index) does not affect any of the multiplicity fac-
tors associated with any graph; to leading order in £, all
relevant graphs were tree graphs before averaging over
the disorder in r, that corresponds to the 1 /t? vertex,
and none of these graphs have numerical factors associ-
ated with summation over replica or vector indices. The
equality of these perturbative expansions suggests, but
does not establish, that the perturbatively inaccessible
static fixed points of A and Ayy, may also be identical:
if so, any scaling relations satisfied by Ayy, should apply
also to A.

The nonrandom Yang-Lee edge problem has a simple
scaling structure?*—there is a scaling relation between
the exponents 7 and v as the order parameter ¢ is also
the “thermal operator.” The simplest scaling hypothesis
for the random case is that the identification of ¢ as the
thermal operator continues to hold. This gives us the
scaling relation
1 d-0+2-q

~ 5 (4.21)

Numerical tests of this scaling relation in the randomly
diluted Ising model would be quite useful (numerical
studies of the full quantum spin-glass problem are ex-
pected to be much more difficult). When combined with
(4.18), (4.21) leads to a scaling relation between z, 6,
and 5 which is very similar (or identical if z» = 1) to one
considered recently by Kirkpatrick and Belitz!? for the
metal-insulator transition.

V. CONCLUSIONS

This paper has proposed a quantum field theory, de-
fined by the action A, for the low energy properties of
metallic spin glasses in the vicinity of a T' = 0 transi-
tion between a metallic paramagnet and a metallic spin
glass. The mean-field phase diagram of the model as
a function of a quantum coupling, temperature, and ap-
plied magnetic field was described. The phase transitions
and crossovers in this phase diagram were argued to be
characteristic of a zero temperature, static critical theory
containing no dynamic quantum fluctuations. Quantum
effects were shown to be dangerously irrelevant and con-
trolled by a crossover exponent —6,, = —2.

Next an attempt was made to extend these results
beyond mean-field theory, but found runaway flows to
strong coupling for all spatial dimensions below d = 8.
Nevertheless we used the insight gained from the mean-
field theory to propose a set of scaling hypotheses. We
assumed that the true critical theory also contained only
static, randomness induced fluctuations, and the expo-
nent 6, controlling quantum effects took an unknown
positive value. This had some important observable con-
sequences, similar to those found in the mean-field the-
ory:
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(%) The nonlinear susceptibility had a weaker singular-
ity at the critical point than might have been suggested
by the usual scaling arguments. In particular, for a large
enough 6, a nondivergent cusplike singularity was also
possible.

(#) In a simple model of the renormalization-group
flow equations, finite T dynamic response functions
scaled as functions of w/T %%, rather than the usual
scaling as functions of w/T.

(#%) Exponents associated with various crossovers in
the vicinity of the T' = 0 critical point were modified by
Ou.

While these results were directly motivated by our
analysis of metallic spin glasses, it is possible that some
of the scaling ideas are more general and could apply also
to insulating Ising and rotor spin glasses and other 7' = 0
transitions in random quantum systems.

We conclude with a few remarks about experiments.
In the thermodynamic and transport measurements on
Y:1_-U-Pd3 and related compounds (for a recent review
see Ref. 27), evidence has been presented for “non-Fermi-
liquid behavior,” where the term “Fermi-liquid behavior”
refers to the properties an isolated spin in a metal under-
going a conventional Kondo effect, and to those of region
V of our phase diagram, Fig 1. It has been suggested that
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the non-Fermi-liquid behavior is due to single-ion effects
leading to more exotic Kondo-like phenomena.?” How-
ever, as we have shown in this paper, non-Fermi-liquid
behavior can also arise from cooperative effects among
the spin moments, as is the case in the quantum critical
region IIT of Fig 1. Unfortunately, we do not yet have
good estimates of the exponents in d = 3, making di-
rect comparisons with experiments difficult. It would be
useful to have more detailed experiments in the vicinity
of r = r. which investigate the possible presence of the
crossovers in Fig 1.

Note added. In a recent paper,?® Sengupta and Georges
have considered a model closely related to ours, and ob-
tained results in general agreement with the mean-field
theory of Sec. IIL
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