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Abstract

Understanding the behavior and properties of strange metals remains an outstanding challenge in correlated

electron systems. Recently, a model of a quantum critical metal with spatially random couplings to a critical boson

(Patel et al., Science 381, 790 (2023)) has been shown to capture the linear-in-T resistivity down to zero temperature

(T ) - one of the universal experimental signatures of strange metals. In our work we explore the non-linear transport

properties of such a model of strange metal. Uniting the large-N and Keldysh field theory formalisms, we derive

a set of kinetic equations for the strange metal and use it to compute nonlinear conductivity. We find that the

third-order conductivity is enhanced by a factor of TF /T in comparison to a Fermi liquid, resulting in a strong

temperature dependence. This behavior is shown to arise from the strong, non-analytic energy dependence of

scattering rate and self-energies for electrons. We highlight the role of energy relaxation and electron-boson drag

for the nonlinear responses. Finally, we discuss the potential for nonanalytic nonlinear electric field (E) response

arising at low temperatures. Our work demonstrates the characteristic features of strange metals in nonlinear

transport, that may allow to gain more insight about their behavior in future experiments.
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I. INTRODUCTION

The strange metal state remains one of the most enigmatic phenomena in correlated electron systems,

where both its microscopic origin and definitive set of characteristic behaviors remain under debate,

calling for new probes and theoretical predictions. Recent advances in THz optics have opened the way

to probe nonlinear transport properties of correlated electronic systems. So far, these techniques have

found applications in probing collective modes in superconductors [1–4], quantum spin systems [5–8]

and strongly disordered semiconductors [9]. There, useful analogies with two-level systems can often

be established [9], allowing to characterize and classify the relevant relaxation processes. A large body

of work also exists on nonlinear transport e↵ect in semiconductors [10–12], where features of the band

structure and impurity scattering are intimately related to the nonlinear response, best represented by the

strong response of Dirac systems. In weakly interacting metals, nonlinear e↵ects appear due to the band

non-parabolicity and are expected to be small due to large Fermi energy [make more precise?]. However,

the potential influence of strong correlations have not been up to date theoretically investigated, while

recent experiments demonstrate the feasibility of such measurements [13] .

In this work we show that strange metals possess a strong nonlinear conductivity response in contrast to

Fermi-liquid metals. This behavior arises from the ⇠ ! energy-dependent scattering, and thus constitutes

a new ”defining property” of the strange metal state, along with linear-in-T resistivity and thermodynamic

scaling. We also show the appearance of a scaling relation between voltage and temperature at low

temperature, which has some similarities to that found near quantum critical points of bosons [14–18].

To describe the strange metal, we will use the microscopic model recently put forward capturing one

of the ”trademark” strange metal behaviors : resistivity following a linear temperature dependence ⇢ ⇠ T

down to zero.

The model was originally developed in the series of works [19–24] and is an SYK-type model of a

fermionic mode coupled to a scalar boson in the vicinity of a QCP in two spatial dimensions, building

upon earlier work on the zero-dimensional Yukawa-SYK model [25–30]. A particular feature of the model

that allows to reproduce the Plankian scattering rate comes in a form a spatially disordered coupling

between the fields and potential disorder, so called v � g0 model. In this work we assume that fermion

dispersion is linearized in the vicinity of the Fermi surface and adopt a minimal coupling to the electric

field. We use Keldysh field theory combined with the ⌃�G e↵ective action method to derive quasiclassical

kinetic equations for both fermionic and bosonic fields as self-consistent dynamic degrees of freedom. In

particular, our method allows us to obtain the results without the typical assumption of a boson being
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in thermal equilibrium. As a side result, we show that when the boson dynamics is being accounted for,

the bosonic degrees of freedom no longer play a role of a thermal bath and the total energy of the system

is conserved. The energy conservation in this model of strange metals is a consequence of absence of any

coupling to an external thermal bath or an outside field that could serve as an energy drain. Our method

allows us to study the boson and fermion dynamics and prove the energy conservation even with disorder

present at the level of kinetic equations.

As a main result of the paper, we present a study of third order electrical response of the aforementioned

model and compute the non-linear third order conductivity. We find that some non-linear responses arise

due to two expected mechanisms: dynamics of higher angular momentum harmonics and dynamics of the

energy density harmonic. We classify those two types of responses as “ordinary” non-linear response and

the “Joule-heating” response correspondingly. We discriminate two types of terms due to a special role

of the energy relaxation in the responses to spatially uniform perturbations. In the presence of spatial

modulation of the source field the energy relaxation is often greatly enhanced due to the interplay of

screening e↵ects and charge density redistribution in the material. With that motivation, we showcase

the structure of both the term that comes from the “heating” of the system, and from the proper non-

linearity in the system to highlight that further study of the energy relaxation mechanisms in strange

metals is necessary.

We show that at low temperatures both Joule heating type and ordinary type of third order response

are enhanced by a factor of TF /T in comparison to the analogous response that would have been expected

in a Fermi liquid state with similar Fermi surface parameters ("F - Fermi energy), which is schematically

shown in Fig. 1. Additionally, we conjecture the structure of the Joule heating and ordinary non-linear

responses at all orders of perturbation theory and show that the ordinary non-linear response is exhibits

a universal |E|/T scaling (E - electric field), while the scaling of the Joule heating non-linear response

strongly depends on the energy relaxation mechanism in a real system. However, in the optical regime,

when we can neglect the energy relaxation processes in the system and treat the system as closed, we show

that the non-linear response exhibits universal scaling |E|/T
p
⌫, where ⌫ is a frequency of the external

field. In the regime of low frequencies the energy relaxation rate becomes dominant and thus is above

this paper scope and is a subject of a future study.

The rest of the paper is structured as follows. In the end of the current section (Sec. I) we provide

a brief summary of the main results and compare the non-linear responses in the considered model of

strange metal with expected results for a Fermi liquid. In Section II we describe in details the model that

we employ to study the strange metal phase and upgrade it to the form suitable for the Keldysh field
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theory [31] calculation. In Section III we convert the theory into Keldysh formalism and employ G � ⌃

e↵ective action method with large-N expansion to derive the set of equations that connect Keldysh-Green

functions and self-energies. In Section IV we present a quasi-classical limit of Keldysh kinetic equations

that govern the dynamics of both fermions and bosons in a self-consistent manner. In Section V we

explore the properties of the energy relaxation in the given model, showcase the energy conservation in

the closed system, and discuss the limitations of the model. In Section VI we construct the perturbative

solution to the Keldysh kinetic equations obtained in Sec. IV and compute the non-linear conductivity

responses.

A. Summary of results and comparison to Fermi liquids

We highlight the results of our non-linear response calculation in the strange metal phase and compare

them to the corresponding non-linear responses in Fermi liquids. A typical kinetic equation for a Fermi-

liquid distribution function when homogeneous electric field E(t) is applied can be written as

a @t�f + evF (k̂ ·E) @!(f̄ + �f) = I[�f ], (1.1)

where �f(t,!, k̂) = f(t,!, k̂) � f̄(!) is a perturbation of the distribution function away from the equi-

librium, ! is an energy of the Landau quasi-particle, and k̂ is a unit vector marking direction on the

Fermi-surface. The constant a is a dimensionless constant that represents the renormalized by the inter-

action dynamic term, vF is a Fermi-velocity and is related to the inverse e↵ective mass. In this paper we

show that the strange metal dynamics is governed by a kinetic equation of a form similar to Eq. (1.1),

even though the Landau quasiparticles are absent and the excitations experience strong mutual drag.

Such kinetic equation originates from Keldysh field theory, where energy ! and the distribution function

f(!) preserve their meaning of the excitation energy and distribution function correspondingly, as long

as the relevant Green’s functions are still sharp functions of momentum around fermi momentum kF [32].

The main di↵erence between strange metals and Fermi liquids comes in the structure of the collision

integral I in Eq. (1.1).

Assuming rotational symmetry, the structure of the collision integral in a typical Fermi-liquid can be

conveniently described by expanding the perturbation �f into angular harmonics: �f =
P
�fmeim✓k̂ . The

simplest structure the collision integral takes a form

IFL[�f ] = �
X

m

�FL,m�fmeim✓k̂ , (1.2)
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when in case m 6= 0 rates �FL,m = �+ �FL(⇡2T 2 + !2)/"F with "F being the Fermi-energy, and �FL is a

dimensionless constant of the order of unity (kB = ~ = 1). The constant contribution � comes from the

elastic collision disorder. This behavior of �FL,m is a typical ⇠ !2 and ⇠ T 2 behavior in Fermi liquids.

We derive the structure of strange metals collision integral, which can be also written as

InFL[�f ] = �
X

m

�nFL,m�fmeim✓k̂ (1.3)

up to non linear corrections, which end up having no qualitative e↵ects, but are still included in the

calculation. Additional feature of the strange metal that we obtain is a logarithmic divergence of a

dynamics coe�cient a ⇠ log 1/T .

The main di↵erence between the Fermi liquid and strange metal collision integral comes from the

structure of !-dependence of the decay rates in both of the theories. We show that the strange metal

decay rates are only functions of T and !/T , which is significantly di↵erent from the Fermi liquids, where

the characteristic scale for frequency is suppressed by "F .

The feature of !/T dependence appears from the structure of the fermion self-energy, since in Keldysh

field theory �nFL ⇠ Im⌃R, where ⌃R = ⌃R(!/T, T ) is a retarded fermion self energy.We showcase below

that such !/T dependence is a crucial ingredient for strong non-linear responses, since it changes the

non-linearity scaling from 1/"F to 1/T , which is an enhancement by a TF /T at every order. This feature

is expected to be generic in models with!/T self-energy dependence, leading to a similar enhancement of

non-linear responses.

The relaxation rate �FL,0 = �0(T ) of the density harmonic m = 0 is rather more special, since the

relaxation rate of the density is related to di↵erent mechanisms of the energy drain in the system that

is beyond the phenomenology of both Fermi liquid and strange metal. For example, in a closed system

it is expected that �0 = 0, in the case of coupling to the thermalized phonon bath �0 = 1/⌧el�ph ⇠ T

above the Bloch-Gruneisen temperature [33] and �0 ⇠ T 4 below it. The energy relaxation rate in strange

metals, on the other side, is much less understood. In our model we considered two phenomenological

limits. First limit is a regime of closed system, which is relevant when the timescale of the evolution is

much smaller then the timescale of the energy relaxation. We show that in lowest orders of response such

model leads to �nFL,0 = �0 ⇠ 0, reflecting energy conservation in the system. Another limit corresponds

to the regime of suppressed boson dynamics due to an interaction with an external heat bath. We show

that this would lead to a relaxation rate �0 ⇠ T at all the temperature scales.

One can solve the kinetic equation in Eq. (1.1) with collision rates for Fermi-liquids and extract in

5



the linear order well known result for the linear resistivity ⇢FL(T ):

1

�FL(T, ⌫)
= ⇢FL(T, ⌫) = ⇢0 + i⌫ �⇢,FL + ⇢T

2, (1.4)

where the term ⇢0 comes from disorder, and coe�cients ⇢FL,⌫ and ⇢nFL,T are in the linear order inde-

pendent from frequency and temperature constants defined only by the parameters of the Fermi surface:

�⇢,FL = 2⇡~a/e2kF vF , ⇢ = 8⇡3�FL(�)/3e2kF vF "F (kB = 1). The unitless value �FL(�) ⇠ 1 away from

the QCP, and grows in the vicinity of QCP, which is discussed below Eq. (1.10). As a side result of our

calculation we re-derive the linear 1-sheet resistivity of the strange metals in the scope of the considered

model and obtain linear in T resistivity (up to a double-log of 1/T ):

⇢nFL(⌫, T ) =
1

�nFL(⌫, T )
= ⇢0 + i⌫�⇢ ln

✓
T⇤

T

◆
+ ↵⇢T, (1.5)

where ↵⇢ and �⇢ are not independent quantities in the leading order: ↵⇢ = 2⇡�(T )�⇢, where �(T ) is an

extremely slowly changing function of T with values of the order of unity: �(T ) = ln
�

4
⇡e

�
+ ln ln

⇣
T⇤
T

⌘

(kB = ~ = 1). Temperature T⇤ is a UV cuto↵ temperature that defines the applicability range of the

model, as we expect T ⌧ T⇤ ⇠ TF . In principle, the temperature-nontrivial part of the linear conductivity

is determined by two dimensional parameter ↵⇢ and T⇤, which are independent in the model, and can be

measured experimentally.

If one solves the kinetic equation in Eq. (1.1) perturbatively for a third order non-linear conductivity

(second order excluded by inversion symmetry), one obtains two main contributions that have a very

di↵erent interpretation. One of the contributions involves a perturbation of the m = 0 harmonic that

appears in the order above linear. Since the m = 0 is typically associated with the energy density in

the system. This contribution to non-linear response is associated with pumping energy into the system

and, therefore, Joule heating e↵ect. We denote the corresponding contribution as �(3)FL,J in Fermi liquids.

