VOLUME 72, NUMBER 13

PHYSICAL REVIEW LETTERS

28 MARCH 1994

Universal Magnetic Properties of Frustrated Quantum Antiferromagnets
in Two Dimensions

Andrey V. Chubukov,!? T. Senthil,! and Subir Sachdev!
! Departments of Physics and Applied Physics, P.O. Box 208284, Yale University, New Haven, Connecticut 06520-8284
2P.L. Kapitza Institute for Physical Problems, Moscow, Russia
(Received 1 September 1993)

We present a theory of frustrated, two-dimensional, quantum antiferromagnets in the vicinity of a
quantum transition from a noncollinear, magnetically ordered ground state to a quantum-disordered
phase. Using a sigma model for bosonic, spin--%, spinon fields, we obtain universal scaling forms for
a variety of observables. Our results are compared with numerical data on the spin~% triangular

antiferromagnet.
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A useful classification of two-dimensional, quantum,
Heisenberg antiferromagnets is provided by the struc-
ture of the magnetically ordered ground state: the spin
condensates on the sites can either be collinear or non-
collinear to each other. Collinear magnets have been ex-
tensively studied in recent years and many of their prop-
erties are reasonably well understood. They possess an
0O(8)/0(2) order parameter whose fluctuations describe
the low temperature (T') properties of the magnetically
ordered state [1]. The quantum-disordered state has only
integer spin excitations (the spinons are confined) and
spin-Peierls order is expected for certain values of the
single-site spin [2]. The finite-T' crossover between these
two states has also been studied in some detail [3].

Less is known, however, about noncollinear antiferro-
magnets, which are the subject of this paper. Exam-
ples include the triangular, kegomé, and square (with
first, second, and third neighbor interactions) lattices.
The magnetically ordered state completely breaks the
spin-rotation symmetry, yielding an SO(3) order param-
eter [4]. Space and time dependent twists of this order
parameter then define three independent spin stiffnesses,
spin susceptibilities, and associated spin-wave velocities.
For simplicity, we will restrict our attention here to mag-
nets with coplanar spins and an internal symmetry (a Cs,
symmetry on the triangular and kagomé lattices, and a
screw axis symmetry for the incommensurate planar spi-
rals on the square lattice), which leads to just two inde-
pendent stiffnesses (p.., p)), susceptibilities (x1, X ), and
spin-wave velocities [c1 = (p1/x1)Y2, ¢; = (oy/x1)*?);
more complicated noncollinear magnets will have similar
properties. The long-wavelength action for the SO(3) or-
der parameter has an SO(3)x0O(2) symmetry, the O(2)
being a continuum manifestation of the internal symme-
try noted above [4]. A spacetime dimension D = 2 + ¢
study of small fluctuations of the SO(3) order parameter
about the magnetically ordered state was performed by
Azaria et al. [5]; they found that the stiffnesses and sus-
ceptibilities became asymptotically equal upon approach-
ing the critical point separating the magnetically ordered
and quantum-disordered phases, with the critical the-

ory possessing an enlarged O(4) symmetry. A large N
theory based upon Sp(NN) symmetry [6] found a similar
magnetically ordered state, but was also able to access
the quantum-disordered phase. The latter state was pre-
dicted to be a featureless, fully gapped spin fluid, with
unconfined, bosonic spin—% spinon excitations. We also
note that there are alternative approaches to the quan-
tum disordered phase [7] which are quite disconnected
from the structure of the ordered state.

In this paper, we shall present a theory of the univer-
sal, finite-T" properties of noncollinear antiferromagnets
in the vicinity of the critical point. We will describe
the crossover from the magnetically ordered state, with
its low-lying spin-wave excitations, to the fully gapped
quantum-disordered state via an intermediate quantum-
critical region. Our results are in complete agreement
with some previous studies of the magnetically ordered
state [5] and the quantum disordered state [6], and
establish a fundamental connection between the O(4)-
symmetric critical point of Ref. [5] and the deconfined
bosonic spinons of Ref. [6]; a related connection was
noted recently in Ref. [8]. We will also obtain new re-
sults for the low T behavior of the dynamic structure
factor and uniform susceptibility of magnetically ordered
antiferromagnets.