The contribution that does not involve the density harmonic m = 0 are regarded as an ordinary non-

linear response, which we denote �(3)FL. Correspondingly, in the strange metal we denote the non-linear

resistivities as �(3)nFL,J and �(3)nFL. The behavior of these two distinct contributions with temperature can

be very di↵erent, since the energy relaxation rate in the system is typically much smaller than all the

other harmonic relaxation rates due to energy conservation in internal interactions. However, since both

Fermi liquids and strange metals obey a kinetic equation of a similar structure to Eq. (1.1), their non-

linear responses have a similar structure and only the overall magnitude is system-dependent. Moreover,

since both of the models have few free internal parameters, the structure of all non-linear responses is, in

principle, can be matched to the structure of linear response.
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FIG. 1. Figure schematically shows the temperature dependence of linear resistivity (in units of ~/e2) and third

order conductivity (in units of e4/~k2FT 2
F ) in the vicinity of a QCP in strange metals. In the quantum critical

regime (in red), where linear resistivity is linear in temperature, third order conductivity scales as TF /T . In the

Fermi liquid regime (in blue), where linear resistivity is quadratic in temperature, the third order conductivity is

constant in the leading order in temperature. The dimensionless constant �FL(�), where � is the boson gap, is

of order 1 in the ordinary FL state away from the QCP. On approaching the QCP, the coupling grows, resulting

in �FL(�) ⇠ c2T 2
F /v

2
F�

2 dependence, where c and vF are the critical boson and electron velocities, respectively.

Qualitatively, in the quantum critical regime �2 ⇠ c2TFT/v2F resulting in the strange metal behavior.

Indeed, we find that the leading order non-linear response and the Joule heating response expressions

can be expressed only through the quantities that appear in the linear conductivity of a corresponding

model (Eq. (1.4) or Eq. (1.5)) and the parameters of the Fermi surface:

�(3)
a,bcd

(⌫b, ⌫c, ⌫d) =
~A(T )

e4k4F v
2
F

�(T, ⌫d)�
2(T, ⌫bcd)�(T, ⌫cd)�a,bcd + (b, c, d permutations), (1.6)

�(3)J

a,bcd
(⌫b, ⌫c, ⌫d) =

�JA(T )

2⇡e2k3F vF

�(T, ⌫d)�2(T, ⌫bcd)�ab�cd
i⌫a(T ) + �0(T )

+ (b, c, d permutations). (1.7)

Quantities vF and kF are Fermi velocity and Fermi wavenumber, �(T, ⌫) is the linear conductivity defined

by the model, A(T ) is a dimensionless function of temperature T that describes the relative strength of

the third order response, and �J is a number of the order of unity that we will provide below. The tensor
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structure of non-linear response �a,bcd can be obtained from

[�x,bcd,�y,bcd] = [Re (ubucud),� Im (ubucud)], u = (1, i), (1.8)

and we will discuss model-dependent renormalized mass a(T ) when we discuss Joule heating. Note that

this form is only suitable for the models with a sharp momentum dependence of Green’s functions near

Fermi surface, since kF and vF are undefined otherwise. To obtain the Fermi-liquid or strange metal values

for the non-linear conductivity using in the Eqs. (1.7) and (1.6), one has to substitute �FL and AFL or

�nFL and AnFL correspondingly. Let’s start from comparing the structure of the ordinary non-linear

response. The corresponding expressions for AFL and AnFL in that regime are given by

AnFL(T ) =
2⇡2e2v2Fk

2
F

3

↵⇢

�(T )T
⇠ TF

T
. (1.9)

AFL = 3~e2k2F v2F⇢ = �FL(�) ⇠⇠ const, (1.10)

since ~vFkF ⇠ "F and we expect ↵⇢ ⇠ 1/e2TF according to [34]. The behavior of �FL(�) depends on

the proximity to the QCP. For ordinary Fermi Liquid away from QCP we expect �FL ⇠ 1, while on the

approach to QCP the coupling grows as �(�) ⇠ c2T 2
F /v

2
F�

2. Parameter � is a T = 0 mass gap, c is

a critical boson velocity. At the scale of �2 ⇠ c2TFT/v2 the quantum critical regime starts and the

strange metal response scalings are anticipated. Thus, as we argued above, the third order non-linear

conductivity for strange metal has an enhanced relative strength in comparison to Fermi liquids. Moreover,

as temperature decreases, we expect the third order conductivity to diverge as TF /T for strange metals,

in contrast the third order conductivity in Fermi liquids is expected to be featureless. We schematically

mark the linear resistivity and third order conductivity scaling in Fig. 1. Note, however, that in the

vicinity of the QCP AFL is still expected to be T -independent in the leading order, but is enhanced by a

factor of T 2
F /�

2, where � is a boson gap in the v� g0 model, when away from the quantum critical point.

Now we compare the structure of the Joule heating terms between the strange metals and Fermi-

liquids. We consider two phenomenological limits. In one limit, we consider an ”optical” regime, where

the external frequency ⌫ is so large that the energy relaxation rate �0 can be neglected. Physically that

corresponds to response on short time scales, at which energy doesn’t dissipate. In model of strange metal

we obtained �0 = 0 for boson dynamics included, thus it would be logical to compare it to the Fermi

liquid response in the regime where �0 can be neglected too. The dynamic dimensionless coe�cients a(T )
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that appear in Eq. (1.7) in the corresponding theories are given by

aFL =
e2kF vF
2⇡~ ⇢FL,⌫ , (1.11)

anFL(T ) =
e2kF vF
2⇡~ �⇢ ln

✓
T�

T

◆
. (1.12)

Relevant expression for the Joule heating contribution in the optical limit is

�(3)nFL,J

a,bcd
(⌫b, ⌫c, ⌫d) =

�JAnFL(T )

e2k3F vF

�nFL(T, ⌫d)�2nFL(T, ⌫bcd)�ab�cd
i⌫anFL(T ) + �0(T )

+ (b, c, d permutations), (1.13)

�(3)FL,J

a,bcd
(⌫b, ⌫c, ⌫d) =

AFL(T )

e2k3F vF

�FL(T, ⌫d)�2FL(T, ⌫bcd)�ab�cd
i⌫aFL(T ) + �0(T )

+ (b, c, d permutations), (1.14)

The dimensionless coe�cient �J = 2+ 2�(T ) is the e↵ect of non-linear corrections into the strange metal

collision integral. If the collision integral was linear, we would expect �J = 1. Note, however, that we

neglected some details of frequency dependence of the linear conductivity when providing Eq. (1.13).

The full analysis can be found in the main text. Again, since both of the Fermi liquid and strange metal

responses have a similar structure, only the di↵erences of a(T ) and A(T ) in di↵erent theories define the

relative strength of the response. Since AnFL in enhanced in comparison to AFL at low temperatures, we

expect stronger Joule heating e↵ects in the optical limit for strange metals.

At low frequencies and temperatures, the energy relaxation rate values become important. In Fermi

liquids is typically mediated by phonons with �0 ⇠ T above the Bloch-Gruneisen temperature and ⇠ T 5

below it. Below we demonstrate that if the bosons in the non-Fermi liquid are kept in thermal equilibrium,

they lead to a �0 ⇠ T dependence at all temperatures. Thus, heating e↵ects in nonlinear transport should

be stronger in non-Fermi liquids at least in the whole range for Bloch-Gruneisen to Fermi temperature.

However, since the energy relaxation of boson has not been currently explored, it is also possible that the

actual energy relaxation rate in a non-Fermi liquid will be smaller at low T. Here we consider two extreme

limits (bosons in thermal equilibrium always or energy conservation in the fermion+boson system) and

leave the investigation of potential energy relaxation mechanisms for future work.

Finally, from the structure of the solution to the kinetic equation we have been able to conjecture the

scaling with T of all the higher order non-linear responses, and thus the response function in general. The

strange-metal non-linear response current takes a form

|jnFL,nl| ⇠
T 2�(T )

evF
FnFL

✓
�(T )|E|
ekFT

,
↵⇢T

⇢0

◆
, (1.15)

which has a universal scaling structure |E|/T for low temperatures ↵⇢T . ⇢0, while the non-linear response

in Fermi-liquids remains featureless due to being suppressed by T
p
~�/e2/"F ⌧ 1:

|jFL,nl| ⇠
T 2�(T )

evF
FFL

✓
�(T )|E|
ekF

p
�"F

,
T

"F

◆
. (1.16)
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where � is a relaxation rate due to potential disorder defined as � = ⇢0/4⇡e2vFkF . In the expressions

functions FnFL and FFL do not depend on temperature explicitly. Note that the universal |E|/T scaling

in strange metals is only applicable as far as |E|/T . 1. Thus, decrease in temperature also requires an

decrease in the amplitude of an external field to observe the sampling. Decreasing temperature T while

keeping |E| constant would only lead to a very di↵erent regime where |E|/T scaling might no longer hold.

A similar statement can be conjectured about the Joule heating-related non-linear response current

density in the optical limit:

|jJ,nFL| ⇠
eT 2kFp
�⌫ã(T )

FJ,nFL

 
evF |E|

T
p
�⌫ã(T )

!
, (1.17)

while the Fermi-liquid result, again, remained featureless in terms of temperature dependence:

|jJ,FL| ⇠ ekFaFL⌫

r
"F
�
FJ,FL

✓
evF |E|

i⌫aFL
p
�"F

◆
. (1.18)

The expressions above are valid for a small T limit. This shows that the strength of non-linear responses

in strange metal is in general controlled by temperature. Thus, one would expect the material at low

temperatures to become highly non-linear with a large number of higher order responses excited simul-

taneously. On this accord we conclude the showcase of results in the paper and proceed towards the

calculation discussion in the following section of the paper.

II. THE MODEL

To model a strange metal we use the so-called v � g0 model [20–22, 24]. This model consists of N

flavors of fermionic fields  i(x) coupled to N flavors of near-critical bosonic fields �i(x) through a spatial-

dependent coupling g0ijl(r). The bosonic mode in a strange metal can play the role of a near-critical

collective fermion mode. The model The action for the model can be written as

Seq[ ,�] = S0[ ,�] + Sv[ ,�] + Sg0 [ ,�], (2.1)

where S0 is a bare 1-particle action terms are

S0[ ,�] =
NX

i=1

Z
d3x  †

i (x) [i@t � "(p̂)� ep̂ ·A] i(x)

+
NX

i=1

Z
d3x

1

2
�i(x)

⇥
�@2t + c2r2 �m2

B

⇤
�i(x). (2.2)

There x is a shorthand notation for the time and space coordinates (t, r). The ✏(p̂) is an energy operator

for the fermions, and mB is a bare mass of the bosonic mode, c is a velocity of the bosonic mode. We
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couple the fermions to a gauge filed A through a minimal coupling. In this paper we will restrict ourselves

to the case of a spatially homogenious electric field, so E = @tA(t). The second term in Eq. (2.1)

corresponds to potential disorder described by a chemical potential vij(r):

Sv[ ,�] =
1p
N

NX

i,j=1

Z
d3x vij(r) 

†
i (x) l(x). (2.3)

The third term in Eq. (2.1) is the spatial-dependent interaction

Sg0 [ ,�] =
1

N

NX

i,j,l=1

Z
d3x c g0ijl 

†
i (x) j(x)�l(x). (2.4)

The choice of the coupling constant g0 to have an explicit prefactor of c is merely a convenience that does

not contradict [22] in any way. Since we are interested in computing the model non-linear response to the

electric field by using the method of kinetic equations, we are going to apply the Keldysh approach to this

system. Therefore, we define the Keldysh action as S = Seq[ +,�+] � Seq[ �,��], where the fields  +

and �+ are in the forward propagating part of the Keldysh contour, and  � and �� are in the backward

propagating part. For our convenience, we introduce the Greek letter indices for the notation of the ”+”

and ”�” fields:

��i(x) =

2

4�+i(x)

��i(x)

3

5 ,  ↵i(x) =

2

4 +i(x)

 �i(x)

3

5 (2.5)

With this notation in hand, we can write down our action as

S =
NX

i=1

Z
d3x d3x0  †

↵i(x)G
�1
0↵�(x, x

0) �i(x)

+
1

2

NX

i=1

Z
d3x d3x0 �⇢i(x)D

�1
0 ⇢�(x, x

0)��i(x
0)

+
1p
N

NX

i,j=1

Z
d3x vij(r) 

†
↵i(x)�̃↵� �i(x)

+
1

N

NX

i,j,l=1

Z
d3x cg0ijl(r)�̃↵�� 

†
↵i(x) �j(x)��l(x). (2.6)

In the above equation, the new indexed objects �̃↵� and �̃↵�� are responsible for the causality structure

of the action. The �̃↵� coe�cients are defined as

�̃↵� =

2

41 0

0 �1

3

5 , (2.7)
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while the �̃↵�� are defined as

�̃+++ = ��̃��� = 1 (2.8)

with all the other components being 0. Note that in the following calculations we will be performing a

Keldysh rotation. We use the Kamenev convention [31], where bosons and fermions transform di↵erently.

Thus we reserve ↵, �, µ, and ⌫ to correspond to the fermion causality indices, and � and ⇢ for the boson

causality indices.

The operators G�1
0↵� and D�1

0 ⇢� are the inverses of bare Green’s functions defined in Eq. (2.2) with

the corresponding causal structure induced by the Keldysh approach. Their form will be given after the

Keldysh rotation is performed. From now on we will only be working with the action written in the

notation of Eq. (2.6).

At last, we are going to assume that the potential disorder vij(r) and the coupling g0ijl(r) are random in

the flavor and spatial coordinate. Therefore, averaging over the classical ensemble of the disorder results

in

hvij(r)i =
⌦
g0ijl(r)

↵
= 0, (2.9)

⌦
v⇤ij(r)vab(r

0)
↵
= v2�ia�jb �(r� r0), (2.10)

⌦
g⇤0ijl(r)g

⇤0
abc(r

0)
↵
= g02�ia�jb�lc �(r� r0), (2.11)

where the averaging is done over the gaussian-distributed variables vij and g0ijl:

hfi =
Z

D[v, g0]f(v, g0)e�
v2ij(r)

2v2 e
�

g02ijl(r)

2g02 (2.12)

In the next chapter we are going to perform the large-N expansion for this model with the use of ⌃�G

action in the Keldysh formalism.

III. SADDLE POINT EQUATIONS

Following the usual procedure of ⌃�G method [20–22], we define the bilocal Green’s funtions fields

iG↵�(x, x
0) =

1

N

NX

i=1

 ↵i(x) 
†
�i(x

0), (3.1)

iD⇢�(x, x
0) =

1

N

NX

i=1

�⇢i(x)��i(x
0). (3.2)
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In terms of these new fields G and D, and their corresponding constraints Lagrange multipliers ⌃ and ⇧

(self-energies), the e↵ective action after integrating out the  and � fields is

Se↵

N
= �i Tr ln

�
G�1

0 � ⌃
�
+

i

2
Tr ln

�
D�1

0 �⇧
�

+ i

Z
d3x d3x0

✓
1

2
⇧�⇢(x

0, x)D⇢�(x, x
0)� ⌃↵�(x

0x)G�↵(x, x
0)

◆

+
iv2

2

Z
d3x d3x0 �(r� r0)�̃↵� �̃µ⌫G⌫↵(x

0, x)G�µ(x, x
0)

� c2g02

2

Z
d3x d3x0 �̃↵�⇢�̃µ⌫�G⌫↵(x

0, x)G�µ(x, x
0)D⇢�(x, x

0). (3.3)

This complicated expression consists of several parts. The traces in the first line of Eq. (3.3) comes from

integrating out the fields  and �. The terms with self-energies comes from the Lagrange multipliers.

The term in the third line corresponds to the potential disorder, and finally, the last line corresponds to

the randomized interaction.

Since the whole action is proportional to N , we apply a large-N expansion that leads to the equations

of motion for fields G,D,⌃, and ⇧ for the action that correspond to the saddle point of the action in Eq.

(3.3).

Varying over the self-energies results in the Dyson equations

G↵�(x, x
0) =

h�
G�1

0 � ⌃
��1
i

↵�
(x, x0), (3.4)

D⇢�(x, x
0) =

h�
D�1

0 �⇧
��1
i

⇢�
(x, x0). (3.5)

Varying the action over G results in

i⌃↵�(x, x
0) = i⌃v,↵�(x, x

0) + i⌃g0,↵�(x, x
0), (3.6)

The corresponding v and g0 components are

i⌃v,↵�(x, x
0) = iv2�(r� r0)�̃↵µ�̃⌫�Gµ⌫(x, x

0) (3.7)

i⌃g0,↵�(x, x
0) = �c2g02

2
�(r� r0)�̃↵⌫⇢�̃µ��G⌫µ(x, x

0)
�
D⇢�(x, x

0) +D�⇢(x
0, x)

�
. (3.8)

Varying over D results in

i⇧�⇢(x, x
0) = c2g02�(r� r0)�̃↵�⇢�̃µ⌫�G⌫↵(x, x

0)G�µ(x
0, x). (3.9)

The Eqs (3.6) and (3.9) correspond to 1-loop corresponding expansions in the Keldysh theory. In the

next section we will use these results to construct a kinetic equation that would describe v � g0 model.
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The equations obtained above have a proper form to be converted into a kinetic equation. However,

before proceeding to the Keldysh kinetic equation, we need to complete the Keldysh rotation, where the

distinction between fermoionic and bosonic casuality indices becomes important, since they transform

di↵erently in the convention employed in [31]. The Keldysh rotation for bosons is
2

4�cl
�q

3

5 =
1p
2

2

41 1

1 �1

3

5

2

4�+
��

3

5 . (3.10)

We denote the transformation matrix used above as ⇤⇢�. For the fermions the transformation is more

complicated, since the conjugated fields transform di↵erently from their counterparts:
2

4 1

 2

3

5 =
1p
2

2

41 1

1 �1

3

5

2

4 +

 �

3

5 ,

2

4 
†
1

 †
2

3

5 =
1p
2

2

41 �1

1 1

3

5

2

4 
†
+

 †
�

3

5 . (3.11)

We denote the transformation matrix for the fields  as U↵� and for  † – as V↵� . Then Green’s functions

in the old basis are expressed through the Green’s functions in the new basis as

[D]old(x, x
0) = ⇤�1[D]new(x, x

0)(⇤�1)T , (3.12)

where the RHS involves the Green’s function after the Keldysh rotation, and LHS involves the Green’s

function before the Keldysh rotation. A similar expression for the fermions’ Green’s functions looks like

[G]old(x, x
0) = U�1[G]new(x, x

0)(V �1)T . (3.13)

This rotation allows to explicitly eliminate one of the four components of the 2x2 matrices [G↵� ]old and

[D⇢�]old as redundant in the theory. Thus we obtain

G↵� =

2

4GR GK

0 GA

3

5 (3.14)

for fermions and

D⇢� =

2

4DK DR

DA 0

3

5 . (3.15)

Green’s functions GR and DR are the retarded Green’s functions, and GA and DA are advanced Green’s

functions of the corresponding fields. We parametrize the Keldysh Green’s functions DK and GK by

introducing functions F (x, x0) and FB(x, x0) such that

GK = GR � (1� 2F )� (1� 2F ) �GA (3.16)

DK = DR � (1 + 2FB)� (1 + 2FB) �DA. (3.17)
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The notation of A �B stands for

A �B =

Z
d3y A(x, y)B(y, x0) (3.18)

and functions F (x, x0) and FB(x, x0) play the role of a quantum analog of distribution functions that are

determined within the Keldysh formalism.

IV. KELDYSH KINETIC EQUATION

Now we proceed to derive the kinetic equation that corresponds to the action that we obtained in the

previous section. Since we have both fermionic and bosonic fields in the system, we need to write down

the equations that govern the evolution of both F (x, x0) and FB(x, x0). However, we will not utilize a

classic approach that directly derives the equations of motion for the mentioned functions (for example,

see Kamenev [31]). Instead we derive analogous equations for a set of functions G<(x, x0) and D<(x, x0)

defined as

G< = �GR � F + F �GA, (4.1)

D< = DR � FB � FB �DA. (4.2)

It is motivated by the similarity between our system and the system studied in [24, 35]: both systems

have equilibrium self-energies independent from momentum. This allows to write a simpler set of kinetic

equations that do not involve any momentum information, unlike the equations that govern the evolution

of F and FB. Following [35], we obtain the equations of motion for those quantities:

⇥
G�1

0 ; G<
⇤
=

1

2
(⌃K �GA �GR � ⌃K)+

+
1

2
(⌃A �GA +GR � ⌃R � ⌃R �GA �GR � ⌃A) + ⌃R �G< �G< � ⌃A. (4.3)

⇥
D�1

0 ; D<
⇤
=

1

2
(⇧K �DA �DR �⇧K)+

+
1

2
(⇧A �DA +DR �⇧R �⇧R �DA �DR �⇧A) +⇧R �D< �D< �⇧A. (4.4)

Further simplification of the expressions in Eqs. (4.3) and (4.4) and their conversion into the Fourier

space is possible with a simultaneous application of a few steps: Wigner transform, small perturbation

expansion, and introduction of the spectral density function.

We are interested in studying the quasi-classical limit of the theory, and therefore, instead of studying

functions A(x, x0). We assume that all the 2-point functions in the theory are slow-varying with the
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change of (x + x0)/2 and fast-varying with the change of (x � x0)/2. Thus, as a first step, we study the

evolution of the Wigner transformed 2-point functions defined as

A(x, p) =

Z
d3x̃ e�ipx̃A

✓
x+

x̃

2
, x� x̃

2

◆
, (4.5)

where p is a shorthand notation for a pair p = (!,k), and px̃ = �!t̃+ kr̃.

Note that the Wigner transform has the following the properties:

(A �B)(x, p) ⇡ A(x, p)B(x, p) +
i

2

✓
@A

@x

@B

@p
� @A

@p

@B

@x

◆
(4.6)

and

(A(x, x0)B(x, x0)) =

Z
d3q

(2⇡)3
A(x, q)B(x, p� q). (4.7)

Eq. (4.6) is the central approximation of the theory that limits the applicability of the theory to the

large wavelength and small frequency perturbations, since it involves the infinite series truncation under

assumption that the higher order terms in the series are small.

Applying Eqs. (4.6) and (4.7) reveals the core property of v� g0: due to a spatial disorder all the self-

energies do not depend on their corresponding momenta regardless of a concrete form of Green’s functions,

which proves that this is not only true in equilibrium case [20–22], but also in the non-equilibrium case

too.

The second step of the transformations involves the assumptions about the perturbation structure.

We assume that all the perturbations around the equilibrium distribution are small, and we can describe

the system by a small perturbation around that equilibrium:

F (x,!,k) = F̄ (!) + �F (x,!,k), (4.8)

FB(x,⌦,q) = F̄B(⌦) + �FB(x,⌦,q), (4.9)

where �F ⌧ F̄ and �FB ⌧ F̄B. In this paper we adopt the notation where we denote the equilibrium

quantities with a bar, and the perturbation away from the equilibrium with �.

To compute all the terms in the non-linear response one would have to expand all the self-energies and

the Green’s functions in the order of �F and �FB. However, it will lead to infinite sequences of terms,

thus we will employ a di↵erent strategy that will involve defining analogous quantities to �F and �FB to

make the number of terms in the resulting equation finite. We will eventually retrieve all the orders of

expansion in perturbation �F and �FB from Eqs. (4.3) and (4.4), but for now we start from the linear

order analysis.
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We provide the algebraic details of the described above calculation in Appendix A. We demonstrate that

to the feature of decoupled momenta in v-g0 theory, the equations are subject to great simplification after

the Wigner transform and expansion. Below we only state the main results of the algebraic calculations

for completeness.

We assume that the equilibrium solution is consistent with the previous works [20–22] and takes a

form

ḠR(!,k) =
1

! � vFk � kF (k̂ ·A)� ⌃̄R(!, T )
, (4.10)

D̄R(⌦,q) =
1

⌦2 � c2q2 �m2 + icd⌦
. (4.11)

In our model the fermions have a spherically symmetric dispersion relation with bare dispersion linearized

at the level of the Fermi surface. The behavior of the ⌃̄R(!, T ) is self-consistently determined through

the Dyson equations in equilibrium and yields ⌃R(! = 0, T = 0) = �i� at T = 0. The constant �

is purely determined by the chemical potential disorder � = v2kF /2vF where v is determined by Eq.

(2.10). This contribution to the imaginary part of self-energy is dominant at low temperatures and low

frequencies. The imaginary part in the boson propagator is also self-consistently determined with the

value of the constant cd = g02c2k2F /8⇡v
2
F being fixed. The mass of the boson is a produced purely by

thermal noise around the quantum critical point at T = 0 and according to [20–22] scales with temperature

as m2 ⇡ ⇡cdT/ ln(T⇤/T ), where T⇤ is a UV cuto↵ in the theory.

Substitution of Eq. (4.10) into Wigner-transformed and linearized Eq. (3.9) yields

�⇧R(x,⌦) = �⇧A(x,⌦) = 0 (4.12)

at all the orders of perturbation of the excitation, which implies �DR = �DA = 0. The linearization of

the Dyson equations connects �GR and �⌃R through

�GR = ḠR � �⌃R � ḠR. (4.13)

Substitution of Eq. (4.10) into a linearized Dyson equation in Eq.(4.13) produces a simple condition:

Z
dk �GR(!,k) = 0, (4.14)

which is, in fact, also true at all the orders of perturbation in orders of �F and �FB.

The last step towards deriving a simplified kinetic equations is to employ the observation made by

previous works [24, 35] that employ Keldysh field theory. Since we are working with sharp Fermi surface

at large kF and the self-energies don’t depend on the magnitude of corresponding momenta, the resulting
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response on the level of F and FB should not contain strong dependence on magnitude of k or q [35]. We

combine the developments of [20–22] and [35] to define k- and q- independent spectral functions as

f(x,!, k̂) = �ivF

Z +1

�1

dk

2⇡
G<(x,!,k), (4.15)

fB(x,⌦, q̂) =
2⇡i

arctg
�
c⌦
m2

�
Z +1

0

qdq

2⇡
D<(x,⌦,q). (4.16)

Their main feature is that they are linear in F and FB due to Eqs. (4.1) and (4.2), but have all the

information about momentum magnitudes k and q dependence being erased by the integral. The mo-

mentum information is erased in a self-consistent manner, since G< ⇡ F ImGR, which corresponds to

the spectral density function. When integrated over momentum, it becomes a distribution in excitation

energy summed over all momenta. The complicated prefactors in Eqs. (4.15) and (4.16) are selected

purely for conventional reason that sets f̄ = F̄ = (e�! + 1)�1 and f̄B = F̄B = (e�⌦ � 1)�1 for Green’s

functions GR and DR satisfying Eqs. (4.10) and (4.11). Note that such result for F̄ and F̄B is a usual

Keldysh field theory equilibrium result, while f̄ and f̄B form comes from the convention on the prefactors.