Our motivation for this study is similar to that for
the analogous recent study of collinear antiferromag-
nets [3]. A given S = 1 antiferromagnet may be ei-
ther magnetically ordered (as is expected for the trian-
gular lattice) or quantum disordered (the kagomé lat-
tice) [9]. At low T, the magnetically ordered magnet
has thermally excited classical spin-wave fluctuations [the
renormalized-classical (RC) region], while the quantum-
disordered magnet has only activated deviations from its
ground-state properties. At higher T, however, both of
these magnets are expected to cross over to a quantum-
critical [1] (QC) region where classical and thermal fluc-
tuations are equally important. Many properties of this
region are universal, and are thus amenable to numerical
and experimental tests. In particular, there are signif-
icant quantitative differences between the QC behavior
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of collinear and noncollinear magnets, which are a conse-
quence of the presence of deconfined spinons in the latter.

We begin by presenting our effective action. We choose
to describe the local spin configuration by an SU(2) rota-
tion about a reference ordered state. The choice of SU(2)
rather than SO(3) is significant, and has the immediate
consequence of suppressing the vortices [10] associated
with 71(SO(83)) = Z2 for which the SU(2) field is double
valued. This choice is motivated partly by the results of
Ref. [6], where vortices were suppressed in the quantum-
disordered phase by a Higgs condensate. We parametrize

the SU(2) matrix by two complex numbers 21, z3 with

|z1)? + |22[2 = 1, and write down the most general, long-
wavelength action with an SU(2)xO(2) invariance:

1
S = / dPrdr Y — [a“zfa,,z—"%‘. (18,2 — 8uzfz)2].

H=X,T gu

It is easy to show that g, = 1/2p%,9, = 1/2x%,7: =
(pﬁ —-09)/6% v = (x?| —x%)/x%., where the superscript
0 denotes bare values; note that if the v, = 0, S has
an enlarged O(4) symmetry, and is also Lorentz invari-
ant. The action S can be explicitly derived by a long-
wavelength analysis of the models of Refs. [5] and [6];
we have also learned of a recent study of S by Azaria
et al. [11]. The staggered spin-structure factor (wave
vectors measured as deviations from the ordering wave
vector G) can be shown to be the Fourier transform of
1Re(z!(z1,m1)2(z2,m3))°. Note that this is quartic in
the 2z, consistent with the identification of the z quanta
as spin—% bosonic spinons.

We studied S by generalizing 2z to an N-component,
unit-length, complex vector, and performing a 1/N ex-
pansion; S then has a SU(N)xO(2) invariance, while for
Yp = 0 it is invariant under O(2N). This method allows
us to work directly in D = 2+ 1 and access both the QC
and RC regions. Note that the extension to large N is
different from that used in Refs. [8,12].

We expect that S possesses quantum-disordered and
magnetically ordered phases (with the 2z quanta con-
densed) as the couplings (say g,) are varied. A key
property of the present large N expansion is that the
long-distance physics at the critical point at g, = g. is
O(2N) symmetric and Lorentz invariant. This is man-
ifested in the magnetically ordered phase (g» < g.) by
the critical behavior of the stiffnesses. Josephson scaling
is obeyed by the fully renormalized py, p1, X, X1, all
of which vanish as (g. — g )”, where v is the correlation
length exponent [v = 1—16/3Nn2+O(1/N?)]. However,
the relative differences between the stiffnesses also van-
ish at the critical point: we defined A; = (o — pL)/pL,
Az = (x — x1)/x1, and found

Ay =71(65)"% +72(€0)*,
By =71(£5)% = 272(€5) %, (1

where v1 = (272 +79+)/3; 72 = (Y2 —-)/3 (these are the
spin-0 and spin-2 combinations under the Lorentz group),

2090

and &7 is the Josephson length measured in lattice units.
The positive crossover exponents ¢; 2 measure the irrele-
vancy of the v, terms in S; the v, are actually “danger-
ously” irrelevant as Ay s control long-wavelength physics
for gy < ge- To order 1/N, we found ¢; = 1+ 32/3n2N,
¢a =1+ 112/1572N [13].