An interesting extra abservation is that the linearized expression for �f does not need a small external

frequency expansion to be simplified exactly and yields

�f = �ivF

Z +1

�1

dk

2⇡
�F
�
ḠA � ḠR

�
, (4.17)

This is, however, not true for �fB, which involves an infinite tower of terms linear in �fB and it’s

time derivatives of all orders. This is one of the infinite towers this method allows to evade during the

calculation.

With all the features of the model discussed above, we execute the Wigner transform, expansion in

perturbation, and finally integrate that version of Eqs. (4.3) and (4.4) over k and q correspondingly to

obtain the system of closed equations for �f and �fB at all the orders of expansion for the perturbations

(see Appendix A for fairly involved algebraic details). We discuss the structure of the kinetic equation

and its solution for the remainder of the paper.

Before we proceed, it is important to consider the limitations in our approach. The equations for �f

and �fB to be derived from the Eqs. (4.3) and (4.4) and the derivation involves Eq. (4.6), which for

2-point functions A and B holds only when |@tA @!B| ⌧ |AB| and |@!A @tB| ⌧ |AB|. This automatically

puts a set of constraints on the time derivative of �f and �fB which can be written as

|@! Re ⌃̄R @t�f | ⌧ | Im ⌃̄R �f | (4.18)

|@!f̄@tRe �⌃R| ⌧ |(2f̄ � 1) Im �⌃̄R| (4.19)

|C(⌦)@t�⇧K | ⌧ |�⇧K | (4.20)
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The first two conditions arise from the Wigner transformation of the terms ⌃R �G< and G< �⌃A in Eq.

(4.3). The third condition arises from the terms ⇧K � DA and DR � ⇧k in Eq. (4.4). These conditions

simplify to a simple single condition

⌫ ⌧ T (4.21)

with the expressions for the involved quantities, which can be found in Appendix A. Note that this

condition does not fulfill all the inequalities above for all values of ! and ⌦, however it works for all values

besides ⌦ ⌧ T and ! ⌧ T . However, since the range of frequencies where our theory breaks is small, the

impact on the behavior is negligible.

A. Boson in thermal equilibrium

At first, let’s consider the situation when the bosonic field is in a thermal state for simplicity. This can

occur when the boson experiences a strong drag due to interaction with other parts of the system. If that

interaction induces a drag much stronger then the interaction with the fermions, the boson relaxation

time will be negligibly small and we can treat it as if it is in a thermal equilibrium. We will use this

limit to phenomenologically understand the heating process in the material due to current circulation. To

obtain the kinetic equation that governs the evolution of �f , we apply all the previously described steps

to Eq. (4.3): the Wigner transform, expansion, and the algebraic simplification from �G< to �f that

captures all the orders in �f . The algebraic details of this calculation can be found in Appendix A. We

thermalize bosonic degrees of freedom by fixing �fB = 0 and we obtain the kinetic equation of the form

A[@t �f ]� (vF ·E)@!(f̄ + �f) = I�[�f ] + Ig0 [�f ] + Inl[�f ]. (4.22)

Even from the first glance the similarity between the form of Eq. (4.22) resembles the structure that we

would expect in the ordinary Fermi-liquid theory, as in Eq. (1.1). However, it is instructive to discuss

every term in it to see what novelty the model of strange metal in consideration brings in the contrast to

ordinary Fermi-liquids.

The first term in the RHS of Eq. (4.22) is a renormalized dynamic term that only depends on @t�f .

The term itself involves a rather complicated linear functional A that has a form

A[@t �f ] = a(!, T )@t �f(k̂,!) +
g02kF
vF

@!f̄

Z
d⌦

2⇡
B0(⌦)

Z
dk̂

2⇡
@t �f(! + ⌦, k̂). (4.23)

Variable k̂ is the direction of momentum k that has been preserved in the theory. The function a(!, T ) is

defined as a = 1� @! Re ⌃̄R and the details of its structure are determined by the structure of the boson
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thermal mass m2(T ). At a critical doping point

m2(T ) ⇡ ⇡cdT

ln(T⇤
T )

, (4.24)

which leads to a(!, T ) having a rather complicated structure at T 6= 0:

a(!) = 1 +
g02kF
8⇡2vF

"
ln

 
c2⇤2

q

2⇡cdT

!
� Re (0)

✓
1

2
� i!

2⇡T

◆#
, (4.25)

where  (0) is a polygamma function of the 0’th order. Relevant details to the derivation of this expression

are shown in Appendix B. It is worth to note for the following sections that at T = 0 the expression for

a(!, T = 0) takes particularly simple form

a(!, T = 0) = 1 +
g02kF
8⇡2vF

ln

����
T⇤

!

���� , (4.26)

which is, interestingly, non-analytic at ! = 0. Temperature T⇤ = ec2⇤2
q/cd (e being an Euler constant) is

completely determined by the momentum UV-cuto↵ of the bosons ⇤q that is necessary for the consistency

of the theory [20, 22]. Thus this temperature to be expected to be much larger than any other parameter

in the theory, in particular T ⌧ T�. Function B0(⌦) involved in Eq. (4.23) is described by

B0(⌦) = �c2
Z

d2q

(2⇡)2
Re D̄R(⌦,q) =

1

8⇡
ln

 
c4⇤4

q

m4 + c2d⌦
2

!
. (4.27)

The dynamic term has two main features that are distinctively di↵erent from Fermi-liquids. First feature

is that in Fermi-liquids one would typically expect no strong dependence of a(!, T ) on ! or T , however in

our case it is not true neither for T > 0 or T = 0 expression. Moreover, in the case of considered model

the full dependence involves a complicated integral that mixes the dynamics in ! and in general needs

to be diagonalized. The second feature is that the dependence in ! of the dynamic term is singular for

T = 0 and ! = 0 due to the logarithmic dependence of a(!, T ) as in Eq. (4.26), unlike in Fermi liquids.

Note that this is not a sign of an inconsistency of the theory, since for T > 0 the dependence is completely

analytic, as in Eq. (4.25) (see Appendix B for more details).

Away from the critical doping the boson mass m2(T ) ⇡ �2 becomes temperature-independent, which

leads to a T - and !-independent value of a(!, T )

aFL(!, T ) = 1 +
g02kF
8⇡2vF

ln

 
c2⇤2

q

e�2

!
⇡ const, (4.28)

which is fully consistent with our expectation for the Fermi-liquid in Sec. I. Additionally, away from the

critical point the c2d⌦
2 term in Eq. (4.27) can be neglected. Thus the integral term in Eq. (4.23) is

proportional to the change of the particle number
R
d!dk̂ �f(!, k̂). Thus, since the particle number is
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expected to remain unchanged, the integral has to disappear. In the regime of a gapped boson m2 ⇡ �2,

the dynamic term reduces to a constat factor a in front of @t�f , as expected in Sec. I.

We proceed to consider the collision integral terms I�, Ig0 , and Inl. In this calculation we deliberately

separated the terms in the collision integral into three categories, where every piece we diligently compute

in Appendix A.

The term I� comes solely from the chemical potential disorder scattering. It has a simple form

and its scattering rate � does not explicitly depend on temperature or energy of the excitation, since

� = i⌃R(! = 0, T = 0):

I�[�f ] = �2�

 
�f(!, k̂)�

Z
dk̂0

2⇡
�f(!, k̂0)

!
. (4.29)

In addition, this term has no non-linear corrections in �f and is computed exactly.

Terms Ig0 and Inl come from the interaction between the fermions and bosons. We split the interaction

terms in such a way that Ig0 only contains linear in �f terms, while Inl contains all quadratic in �f terms.

Note that there are no higher order corrections in powers of �f in this formalism and the equation for �f

becomes exact. The structure of Ig0 is rather complicated structure and involves two terms:

Ig0 [�f ] = �2g(!, T ) �f(!, k̂) +
g02kF
vF

Z
d⌦

2⇡
B(⌦)

�
2f̄B(⌦)� 2f̄(!) + 2

� Z dk̂

2⇡
�f(! + ⌦, k̂). (4.30)

One of the terms contains a function g(!, T ) = Im ⌃̄R, which, same as a(!, T ), is determined by the

structure of m2(T ), has a rather complicated T -dependence at the critical value of doping (m2(T ) is given

by Eq. (4.24)):

g(!, T ) =
g02kF
8⇡vF

T


ln

✓
2⇡cdT

m2

◆
� 2Re ln�

✓
1

2
� i!

2⇡T

◆�
. (4.31)

Details for this calculation can be found in Appendix B. At T = 0 it takes a particularly simple form:

g(!, T = 0) =
g02kF
8⇡vF

|!|. (4.32)

Also note that the structure of g(!, T ) at ! = 0 is non-analytic when T = 0, but is analytic when T > 0,

same as a(!, T ). This is another feature that is explicitly distinct from ordinary Fermi liquids where one

would expect g ⇠ (⇡2T 2 + !2)/"F . However, the case of m2 ⇡ �2 yields

gFL(!, T ) =
g02kF cd

16⇡2vF�2

�
⇡2T 2 + !2

�
, (4.33)

which is exactly of the expected form. Additionally, at small enough T one can expand the function B(⌦)

in the powers of ⌦ ⇠ T in Eq. (4.30). This would lead to the temperature scaling of the integral term to

be shifted away from ⇠ T at the critical doping to ⇠ T 2, which we expect in the ordinary Fermi liquid.
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In the following section we will show below that those non-analyticities of g(!, T = 0) and a(!, T = 0)

at the critical doping, which are connected to !/T dependence, are crucially important for the structure

of higher order responses. Another function that is involved in the integral term of Eq. (4.30) is B(⌦),

which is given by

B(⌦) = �c2
Z

d2q

(2⇡)2
D̄R(⌦,q) =

1

4⇡
arctg

✓
cd⌦

m2

◆
. (4.34)

The full structure of the term Inl that contains all the non-linear in �f corrections is shown in Appendix

A. Its structure is rather complicated and involves quadratic expressions in �f and derivatives of �f .

However, we will only be interested in computing only third order non-linear response in the leading

order in temperature dependence. The only relevant for this task term is rather simple and can be

written as

Inl[�f ] = �g02kF
vF

Z
d⌦

2⇡

Z
dk̂0

2⇡
B(⌦)

h
�f(! + ⌦, k̂0)�f(!, k̂)

i
. (4.35)

If one is interested in computing only the leading order of non-linear response, it is enough to use the

expression for Inl provided above. However, when we perform a structural analysis of the higher order

responses, all the terms have to be considered. Note that a complete expression for all non-linear terms

also involves terms proportional to @t�f . Technically, those terms have to be regarded as the terms that

belong to A and they will make functional A to be non-linear. However, in perturbation theory those

terms will always play a role of lower order in electric field sources that are sub-leading to the term in

Eq. (4.35).

As we expected, kinetic equation Eq. (A25) is, in fact, a closed equation for �f(k̂,!, t). We will explore

the solution of this equation by the means of perturbation theory in electric field in the following sections.

Now we proceed to modify the theory to include the boson dynamics.

B. Full self-consistent boson dynamics

Now we proceed to include all the corrections that come into the kinetic equation when the boson is

not thermalized and full dynamics of �fB has to be considered. To achieve this, we perform an analogous

calculation to the one that was described above and led to Eq. (4.22). However, this time we set �fB 6= 0

and include all the perturbative corrections in �fB ( algebra details in Appendix A). The calculation leads

to an equation of the form

A[@t �f ]� (vF ·E)@!(f̄ + �f) = I�[�f ] + I 0g0 [�f, �fB] + I 0nl[�f, �fB]. (4.36)
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It is useful to compare to the kinetic equation in Eq. (4.22). The close inspection shows that the dynamic

term A[@t�f ] and the disorder collision integral I� remained unchanged and are still described by Eqs.

(4.23) and (4.29). The terms that did change are the linearized interaction-driven collision integral I 0g0 ,

and the non-linear in �f and �fB corrections. The new linearized collision integral now depends on both

�f and �fB and can be written as

I 0g0 [�f, �fB] = Ig0 [�f ] + Icd [�fB], (4.37)

where the part Ig0 that only depends on �f is the same as in the case of thermalized boson and therefore

described by Eq. (4.30). The new term that depends on �fB is

Icd [�fB] =
g02kF
vF

Z
d⌦

2⇡

Z
dq̂

2⇡
B(⌦)(f̄(! + ⌦) + f̄(! � ⌦)� 2f̄(!)) �fB(⌦, q̂). (4.38)

The non-linear corrections with the appearance of �fB 6= 0 take a much more cumbersome form. The full

structure is shown in Appendix A. However, the only leading order terms that appear in the 3rd order of

the perturbation theory still have a rather simple form

I 0nl[�f, �fB] = �g02kF
vF

Z
d⌦

2⇡

Z
dq̂

2⇡

Z
dk̂0

2⇡
B(⌦)

h
2 �fB(⌦, q̂) �f(!, k̂) + �f(! + ⌦, k̂0) �f(!, k̂)

i
. (4.39)

Introduction of boson dynamics brings additional terms into the fermion kinetic equation in Eq. (4.36).

These new terms depend on �fB and therefore we require an additional equation that governs the evolution

of �fB. We construct this equation by performing an already mentioned above simplification procedure

on Eq. (4.4) (see Appendix A) in a similar manner as we did to derive the kinetic equations for fermions.

The result of our calculation manifests itself in a form of

@t �fB + cd �fB = IB[�f ] + IB,nl[�f ]. (4.40)

As a reminder, cd = g02c2k2F /8⇡v
2
F , which is determined self-consistently from the analysis of the theory

performed in a thermal equilibrium. Note, however, the analysis relies on the assumption that the

system has no other fields besides the fermions and the collective mode described by the bosonic field.

Introduction of other fields could lead to presences of additional thermal baths and therefore an additional

drag, which will make the value of cd larger. The terms IB and IB,nl are linearized and quadratic in �f

collision integral terms in the bosonic kinetic equation correspondingly. The linearized part of collision

integral IB is given by

IB[�f ] =
g0c2k2F
2v2F

Z
d!

2⇡

Z
dk̂

2⇡

1

⌦
(1� f(! � ⌦)� f(! + ⌦))⇥ (�f � C(⌦)@t�f) . (4.41)
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The function C(⌦) is

C(⌦) =
c2d⌦

2(m4 + c2d⌦
2) arctg

⇣
cd⌦
m2

⌘ . (4.42)

The quadratic in �f correction to the collision integral IB,nl leading term in the 3rd order becomes

IB,nl[�f ] =
c2g02k2F
2v2F

Z
d!

2⇡

Z
dk̂

2⇡

dk̂0

2⇡

1

⌦

h
�f(! � ⌦, k̂)�f(!, k̂0)

i
, (4.43)

and there are no more higher order corrections in �f or �fB to the boson kinetic equation in Eq. (4.40).

Instead, there is a truncated tower of quadratic in �f terms that involve derivatives over ! and t of the

quadratic expressions in �f . Those, however, are sub-leading due to ⌫ < T and thus can be dropped, as

all the non-linear corrections will only play a role of the extra source terms.

The collision integral terms IB and IB,nl only depend on �f and not �fB, because all the scattering

of bosons on each other is already self-consistently included into constant cd. Thus, these terms should

rather be interpreted as the coupling terms between the bosonic excitations �fB and fermionic excitations

�f , even though these coupling terms originate from the term in Eq. (4.4) usually associated with the

collision integral. Comparing the kinetic equations for bosons in Eq. (4.40) and fermions in Eq. (4.36)

reveals that excitations �f and �fB are coupled to each other through the collision integral terms in both

of the equations. Now we are in a possession of the system of equations for �f and �fB, and the system

of equations is closed for those unknown function. We can proceed to construct the perturbative solution

to the system of equations in the following sections.

V. STRUCTURE OF THE EQUATIONS

Before we begin the construction of the perturbation theory in the powers of electric field, we need to

analyze the structure of the equations that govern the evolution of �f and �fB. In this section we will

explore the structure of the leading order terms in Eqs. (4.36) and (4.40), which means we will for now

completely ignore the presence of Inl and IB,nl. This simplification will not impact the dynamics of the

response, since in the perturbation theory all the non-linear corrections play the role of the additional

sources in addition to the source generated by electric field E. We will reinstate the sources coming from

non-linear corrections in the process of computing the non-linear responses in the next section.
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We begin the analysis by implementing the angular harmonics expansion for �f and �fB:

�f(!, k̂) =
+1X

m=�1
�fm(!)eim✓k , (5.1)

�fB(⌦, q̂) =
1X

m=�1
�fBm(⌦)eim✓q . (5.2)

The angles ✓k and ✓q are the angles that describe direction of unit vectors k̂ and q̂ correspondingly.

This simplifies our analysis due to assumed spherical symmetry of the system. Implicitly we assume the

dependence of �f and �fB on T . From now on we will be using a lower index to signal the angular

harmonic expansion or relation to a particular harmonic. The linearized equations that we are interested

in analyzing have a form

A[@t�f ] + evF (E · k̂) @!(f̄ + �f) = (I� + Ig0)[�f ] + Icd [�fB] (5.3)

for fermions and

@t�fB + cd�fB = IB[�f ]. (5.4)

for bosons. As we mentioned above, these equations di↵er from the Eqs. (4.36) and (4.40) by the absence

of non-linear terms Inl and IB,nl. The fermionic collision integrals I� (scattering on potential disorder), Ig0

(interaction with boson background), and Icd (boson excitations) are described in Eqs. (4.29), (4.30), and

(4.38) correspondingly. The bosonic collision integral that comes from the fermionic perturbations can be

found in Eq. (4.41). We convert the kinetic equations into angular harmonics by integrating those over ✓k

and ✓q with an appropriate exponent value. First we start from the harmonics m 6= 0 for simplicity. The

integral terms in the linear functional A and the collision integrals only depend on
R
dk̂�f or

R
dk̂�fB,

which are proportional to �f0 and �fB0 correspondingly and have no directional dependence themselves.

Thus those will have no e↵ects for harmonics with m 6= 0 and the terms simplify to

a(!, T ) @t�fm(!) + 2 (�+ g(!, T )) �fm(!)+

+
evF
2

@!(E⇤�fm�1(!) + E�fm+1(!)) = �evF
2

@!f̄(!)(E⇤�1,m + E⇤��1,m). (5.5)

In the equation above the first term corresponds to the A[@t�f ] term, the second term corresponds to the

remains of collision integrals I�,Ig0 , and Icd , the last two terms correspond to the term with electric field

E. We introduced a shorthand notation for E = Ex + iEy with Ex and Ey being the components of E.

The E⇤ is the complex conjugate of E . A complete expression for the fermion evolution would also involve

the extra source in the RHS of Eq. (5.5) generated by I 0nl that has a form

I 0nl = �g02kF
vF

Z
d⌦

2⇡
B(⌦) [2 �fB0(⌦) + �f0(! + ⌦)] �fm(!). (5.6)
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The expression for the case of thermalized boson can be obtained by setting �fB0 = 0.

Analogous transformation for m 6= 0 for boson kinetic equation in Eq. (5.4) has a simple form:

@t�fBm + cd�fBm = 0, m 6= 0. (5.7)

Notice that �fBm for m 6= 0 is completely decopled from E and all the other harmonics of both fermionic

and bosonic fields. Therefore those will stay relaxed at all the levels of perturbation theory and

�fBm = 0, m 6= 0. (5.8)

Thus all the e↵ects of the boson dynamics are described by the evolution of �fB0.

We proceed to analyze the kinetic equations projected on the 0’th harmonic �f0 and �fB0. Since the

scattering on the chemical potential disorder always conserves every, I�[�f0] = 0 and equation for �f0

becomes

A[@t�f0] + evF @!(E�f1 + E⇤�f�1) = Ig0 [�f0] + Icd [�fB0]. (5.9)

Note that the fermion density harmonic �f0 only couples to harmonics �f±1 and the boson density

harmonic �fB0. Therefore, the dynamics of the boson only impacts the dynamics of the density harmonic

of the fermion. Same as in the case of m 6= 0, the corresponding non-linear corrections can be restored,

however, there will be no non-linear corrections into the density harmonic below the 4’th order response.

For the density harmonic of the boson �fB0 we acquire a following equation:

@t�fB0 + cd�fB0 = IB[�f0]. (5.10)

The boson perturbations are only coupled to the perturbations of the fermion density harmonic �f0. The

coupling of only density harmonics in our theory is a result of all the interactions between the boson and

the fermion governed by a spatially random potential, which prohibits the momentum transfer. Due to

the structure of non-linear correction terms, there will be no contributions below the 4’th order response.

Before we proceed to construct the perturbation theory series in E (or, equivalently, in E), we need

to understand the structure of the equations for the density harmonics �f0 and �fB0 better. The !-

dependence of A[@t�f0], Ig0 [�f0], and Icd [�fB0] along with ⌦-dependence of IB[�f0] is of a particular

interest, since it will turn out that the collective dynamics of the density harmonics is crucial for under-

standing the higher order responses. Below we describe our short studies of the structure of frequency

dependence and show that the theory contains a few surprising properties that will allow us to construct

a simplified but realistic model of the higher order optical responses.
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At first we analyze the structure of A linear functional and show that it’s action in the low temperature

limit reduces to a multiplication by a constant in the case of anti-symmetric in ! argument �f0. In the

following sections we will show that this is exactly the case for �f0 in the perturbation theory. The

expression for A[�f0] dictates that

A[@t �f0] = a(!, T )@t �f0(!) +
g02kF
vF

@!f̄

Z
d⌦

2⇡
B0(⌦)@t �f0(! + ⌦). (5.11)

The expression for B0(⌦) is

B0(⌦) =
1

8⇡
ln

 
c4⇤4

q

m4 + c2d⌦
2

!
. (5.12)

Since at lower temperatures m2 ⇡ ⇡cdT/ ln(T�/T ), and we expect �f0 to be localized in the region of

width ⌦ ⇠ T around 0, we expect c2d⌦
2 ⇠ c2dT

2 � m4 at small enough T and thus m4 can be neglected in

Eq. (5.12). Since ln⇤4
q/c

2
dT

2 is a constant and �f0 is an anti-symmetric function, the constant integrated

against �f0 will nullify and we will be left with

A[@t �f0] = a(!, T )@t �f0(!) +
g02kF
8⇡vF

@!f̄

Z
d⌦

2⇡
ln

✓
T 2

⌦2

◆
@t �f0(! + ⌦). (5.13)

The integral term in the equation above has some non-trivial !-dependence, but the integral term is

always of the order of ⌫g02kF /vF , while according to Appendix B the !-independent term in a(!, T ) is

a(0, T ) ⇠ ⌫g02kF ln(T�/T )/vF , ⌫ is the external frequency of the excitation �f0. Since a(!, T ) is always

much greater than the integral term at ! ⇠ T , we neglect the integral term and set

A[@t�f0] = a(!, T )@t�f0(!) (5.14)

This simplification preserves the asymptotic behavior of the coe�cient at small T and still leaves a residual

dependence on !, which presence will show to be important later.

Now we analyze the structure of the collision integral terms in the kinetic equations for fermions and

bosons in Eqs. (5.9) and (5.10). Firstly, we would like to note that it is unnecessary to solve the two

kinetic equations separately. The boson degree of freedom can be self-consistently excluded. To do this

we Fourier transform the equations in time t into external frequency ⌫ and obtain

i⌫ a(!, T )�f0 + evF @!(E�f1 + E⇤�f�1) = Ig0 [�f0] + Icd [�fB0]. (5.15)

(i⌫ + cd) �fB0 = IB[�f0]. (5.16)

We can easily invert the second equation to obtain a single equation for �f0 that consistently captures

the dynamics of the boson:

i⌫ a(!, T )�f0 +
evF
2

@!(E�f1 + E⇤�f�1) = Ig0 [�f0] +
Icd [IB[�f0]]

i⌫ + cd
. (5.17)
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In case of a thermalized boson it is enough to set the last term in the RHS of Eq. (5.17) to 0.

Below we display our short study the structure of !-dependence of Ig0 [�f0] and Icd [IB[�f0]] terms with

a goal of better understanding of the response profile in !. In particular, we will show in the next chapters

that the source term in Eq. (5.17) has a form of @2!f̄(!), so we are in particular interested in the behavior

of the collision integral when it acts on the functions �f0(!) with a narrow (! ⇠ T ) peak at ! = 0. Due

to a complicated form of the collision integral, we study it numerically. The integral is diagonalized on a

basis of local anti-symmetric functions that are exponentially suppressed at large !.

First we consider a model with a thermalized boson, thus collision integral only consists of one term

Ig0 [�f0]. We use an exact form of g(!, T ) given by

g(!, T ) =
g02kF
8⇡vF

T


ln

✓
2⇡cdT

m2

◆
� 2Re ln�

✓
1

2
� i!

2⇡T

◆�
, (5.18)

see Appendix B. The total collision integral becomes

Ig0 [�f0] = �2g(!, T ) �f0(!) +
g02kF
vF

Z
d⌦

2⇡
B(⌦)

�
2f̄B(⌦)� 2f̄(!) + 2

�
�f0(! + ⌦), (5.19)

where B(⌦) is given by Eq. (4.34).

At first, we note that at finite temperature and ! ⇠ T the leading term in g(!, T ) is the first term

with the asymptotic of T ln ln(T�/T ) (T� = c2�2/v2F cd). Naively one would think that the term will be

dominant in the collision integral at lower temperatures, however the second term in Eq. (5.19) also has

a divergence at ⌦ = 0 which at finite T is regularized by B(⌦). The estimation of the integral leading

order reveals that the ln ln term in the integral exactly cancels the leading term in g(!, T ). Thus the

actual asymptotic of the collision integral is T without any logarithmic corrections. When numerically

evaluating the integral we encountered a surprising property of Ig0 [�f0]: the profile of interest @2!f̄ is also

an eigenvector of Ig0 . Up to numerical error we retrieved

Ig0 [@
2
!f̄(!)] = �↵g

02kFT

4⇡vF
@2!f̄(!) (5.20)

with ↵ ⇡ 1. For the purpose of the following calculations we set ↵ = 1. We introduce a convenient

notation

�0(T ) =
g02kFT

4⇡vF
. (5.21)

Thus the eigenfunction @2!f̄ of the collision integral has an eigenvalue �0(T ) and so Ig0 [@2!f̄ ] = ��0(T )@2!f̄ .

The lower index of �0 is chosen to correspond to the �f0 harmonics, since it only appears in the corre-

sponding kinetic equation for �f0.
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Now we proceed with analyzing numerically the case of the self-consistent dynamics of the boson. For

now we restrict ourselves to the static case of ⌫ = 0 and analyze the structure of Ig0 [�f0]+ Icd [IB[�f0]]/cd.