We now present our scaling results for the wave vector

(k) and frequency (w) dependent staggered (x,) and uni-

form ().) spin susceptibilities in the vicinity of g, = g..
We restrict ourselves to g; < g., although more complete
results have been obtained [14]. We found

2nNg [ her \? [ NksT\"
xebow) =\ 7 ) \Z
pL B TPL
XD, (E,wa z, A17A2) ’

2
Xu(k:w) = (%g'%) kgT @, (k,w, z, Ay, A2) ) (2)
where Ny is the on-site magnetization at T = 0, ®,,
®,,, are universal functions of the dimensional variables
k= he 1 k/kpT, @ = hw/kpT, z = NkgT/drp,. We
found the exponent 7 = 1 + 32/3w2N. The prefactor of
®, remains nonsingular at g, = g as Ny ~ (gc — gz)?
with 28 = (1 4+ 7)v. All scaling functions are defined
such that they remain finite as z — oco. As before (3],
the argument x determines whether the system is in the
QC (z > 1) or RC (z < 1) region.

An important difference in the above scaling forms
from those for collinear magnets [3] is in the value of
7. Here we have 7] close to unity, while the analogous ex-
ponent for collinear magnets was close to zero. This is a
consequence of the presence here of deconfined spinons:
it is the 2z quanta which behave like almost free parti-
cles (at T' = 0, (2'2) ~ 1/k?~" with 5 close to 0) while
the staggered susceptibility is a correlator of a composite
operator of two spinons (x, ~ 1/k*~7 with 7 close to 1).

We have computed ®,, ®,, in a 1/N expansion to linear
order in A; ;. We describe our results as they relate to
various observables.

Correlation length.—As in collinear magnets, we define
the correlation length, £, from the long-distance e~"/¢
decay of the equal-time spin-spin correlation function.
We found that, to order 1/N, there is a simple rela-
tionship between the values of & for collinear and non-
collinear magnets. For all values of z, the noncollinear
¢ is precisely % the previously computed & [3] for the
isotropic O(2N) sigma model. The factor of § is a sig-
nature of deconfined spinons. The collinear expression
for £ [3], however, must be used with the effective values
ps = pLI1+NA1/(2N?-2)], x = xL[1+NAz/(2N?2-2)],
and ¢ = (ps/x)*/?; notice also the factor of 4 difference
in the coupling constant in S and in [3]. For the phys-
ical case N = 2, we have to first order in A; 2 that
ps = (2p1 + p))/3, ¢ = (2c1 + ¢)/3, and our RC re-
sult for £ is then consistent with that of Ref. [5).

‘Static uniform susceptibility—The result for x, is ob-
tained by evaluating the response to a vector potential
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coupled to the conserved charge of the SU(N) symmetry.
In the RC region (NkpT < 4mp,) we obtained

_ (9uB\? [ Nxi+x 2x1 N —1 kgT
x=(%2) ((N+1)xl N T

N

It is worth emphasizing that although we are considering
an essentially classical regime, the T' dependence of y,, is
a purely quantum effect—it disappears if the spin waves
had a classical, thermal distribution.

In the QC region (NkpT > 4mp,), we found to order
1/N,

Xu = (g;:f) kg Tfe Kl - %) toz My }
where © = 2In[(v/5 + 1)/2], = NkpT/47p,, and o =
0.8 4+ O(1/N). Note that the slope of the linear in T
term is prec1sely 5 of that in the O(2N) 31gma model [3].
The factor of 1 7 is again a signature of spm-— spinons and
should be amenable to experimental tests.