Bu substituting explicit expressions for Icd and IB from Eqs. (4.38) and (4.41) into the second term, we

can construct an explicit expression for the linear functional in the form of

Icd [IB[�f ]] =
g04c2k3F
2v3F

Z 1

�1

d!0

2⇡

�
K(!,!0, T )� i⌫KC(!,!

0, T )
�
�f(!0), (5.22)

where integral kernels K(!,!0, T ) and KC(!,!0, T ) are

K(!,!0, T ) =

Z 1

�1

d⌦

2⇡

B(⌦)

⌦
(f̄(! + ⌦) + f̄(! � ⌦)� 2f̄(!))(1� f̄(!0 + ⌦)� f̄(!0 � ⌦)), (5.23)

KC(!,!
0, T ) =

Z
d⌦

2⇡

B(⌦)

⌦
(f̄(! + ⌦) + f̄(! � ⌦)� 2f̄(!))C(⌦)(1� f̄(!0 + ⌦)� f̄(!0 � ⌦)). (5.24)

Neither K or KC have a divergent behavior when T ! 0, since the naive divergence of the integrands

in K as 1/⌦ and in KC as 1/⌦2 do not appear, as the (f̄(! + ⌦) + f̄(! � ⌦) � 2f̄(!)) factor in the

integrands smoothens those as ⌦ ! 0. The dimensional analysis of the term with the K kernel then

shows that the expected dimensional coe�cient for this term is g0
2
kFT/vF – linear in T . Since at low

temperature B(⌦)C(⌦)/⌦ ⇠ 1/⌦2 in comparison to 1/⌦ term in K, the term with KC kernel will have an

extra factor of 1/T of divergence as T ! 0, and therefore the scaling of ⌫g02kF /vF , which is of the order

of the previously neglected term in the linear functional for A[@t�f0]. Thus we can neglect this term too,

since its e↵ects on the dynamics are of the order of already neglected terms and proceed to analyze the

remaining part of the collision integral, which is the K term. To understand the structure of the response

we numerically diagonalize

Ig0 [�f0]�
c2g04k3F
2v3F cd

Z 1

�1

d!0

2⇡
K(!,!0)�f0(!

0), (5.25)

which are the only terms at ⌫ = 0. We find that the collision integral in Eq. (5.25) has a 0-mode (up to

numerical precision), which is shown in Fig. 2. This mode has a very similar to @2!f̄(!) in profile, but

unlike in the case of thermalized boson, it’s eigenvalue is very small. All the other eigenmodes that we

recover have finite eigenvalues and therefore will decay much faster. We associate the 0-eigenvalue mode

that we obtained with the energy conservation law that is present in the model when the boson dynamics

is present. Unlike the case of the thermalized boson, the boson field does no longer serve as a heat bath

for the fermions, but dynamically exchanges energy with the fermion. Moreover, since the bosons are only

coupled to fermions and potential disorder, the conservation of energy should be applicable for the whole

system. Thus there should be a collective fermion-boson mode that would nullify the collision integral

due to the energy conservation. Introduction of additional thermal baths, which are inevitably present in

any real setup, will drive the eigenvalue of this mode away from 0.
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FIG. 2. The figure shows the 0-eigenmode of the collision integral that includes consistent bosonic dynamics Ig0+IcD .

The blue line depicts the non-decaying eigenmode �f0(!) such that Ig0 [�f0] + Icd [IB [�f0]]/cd = 0. The orange line

depicts @2! f̄(!).

Due to a big similarity between the 0-eigenvalue mode of the collision integral, we propose a simple

phenomenological model that will capture those features. We propose to treat the 0-eigenvalue mode

simply as @2!f̄(!). For the case ⌫ 6= 0, the eigenvalue then interpolates as

Ig0 [@
2
!f̄ ] +

Icd [IB[@
2
!f̄ ]]

i⌫ + cd
= �g02kFT

4⇡vF

i⌫/cd
1 + i⌫/cd

@2!f̄ . (5.26)

Thus the eigenvalue has to be proportional to i⌫, and therefore is just another term that contributes to

a dynamic term. Moreover, since it is also proportional to T , at low temperatures it will be just a small

correction to a(!, T ), and therefore can be neglected. Notice, however, that the terms that arise from

the structure of K and kC are the only terms that carry the value of the constant cc explicitly in them.

Thus, the value of cd can be inferred from experiment if one can conduct a precise enough experiment

that would provide information on the m = 0 harmonic dynamics. In the section below we will show that

the Joule heating-related non-linear response in the optical limit provides an opportunity to tackle the
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information about the density harmonic dynamics experimentally, and thus infer the value of cd.

To summarize our insights in the dynamic structure of the fermion �f0 harmonic behavior, we describe

again a phenomenological model that we adopt for the evolution of �f0 harmonics, in particular for the

cases when �f0 ⇠ @2!f̄(!). The dynamic term in Eq. (5.17) takes a form

A[i⌫�f0] = i⌫ a(!, T )�f0. (5.27)

The collision integral term in the RHS of Eq. (5.17) takes a form of

Ig0 [@
2
!f̄ ] +

Icd [IB[@
2
!f̄ ]]

i⌫ + cd
= ��0 @

2
!f̄ , (5.28)

where

�0 =
g02kFT

4⇡vF
, �fB = 0, (5.29)

�0 = 0, �fB 6= 0, (5.30)

With this relatively simple phenomenological model motivated by our numerical study, we proceed to

construct the perturbation theory in electric field in the next section.

VI. PERTURBATION THEORY IN ELECTRIC FIELD

We proceed towards construction of the solution to the kinetic equations for fermions �f and bosons

�fB by the means of perturbation theory. We will consider the solution order by order and in the process

we will recover a known result for linear response, analyze the structure of the collision integral terms

with enabled and disabled dynamics. Eventually construct the description for the third-order response

(second order is nullified by inversion symmetry) and analyze the leading order scaling with temperature.

Additionally, We will compare the strange metal higher order responses to the Fermi-liquid responses.

We will show that the strange metal response grows large as T ! 0 with an extra power of 1/T , which

appears due to the non-analytic behavior of the model at ! = 0 at T = 0. While performing the analysis,

we will di↵erentiate between the non-linear responses coming from the energy harmonic excitations (Joule

heating), and other types of non-linear response. As a side product of our calculations, we will also obtain

the expression for linear resistivity which is consistent with the previous results that involve the model of

a critical Fermi-surface [20–22, 36].

First we organize the perturbation theory by expanding the harmonics �fm in the powers of E , where

E is related to electric field components by E = Ex + iEy:

�fm(!) =
1X

n=1

�f (n)
m (!). (6.1)
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We use the superscript to denote the order of the perturbation, so the term �f (n)
m (!) is a homogeneous

polynomial of E and E⇤ of power n.

We are interested in the first non-trivial non-linear response, which is expected to be a third order

response. Thus we are mostly interested in the structure of �f (3) and all the lower orders. To obtain the

relevant equations we substitute the expansion for �fm in Eq. (6.1) into Eqs. (5.5) and (5.17) and expand

in the powers of electric field the fermion kinetic equations for m 6= 0 harmonics:

[i@t a(!, T ) + 2�+ 2g(!, T )]�f (1)
m (!) = �evF

2
@!f̄(!)(E⇤�1,m + E��1,m), (6.2)

[i@t a(!, T ) + 2�+ 2g(!, T )]�f (3)
m (!) = �evF

2
@!(E⇤�f (2)

m�1(!) + E�f (2)
m+1(!)) + I 0(3)nl , (6.3)

where term I 0nl is the non-linear correction in the third order that comes from Eq. (5.6) and, particularly,

in the third order takes a form

I 0(3)nl = �g02kF
vF

Z
d⌦

2⇡
B(⌦)

h
2 �f (2)

B0 (⌦) + �f (2)
0 (! + ⌦)

i
�f (1)

m (!). (6.4)

For the higher responses one will have to consider all the non-linear correction terms shown in Appendix A

instead of just focusing on the leading order of corrections described in Eq. (5.6).

Following our discussion in Sec. V, the evolution of the density harmonics �f0 is governed by an

equation of a di↵erent form. We expand it in the orders of perturbation up to n = 2 and obtain

i⌫ a(!, T )�f (2)
0 (!)� I[�f (2)

0 (!)] = �evF
2

@!(E�f (1)
1 + E⇤�f (1)

�1 ), (6.5)

The collision integral I is given by I = Ig0 for thermalized boson or I = Ig0 + Icd [IB] for a dynamic boson,

as in Eq. (5.15). Note that in the orders of perturbation higher than n = 2 there will be numerous

non-linear corrections to this equations which will turn out to be important when computing higher order

responses.

Finally, we consider the source of electric field E of the form

E =
X

i

E⌫ie
i⌫it, (6.6)

where E⌫i are the space-independent coe�cients and use the expanded equations in Eqs. (6.2), (6.3), and

(6.5) to construct the perturbation in �f and later use �f solution to compute the response current j.
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A. Linear perturbation in electric field

As the first step, we compute the perturbation in �f up to a linear in E term, which we denoted as

�f (1):

�f (1) =
1X

m=�1
�f (n)

m eim✓k . (6.7)

Since �f0
±1 = 0 by definition, the density harmonic m = 0 is not perturbed in the first order, and therefore

�f1
0 = 0. Thus, all the dynamics of �f (1) is captured by harmonics �f (1)±1 described by Eq. (6.2). It is

useful to multiply Eq. (6.2) by eim✓k and sum over m to reconstruct the equation for �f (1):

[i⌫i a(!, T ) + 2�+ 2g(!, T )] �f (1) = �evF (E⌫i · k̂) @!f̄ . (6.8)

The solution to the equation above is

�f (1)(!) = �evF
X

i

(E⌫i · k̂) ei⌫itW (!, ⌫i, T )
@f̄

@!
(!), (6.9)

where the transfer function W is

W (!, ⌫, T ) =
1

i⌫ a(!, T ) + 2�+ 2g(!, T )
. (6.10)

Note that under our assumptions, the dominant term in the denominator of W (!, ⌫, T ) at low tempera-

tures and ⌫ ⌧ T is �, which does not depend on temperature.

One of the properties of the �f (1)(!) which will become important in the next subsection, is the

symmetry of the solution with respect to ! ! �!. Since g(!, T ), a(!, T ), and @!f̄ are symmetric

functions under ! ! �!, �f (1) is symmetric under ! ! �!.

We use the solution for �f (1) in Eq. (6.9) in the following subsections to compute linear conductivity

and to compute higher orders of the perturbation �f (n) in the following subsections.

B. Second order perturbation in electric field

In the second order of perturbation in E one, in general, would expect two types of excitations: �f (2)
±2

and �f (2)
0 , which are the ”tensor” m = 2 and the ”particle density” m = 0 harmonic. The corresponding

equations for these harmonics are derived from Eqs. (6.3) and (6.5). Since �f (1)
±3 = 0, it is particularly

easy to construct the equations for �f (2)
±2 :

[i⌫ a(!, T ) + 2�+ 2g(!, T )]�f (2)
2 = �evF

2
E⇤@!�f

(1)
1 (6.11)

[i⌫ a(!, T ) + 2�+ 2g(!, T )]�f (2)
�2 = �evF

2
E@!�f (1)

�1 (6.12)
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The solution to these equations can be constructed in the analogous way to the solution in Eq. (6.9) and

we obtain

�f (2)
2 =

e2v2F
4

X

i,j

E⇤
⌫iE

⇤
⌫je

i⌫ijtW (!, ⌫ij , T )
@

@!


W (!, ⌫i, T )

@f̄

@!

�
(6.13)

where ⌫ij = ⌫i + ⌫j . Analogous expression for �f (2)
�2 , but it involves to factors of E instead of two factors

of E⇤ in Eq. (6.13).

Now we proceed towards a similar construction for the density harmonic �f (2)
0 , which, however, will

be more involved. At first we need to use the explicit solution we constructed for �f (1) to justify the

approximations we have implemented in Sec. V and show that the structure of the second order pertur-

bation of a density harmonic has a rather simple profile. Note that in previous subsection we showed that

�f (1) is a symmetric function of !. Thus the source term in Eq. (6.5) is an anti-symmetric function of !,

which implies that �f2
0 will also be an anti-symmetric function of !. Therefore the reduction of A[@t�f0]

to a(!, T ) @t�f0 is justified in our context due to the anti-symmetry of the argument. Let’s take the closer

look at the !-profile of the RHS source term in Eq. (6.5). The source has a form @!�f
(1)
±1 , where function

�f (1)
±1 is

�f (1)
±1 ⇠ W (!, ⌫, T )@!f̄ =

@!f̄

i⌫a(!, T ) + �+ g(!, T )
. (6.14)

The ! derivative of �f (1)
±1 involves two terms: W (!, ⌫, T )@2!f̄ and @!W (!, ⌫, T )@!f̄ . In the first term,

as we mentioned above, � is dominant in the denominator and therefore we can approximate the term

as W (!, ⌫, T )@2!f̄ ⇠ @2!f̄/�. The second term involves a derivative of W and can be approximated as

@!W (!, ⌫, T )@!f̄ ⇠ (i⌫@!a+@!g)@!f̄/�2. By comparing the T > 0 expressions for i⌫@!a and @!g in Eqs.