Staggered dynamic susceptibility and structure fac-
tor—In the RC region, the scaling form (2) for x, col-
lapses into a reduced scaling form in which the physi-
cal &, rather than ¢/kgT, is the most important length
scale [1,3]:

2rc?

. NZ kgT(N —1
Xs(k,wn)= 0 [B (

ps(N —1) 4mp,
x &2 f(k&,wné/c), (3)
where f is a scaling function. Note that computations
were in fact done only to order 1/N—the form at ar-
bitrary N follows from a reasonable guess about the
wave function renormalization of the composite field.
The overall factor in (3) is chosen such that f(0,0) =
1+ O(1/N). The behavior of f(z,y) at intermediate
z,y = O(1) is rather complicated, chiefly because spin-
wave velocity also acquires a substantial downturn renor-
malization at k§ = O(1) [1]. However, at k¢ ~ w€/c >
1, velocity renormalization is irrelevant and we obtained

Fay) = (N-i-i) mzj—yz [ln(w22+y2)]%t_i. @

One can demonstrate that this result for f(z,y) yields
a xs(k,w) which is precisely the rotationally averaged
spin-wave result for the ordered antiferromagnet, as it of
course should be at k€ >> 1 but ké; < 1.

‘We also computed Imy,(k,w) for real w. In the RC re-
gion, we describe the results using the dynamic structure
factor S(k,w) which satisfies

sty =0g (25)" (39),

where E is straightforwardly related to ®, introduced
in (2). For experimental comparisons, it is sufficient
to consider the frequency range w < c¢/€. We then
found E(k,w) = w/2nck® for ck > w (in this region
of k, collisionless Landau damping is dominant), and

)] (N+1)/(N-1)

E(k,w) « (we3/c) (N - l)kBT/47rp,](5‘N)/2(N_l) for
ck ~ w (the dominant contribution is the damping of
quasiparticles).

Now the QC region. Here we restrict our results to the
critical point £ = oo, and negligible anisotropy (A2 =
0). For hick, iw > kpT we obtained

S , (6)
16k" — (@ + i6)2]1—/2
where Ay =1+ O(1/N). At small k¥ and w, we have
Re®, = (V5/16m0){1 — [F>(1 + 20/v5)— w?]/120?
+---} where - - - stand for higher powers of %,@ and for
regular corrections in 1/N. For Im®, we obtained the

following asymptotic limits for large N:
’ —2

o, =

. - __2__
Ansin(nfj/2)  8(@® — k) T,
Imd, 16_ @ - )1 71/2
G_et E>1
svr 0 TS

where 6(z) is a step function. In both cases, Landau
damping is dominant. Finally, when both @ <« 1 and
k < 1, quasiparticle excitations are overdamped and we
only know that Im®, < @.

In the T' = 0 quantum-disordered phase, Im®, shows
a clear signature of deconfined spinons—the spectral
weight at fixed k is a broadband continuum rather than
the delta-function peak present in collinear magnets [14].

Local susceptibility and spin-lattice relaxation.—The
local dynamic structure factor S(w) is given by S(w) =
J %k S(k, w)/47r Simple inspection then shows that
for w ~ c£~1, the integration over momentum is also
confined to k ~ £~! and therefore S(w) is a universal
observable. The small frequency limit of S(w) is di-
rectly related to the spin-lattice relaxation rate of nuclear
spins coupled to electronic spins in the antiferromagnet:
1/Ty « S(w — 0). In the RC region, we find, using
our previous results for the scaling functions, that for

wnr !

2 _ (3N+1)/2(N—-1)
S(w) o Ng¢ ((N l)kBT) . (1)
c 4mp,
For N = 2, we then have 1/T} o T7/2 &,
Deep in the QC region, we found
_ _4AwhAN} (NksT\" K@
s@) =27 (43) @
pL oL l1-e
where K(w) = wBysin(n7/2)/32r at @ > 1, and

K (@) =wCn(v5—1)/64r at w < 1. The factors By and
Cn both behave as 1+O(1/N). Clearly then, 1/T} oc T7.

Static structure factor.—Unlike collinear magnets, the
static structure factor S(k) = [dw S(k,w)/27 in non-
collinear antiferromagnets is nonuniversal because the
frequency integral over quantum fluctuations is diver-
gent. This follows from the behavior at large frequencies
where S(k,w)  1/w?~" and 7 > 1. The nonuniversal-
ity is, however, more relevant for the QC region, where

2091




VOLUME 72, NUMBER 13

PHYSICAL REVIEW LETTERS

28 MARCH 1994

T is the only scale for fluctuations; in the RC region, &
is exponentially large, and there is a universal contribu-
tion to S(k) from classical fluctuations which scales as

£€2. In the RC region we then have S(k) =~ kgT'x,(k,0),

where x,(k,0) is given by (3). At k = 0 this yields
5(0) oc T2N/(N=1) £2, For N =2, S(0) oc T*2.

Application to the S = % triangular antiferromagnet.
—We performed a 1/5 expansion on this antiferromag-
net to obtain the T' = 0 values of py, py, x1, X (all
to order 1/5), and Ny (to order 1/52). For § = 3 this
gave us Ny = 0.266, x,. = 0.09/Ja?, x = 0.084/Ja?,
ps = 0.086J, and ¢ = (p,/x)/? = 1.01Ja. For the uni-
form susceptibility in the RC regime we then obtained
Xu = (g1uB/ha)?[0.08/J+ 0.07kpT/J?+ O(T?/J3)]. On
the other hand, in the QC regime, we have x, =
(9B /Ra)?[0.14kpT/J?+ 0.07/J (kgT/2mps) =1V 4. ].
The temperature dependence in the subleading term is
likely to be quite small in the region of experimen-
tal interest (kpT ~ 2mp,), and we can well approx-
imate this term by a constant. Note, however, that
the factor 0.07 is an N = oo result—the 1/N correc-
tions to this factor have not been computed. Further,
the correlation length behaves in the RC regime as £ =
0.24 (47rp3/kBT)1/2 expl4mp,/kpT| where 4mwp, =~ 1.08J,
and deep in the QC region as ¢ = 0.51Ja/kpT.

Consider now the numerical results for x,. The data
of recent series expansion studies [15] show that x, obeys
a Curie-Weiss law at high 7', passes through a maximum
at T =~ 0.4J, and then falls down. The region below
the maximum is quite small; nevertheless, we fitted this
data by a straight line and found 0.13+0.03 for the slope
and about 0.06 for the intercept—both results in better
agreement with our QC expression than the RC result.
Finally, at very low T, we expect a crossover to the RC
regime, and the corresponding value of x, at T' =0 is
also consistent with the data. We also compared the
data for the correlation length and S(0) at kT ~ 0.4J
and found rough consistency with our expressions in the
crossover region between QC and RC regimes. Note that
our interpretation of the numerical data is different from
that in Ref. [15].

To conclude, we have presented a theory of the critical ‘

properties of noncollinear quantum antiferromagnets in
two dimensions. Our key assumption was on the valid-
ity of a continuum description in SU(2) variables, which
suppressed vortex excitations. However, we were then
able to show that our results were consistent with earlier
large N [6] and D = 2+¢ [5] studies. The quantum disor-
dering transition was described by an anisotropic sigma
model for spin-%, bosonic spinon fields. All physical ob-
servables involve a collective mode of two spinons, and
we computed explicit scaling forms for a variety of ex-
perimentally measurable quantities. Our results for ).
in the QC region are consistent with recent numerical
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data on the spin-; triangular antiferromagnet [15]; this
may be viewed as some indirect evidence for the pres-
ence of deconfined spinons. However, numerical results
also seem to indicate that the T" range where QC be-
havior may be observed is rather narrow for this system.
More detailed studies, especially in quantum-disordered
noncollinear magnets, will be quite useful.
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