(4.25) and (4.31) correspondingly, we see that under assumption of ⌫ ⌧ T the derivative of g dominates

over the derivative of a. Additionally, we see that the derivative of g is a constant factor multiplied by

1� 2f̄(!). Since (1� 2f̄(!))@!f̄ ⇠ @2!f̄ , the second term is also proportional to @2!f̄ in the leading order.

Since the source therm in the RHS of Eq. (6.5) has a profile ⇠ @2!f̄ , we can apply the approximate

treatment of the m = 0 harmonic of the collision integral developed in Sec. V and Eq. (6.5) simplifies to

[i⌫ a(!, T ) + �0(T )]�f
(2)
0 (!) = �evF

2
@!(E�f (1)

1 + E⇤�f (1)
�1 ), (6.15)

where according to our model constructed in Sec. V, �0(T ) = g02kFT/4⇡vF if the boson is in thermal

equilibrium and �0 = 0 when the boson dynamics is fully consistent with the fermion dynamics. Eq.

(6.15) can be easily solved, the solution with explicit dependence on E is

�f (2)
0 =

e2v2F
2

X

i,j

(E⌫i ·E⌫j ) e
i⌫ijtW0(!, ⌫ij , T )

@

@!


W (!, ⌫i, T )

@f̄

@!

�
, (6.16)
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where ⌫ij = ⌫i + ⌫j and the factor W0 for an m = 0 harmonics is

W0(!, ⌫, T ) =
1

i⌫a(!, T ) + �0(T )
. (6.17)

Note the similarity in the perturbative expansion structure for �f (2)
0 and �f (2)

±2 harmonics. The only

di↵erence is the choice of the factor: W for m 6= 0 and W0 for m = 0.

The density harmonic m = 0 is related to the particle density and the energy density in the system.

Thus, the non-linear responses that involve the excitation of the m = 0 harmonic have a physical meaning

of the non-linear responses coming from the change of energy density in the system. This e↵ect, when the

change of energy density is positive, is associated with the Joule heating of the system by the external

driving heat. Thus, the non-linear response contributions that arise from the excitation of the density

harmonics should be regarded as the joule heating e↵ect. Other contributions should be regarded just as

ordinary non-linear e↵ects. A complete solution for �f (2) can be written as

�f (2) = �f (2)
0 + �f (2)

2 e2i✓k + �f (2)
�2 e

�2i✓k . (6.18)

Thus, we have ordinary non-linear terms and the Joule heating terms included and in the following

sub-sections we will analyze the consequences for both contributions.

C. Third order perturbation in electric field

The third order response tackles harmonics with m = ±3 and m = ±1. Since we are interested in

eventually computing the currents from the perturbations, we will focus on deriving the expressions for

m = ±1 harmonics, which is the only harmonics that carries current in a spherically symmetric system.

The equations that govern the evolution of �f (3)
±1 can be obtained from Eq. (6.3), which is

[i⌫ a(!, T ) + 2�+ 2g(!, T )]�f (3)
m (!) = �evF

2
@!(E⇤�f (2)

m�1(!) + E�f (2)
m+1(!)) + I 0(3)nl , (6.19)

where m = ±1. The non-linear correction has a form

I 0(3)nl = �g02kF
vF

Z
d⌦

2⇡
B(⌦)

h
2 �f (2)

B0 (⌦) + �f (2)
0 (! + ⌦)

i
�f (1)

m (!), (6.20)

where in thermalized boson dynamics case �f (2)
B0 = 0, and when the dynamics is accounted for,

�f (2)
B0 =

1

i⌫ + cd

g0c2k2F
2v2F

Z
d!

2⇡

Z
dk̂

2⇡

1

⌦
(1� f(! � ⌦)� f(! + ⌦))⇥

⇣
�f (2)

0 (!)� C(⌦) @t�f
(2)
0 (!)

⌘
. (6.21)

Notice that due to a non-linear nature of I 03nl does not contain any factors of �f (3). The non-linear

correction only contains the terms that depend on �f (2)
0 and �f (1)

m , which have already been obtained by
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the means of the perturbation theory. The same conclusion will be applicable to all non-linear corrections

that come from the collision integral, and thus we argue that the non-linear corrections to the collision

integral only play the role of additional sources in the equations of the type of Eq. (6.19) and analogous

to it. In the rest of the subsections we solve Eq. (6.19) with all the sources included and find that in case

of the strange metal the sources originating non-linear corrections have no significant impact on the non-

linear response. Notice, however, that the non-linear correction term solely arises from the excitation of

m = 0 harmonics for bosons and fermions, and thus has to be attributed to the e↵ects of the Joule heating.

Therefore, the ordinary non-linear response term should be computed with �f0 = �fB0 = 0. Therefore,

we have to make a distinction between the di↵erent types of non-linear responses and and to achieve this

we denote the perturbations associated to Joule heating as �f (3)
J,±1, and the perturbations associated with

ordinary non-linear response as just �f (3)
±1 . As was mentioned above, the ordinary perturbations come

from Eq. (6.19) with an assumption that no density harmonics are perturbed and result is

�f (3)
1 = �e3v3F

8

X

i,j,l

E⇤
⌫iE

⇤
⌫jE⌫le

i⌫ijltW (!, ⌫ijl, T )
@

@!


W (!, ⌫ij , T )

@

@!


W (!, ⌫i, T )

@f̄

@!

��
, (6.22)

and �f (3)
�1 = (�f (3)

�1 )
⇤.

To compute the Joule heating-related response �f (3)
J,±1 we split the expression into three terms �f (3)

J,±1

based on the origin of the source of the term in Eq. (6.19):

�f (3)
J,±1 = �f (3)

J�main,±1 + �f (3)
J�nl,±1 + �f (3)

J�bos,nl,±1. (6.23)

The term �f (3)
J�main,±1 we associate with the ”main” contribution that is present even when I 0(3)nl = 0.

The term �fJ�nl we attribute to the source coming from a non-linear correction that is associated with

�f (2)
0 in Eq. (6.20), present even when �fB0 = 0. Finally, the term �f (3)

J�bos,nl,±1 we associate with the

non-linear contribution of the bosonic dynamics �f (2)
B0 in the Eq. (6.20). The corresponding expression

for main contribution is

�f (3)
J�main,1 = �e3v3F

4

X

i,j,l

E⇤
⌫l(E⌫j ·E⌫i) e

i⌫ijltW (!, ⌫ijl, T )
@

@!


W0(!, ⌫ij , T )

@

@!


W (!, ⌫i, T )

@f̄

@!

��
. (6.24)

The non-linear correction from a thermalized boson contribution is obtained by setting �f (2)
B0 = 0 in Eq.

(6.20) along with using Eq. (6.16) for �f (2)
0 and has a form

�f (3)
J�nl,1 = �g02kF

4⇡vF

e3v3F
4

X

⌫i,⌫j ,⌫l

E⇤
⌫l(E⌫j ·E⌫i) e

i⌫ijlt⇥

⇥W (!, ⌫ijl, T )W (!, ⌫l, T )W0(!, ⌫ij , T )W (!, ⌫i, T )

✓
@f

@!
(!)

◆2

. (6.25)
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The non-linear contribution from boson dynamics is obtained by substituting Eqs. (6.21) and (6.16) into

Eq. (6.20) and setting �f (2)
0 = 0 and becomes

�f (3)
J�bos,nl,1 =

g02c2k3F
4⇡v3F (i⌫ + cd)

e3v3F
48⇡T

✓
ln

✓
cdT

m2

◆
+ �b

◆
⇥

⇥
X

⌫i,⌫j ,⌫l

E⇤
⌫l(E⌫j ·E⌫i) e

i⌫ijltW (!, ⌫ijl, T )W0(0, ⌫ij , T )W (0, ⌫i, T )W (!, ⌫l, T )
@f̄

@!
(!) (6.26)

with �b ⇡ 0.91. Even though the terms �f (3)
J�nl,1 and �f (3)

J�bos,nl,1 seem to have a rather di↵erent from

�f (3)
J�main,1 structure in the first glance, they are still strongly peaked functions at ! = 0 of width ! ⇠ T .

We will show that their contributions into current look alike to the contribution coming from �f (3)
J�main,1.

From the expressions for the perturbation in Eq. (6.22) we can infer a structure of non-linear responses

in this model. Every extra order of non-linear response comes with a term proportional to electric field and

the factor of W@!. The structure of the responses that excite the density harmonic is more complicated:

when we perturb the density harmonic m = 0, the additional factor becomes W0@!, and several extra

corrections from non-linear terms take place too. We will explore the structure of the higher order

responses in a greater detail later in this section and meanwhile focus on computing the current responses

for the linear and 3rd order responses.

D. Currents in linear and third order responses

Some of the basic observables to study with the perturbation theory include linear conductivity and

higher order conductivities. We, in particular, are interested in computing the current produced by

perturbations �f (1) and �f (3) to extract the features of the temperature dependence of the response. The

corresponding currents can be obtained with

j(n) = ekF

Z +1

�1

d!

2⇡

Z 2⇡

0

dk̂

2⇡
k̂ �f (n)(!). (6.27)

We start from recovering an expected result for the linear response for j(1) and famous linear in T

conductivity. We substitute the expression for �f (1) from Eq. (6.9) into Eq. (6.27) and obtain

j(1) = �e2vFkF
2

X

i

E⌫i e
i⌫it
Z +1

�1

d!

2⇡
W (!, ⌫i, T )

@f̄

@!
(6.28)

Now it is instructive to show the connection between the non-analytical structure of a and g at T = 0 and

the divergent responses. A typical next step in evaluating the integral like in Eq. (6.28) in Fermi-liquid

theory will involve taking a limit T ! 0 that turns @!f̄ into a �-function, and then evaluating the integral.
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let’s formally perform that step and analyze the expression:

j(1) =
e2vFkF

4⇡

X

i

E⌫ie
i⌫it

i⌫ia(0, 0) + 2�+ 2g(0, 0)
. (6.29)

On our way here, we several times mentioned the expressions a(!, T = 0) and g(!, T = 0), which can

be found in Eqs. (4.26) and (4.32) correspondingly. Notice that g(0, 0) = 0 is well-defined, however

a(! ! 0, 0) is logarithmic-divergent, which is a smoking gun of the singularities at T = 0 and potential

extra divergences in the higher order responses. Indeed, the structure of a(!, T > 0) contains a logarithmic

divergence of a(!, T ) ⇠ ln(T⇤/T ) for all ! . T . Thus the naive limit T ! 0 that has been taken in Eq.

(6.29) is an illegal operation. We will have to be more careful when taking the limits and will need to

study the structure of the integrands. When we use full expressions for a(!, T ) and g(!, T ), we can see

that function @!f̄ is a sharp peak of width T . Since � is a dominant term in W (!, ⌫, T ), the function W

does not have any serious peaks or discontinuities in the vicinity of ! ⇠ T . Thus, to estimate the values

of the integral, we can substitute ! = T into a(!, T ) and g(!, T ) when evaluating the integral in Eq.

(6.28). Assuming that the cotribution g(! ⇠ T, T ) ⌧ �, we can expand W (!, ⌫i, T ) in Eq. (6.28) and we

obtain

j(1) =
e2vFkF

4⇡

X

i

E⌫ie
i⌫it

i⌫iã(T ) + 2�+ 2g̃(T )
, (6.30)

where up to a leading order

ã(T ) = �
Z +1

�1
d!

@f̄

@!
(!) a(!, T ) =

g02kF
8⇡2vF

ln
⇣!⇤

T

⌘
, (6.31)

g̃(T ) = �
Z +1

�1
d!

@f̄

@!
(!) g(!, T ) =

g02kF
8⇡vF

T ln

✓
4cdT

em2

◆
= �(T )

g02kF
8⇡vF

T. (6.32)

The boson mass m2 ⇡ ⇡cdT/ ln(T⇤/T ), the function �(T ) is a very slowly changing function of T due to

the double logarithm term

�(T ) = ln

✓
4

⇡e

◆
+ ln ln

✓
T⇤

T

◆
. (6.33)

Considering the case when T⇤ being very, large, in the interval T 2 (10�2T⇤, 10�10T⇤), the value of

�(T ) changes in the interval of (1, 1.5), which sets it to be some constant ⇠ 1 for any physically relevant

scenario. The resulting linear conductivity becomes

�nFL(⌫, T ) =
e2vFkF /4⇡

i⌫ ã(T ) + 2�+ 2g̃(T )
. (6.34)

which can be equivalently written as a linear resistivity of the form

⇢nFL(⌫, T ) =
1

�nFL(⌫, T )
= ⇢0 + i⌫�⇢ ln

✓
T⇤

T

◆
+ ↵⇢T, (6.35)
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which is exactly Eq. (1.5) up to restoring the factors of ~ and kb with the coe�cients being defined as

⇢0 =
8⇡�

e2vFkF
, �⇢ =

g02

2⇡e2v2F
, ↵⇢ = �(T )

g02

e2v2F
= 2⇡�(T )�⇢. (6.36)

This result reproduces the previous diagrammatic calculations performed in [21, 22] and, additionally,

correctly predicts the frequency-dependent part of the conductivity conjectured in [36]. Additionally, we

receive the plankian scattering rate 1/⌧Pl = �(T )/ ln(T⇤/T ) · kBT/~.

The calculation above is valid only for small enough temperatures where ↵⇢T ⌧ ⇢0, and the regime

of large temperatures has to be computed separately. In the regime of large temperature g(!, T ) is the

only dominant term in Eq. (6.28), and the regime of large temperatures leads to a di↵erent expression

for a slope �(T ) that, in this case, we denote ���T (T ). After numerically evaluating the integral in Eq.

(6.28) in the large temperature limit we find that for a physically relevant values of �(T ) given by Eq.

(6.33) lead to a numerically robust relation ���T (T ) ⇡ 1.03�(T ) + 0.12 for �(T ) ranging from 1 to 3.

Thus, even though the cross-over at ↵⇢T ⇠ ⇢0 exists, the actual change of slope is insignificant and can

be ignored.

Away from the critical point the values of g(!, T ) and a(!, T ) are described by Eqs. (4.33) and (4.28)

correspondingly. When substituted into the equation for current in Eq. (6.28), it results in

⇢FL =
1

�FL
= ⇢0 + i⌫�⇢,FL + ⇢T

2, (6.37)

where the coe�cients are

⇢0 =
8⇡�

e2vFkF
, �⇢,FL =

4⇡

e2vFkF

"
1 +

g02kF
8⇡2vF

ln

 
c2⇤2

q

�2

!#
, ⇢ =

2⇡g02cd
e2v2F�

2
. (6.38)

In ordinary two-dimensional Fermi-liquids the scattering rates are such that gFL(!, T ) = �FL(⇡2T 2 +

!2)/"F , which instantly leads to Eq. (1.4) (�FL is a dimensionless number of the order of ⇠ 1). In the

vicinity of QCP �FL grows as the boson gap � approaches 0, from the expression for ⇢ we obtain

�FL(�) =
3

32⇡3
c2

v2F

✓
g02kF
vF

◆2
T 2
F

�2
. (6.39)

Since we expect g02kF /vF ⇠ 1 due to the universal resistance scaling [34], we arrive to Eq. (1.4) again.

Now we proceed towards computing the higher order current responses. We focus on the first non-

vanishing current j(3), since j(2) vanishes by inversion symmetry. We will consider both the current related

to ordinary non-linear response j(3) and the current associated with the Joule heating j(3)J . To obtain j(3)

we start with substituting our solution for �f (3)
±1 from Eq. (6.22) into the current equation in Eq. (6.27),

which results in
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j(3) = �e3v3FkF
8

Z
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2⇡
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⌫lE

c
⌫jE
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⌫i�a,bcd e

i⌫ijltW (!, ⌫ijl, T )
@
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W (!, ⌫ij , T )

@

@!


W (!, ⌫i, T )

@f̄

@!

��
.

(6.40)

In the equation above ⌫ijl = ⌫i + ⌫j + ⌫l and tensor �a,bcd components are defined by

�1,bcd = Re [ubu
⇤
cu

⇤
d], �2,bcd = � Im [ubu

⇤
cu

⇤
d] (6.41)

Where components of a vector ua are given by ua = (1, i).

Before diving into the analysis and the integration of concrete expressions for the conductivity, we

want to highlight a very generic and important role of a(!) and g(!) in creation of non-zero j(3) and other

higher order responses. Above we conjectured that all the higher order responses can be obtained by

adding factors of W and extra derivatives on !, similar to Eq. (6.40). To better understand the structure

of that equation let’s integrate it by parts first to transform it to a form

j(3) = �e3v3FkF
8

Z
d!

2⇡

X

i,j,l

k̂aEb
⌫lE

c
⌫jE

d
⌫i�a,bcd e

i⌫ijlt
@f̄

@!
W (!, ⌫i, T )

@

@!


W (!, ⌫ij , T )

@W

@!
(!, ⌫ijl, T )

�
.

(6.42)

Notice that this expression would vanish if W (!, ⌫, T ) did not depend on !. Thus, the presence of an

!-dependence in the scattering rates, in particular, g(!, T ) is important for the presence of non-linear

responses. In Fermi-liquids with g(!, T ) ⇠ !2 and the strange metals with g(!, T ) ⇠ ln ch (!/2T )

the criterion is satisfied and the non-linear responses will be present. However, the strange metals and

Fermi liquids have a main di↵erence. in Fermi-liquids the derivatives of gFL(!, T ) are all small, since they

are suppressed by "F . In contrast, strange metals !-dependence always comes in a form of !/T , which

make the derivatives, and thus non-linear responses, diverge as T ! 0. To illustrate this divergence we

fist showcase how these divergences arise from the non-analyticity of g(!, T = 0). We perform a naive

computation the same way to the liner response current in Eq. (6.29) and obtain

j(3) = �e3v3FkF
16⇡

X

i,j,l

k̂aEb
⌫lE

c
⌫jE

d
⌫i�a,bcd e

i⌫ijlt⇥

⇥W (0, ⌫i, 0)


@W

@!
(0, ⌫ij , 0)

@W

@!
(!, ⌫ijl, 0) +W (0, ⌫ij , 0)

@2W

@!2
(!, ⌫ijl, 0)

�
. (6.43)

Besides an already mentioned in Eq. (6.29) linear response problem related to a divergence of a(!, T = 0)

as ! ! 0 in the expression for W (0, ⌫, 0), the expression for non-linear current in Eq. (6.43) has a larger

divergence. The term @2!W (0, ⌫, 0) contains a term proportional to @2!g(0, 0). However g(!, T = 0) = |!|,

and thus second derivative is singular and current j(3) diverges. The divergence law can be extracted in
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exactly the same manner as in the linear response case: we first evaluate the integral over ! in Eq. (6.42)

and then study the low temperature limit. In the leading order in 1/T we obtain

j(3) =
e4v3FkF
48⇡

X

⌫b,⌫c,⌫d

k̂aEb
⌫lE

c
⌫jE

d
⌫i�a,bcd e

i⌫ijlt
g02kF
8⇡vF

1

T
⇥

⇥ 1

i⌫iã(T ) + 2�+ 2g̃(T )

1

(i⌫ijlã(T ) + 2�+ 2g̃(T ))2
1

i⌫ij ã(T ) + 2�+ 2g̃(T )
, (6.44)

which can be rewritten using known quantities from linear resistivity in Eq. (6.35) and results in non-linear

conductivity of the form

�(3)nFL,a,bcd(⌫b, ⌫c, ⌫d) =
2⇡2

3e2k2F

↵⇢

�(T )T
�nFL(⌫d, T )�

2
nFL(⌫bcd, T )�nFL(⌫cd, T )�a,bcd. (6.45)

As we expected, the conductivity is proportional to inverse temperature and since at small temperatures

linear conductivity �nFL is constant, expression in Eq. (6.45) diverges at small temperatures as 1/T .

Even though the expression for non-linear conductivity was derived for small temperatures T ⌧ �, the

expression above appears to be applicable for all the values of temperature with a good accuracy. The

expression for �(3)nFL for the regime of temperatures T � � has an identical to Eq. (6.45) form with an

overall coe�cient in front of the expression being less by a factor of ⇡ 17/20 = 0.85.

A similar expression for non-linear conductivity to an expression in Eq. (6.45) can be derived for a

Fermi liquid regime. In a similar manner to a derivation of an Eq. (6.37), we use the expressions for

aFL and gFL given in Eqs. (4.28) and (4.33) instead of the non-Fermi liquid expressions for a(!, T ) and

g(!, T ). The non-linear conductivity then becomes

�(3)FL,a,bcd(⌫b, ⌫c, ⌫d) =
16⇡3

e4vFk3F

g02kF cd
8⇡2vF�2

�FL(⌫d, T )�
2
FL(⌫bcd, T )�FL(⌫cd, T )�a,bcd. (6.46)

In the ordinary Fermi liquids gFL(!, T ) = �FL(⇡2T 2 + !2)/"F , which results in the expression similar to

the Fermi liquid result in Sec. I (�FL is a dimensionless number of the order of ⇠ 1). As expected, in

Fermi liquids the non-linear response is constant and thus any prominent temperature-dependent features

are absent. Comparing the non-linear conductivity for Fermi liquids and strange metals in Eqs. (6.45)

and (6.46) shows that at low enough temperature the relative strength of non-linear response with respect

to a linear response in strange metals will be much larger then the expected relative strength in Fermi

liquids.

The non-linear response that involves excitations of the density harmonic, with we attribute to Joule

heating, can be computed in a similar manner to the calculation above. We substitute the perturbation

�f (3)
J,±1 given by Eq. (6.23) into the current expression in Eq. (6.27) and write out the three terms �(3)J�main,
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�(3)J�nl, and �
(3)
J�bos,nl that come from the perturbations �f (3)

J�main,±1 in Eq. (6.24), �f (3)
J�nl,±1 in Eq. (6.25),

and �f (3)
J�bos,nl,±1 in Eq. (6.26) correspondingly. The non-linear conductivity term �(3)J�main becomes

�(3)J�main,a,bcd(⌫b, ⌫c, ⌫d) = �⇡vF
3kF

↵⇢

�(T )T

�nFL(⌫d, T )�2nFL(⌫bcd, T )

i⌫cdã(T ) + �0(T )
�ab�cd. (6.47)

The term �(3)J�nl that comes from the fermionic non-linear corrections into collision integral is

�(3)J�nl,a,bcd(⌫b, ⌫c, ⌫d) = �⇡vF
3kF

↵⇢

�(T )T

�nFL(⌫bcd, T )�nFL(⌫d, T )�nFL(⌫b, T )

i⌫cdã(T ) + �0(T )
�ab�cd. (6.48)

The term �(3)J�bos,nl that comes from the boson dynamics non-linear corrections into collision integral is

�(3)J�bos,nl,a,bcd(⌫b, ⌫c, ⌫d) = �2⇡vF
3kF

↵⇢

T

�nFL(⌫bcd, T )�nFL(⌫d, T )�nFL(⌫b, T )

(i⌫cdã(T ) + �0(T ))
⇣
1 + i⌫cdcd

⌘ �ab�cd. (6.49)

The three terms above have an, in principle, di↵erent external field frequency dependence, and thus can

be distinguished. However, the leading order expression in frequencies is overall frequency-independent.

In the optical regime, where we can neglect the energy decay rate �0(T ) and treat the system as adiabatic.

The boson dynamics should be accounted for, which results in Eq. (1.13).

The Joule heating in the Fermi liquids can also be obtained in a similar manner to the calculation

above. For simplicity, we ignore the contribution of non-linear corrections into the Fermi liquid collision

integral and consider only the term that are present even in linear systems given by �f (3)
J�main,±1 in Eq.

(6.24). However, instead of the non-Fermi liquid expressions g(!, T ) and a(!, T ) we use the expressions

suitable for Fermi liquid regime aFL and gFL(!, T ) provided in Eqs. (4.28) and (4.33). The corresponding

expression for the Joule heating term will be given by

�(3)FL,J(⌫b, ⌫c, ⌫d) = � 8⇡2

e2k2F

g02kF cd
8⇡2vF�2

�FL(⌫d, T )�2FL(⌫bcd, T )

i⌫cdã(T ) + �0(T )
�ab�cd. (6.50)

Again, in the ordinary Fermi liquids gFL(!, T ) = �FL(⇡2T 2 + !2)/"F , which results in the expression

similar to the Fermi liquid result in Sec. I (�FL is a dimensionless number of the order of ⇠ 1).

E. Higher order responses

Now we proceed to analyze the non-linear responses in strange metals and compare them to the generic

non-linear responses in Fermi liquids. The non-linear responses of arbitrary order in perturbation theory,

in general, toggle the dynamics of a density harmonic m = 0 as well as the other harmonics. The terms in

non-linear response that completely avoid triggering the density harmonics we attribute to the ”ordinary

non-linear response” in the system. The terms that involve only the current m = 1 and the density
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m = 0 harmonics we attribute as pure Joule heating. The mixed terms we interpret as an overlap of Joule

heating terms and ordinary non-linear terms in the perturbation theory.

At first, let’s try to understand the structure of the terms that we attribute to the ordinary non-linear

response. The higher order corrections to the perturbation �f can be constructed by building a cascade

of W@! expressions similar to one in Eq. (6.22). For simplicity, we ignore the tensorial structure and the

frequency dependence of the non-linear response. Perturbation �f (2n+1)
1 then contains 2n+1 factor of W

and 2n + 1 factor of derivatives @!, where one of the derivatives creates @!f̄ . The leading in 1/T order

will come from the term that has all the derivatives acting on the same factor of g(!, T ), and thus the

leading order �f (2n+1)
1 has a form

�f (2n+1)
1 ⇠ |E|2n+1W 2n+2@

2ng(!, T )

@!2n

@f̄

@!
, (6.51)

which leads to the current j(2n+1) magnitude to be

|j(2n+1)| ⇠ |E|(2n+1) �
2n+2

T 2n�1
. (6.52)

The peculiar feature of the expression above is that temperature factor scales along with the factor of

|E| with a similar power. This implies that when the all the perturbation terms are resumed, the leading

order in 1/T current jnFL,nl will have a form

|jnFL,nl| =
T 2�(T )

evF
FnFL

✓
�(T )|E|
ekFT

,
↵⇢T

⇢0

◆
, (6.53)

where F (x, y) is some continuous odd function of x that does not depend on temperature explicitly. Thus,

in the regime ↵⇢T ⌧ ⇢0, the system is expected to have a universal scaling of response, where the non-

linearity strength is controlled by the ratio of �(T )E/T . At small temperatures we expect the conductivity

� ⇡ const, and therefore the scaling becomes E/T . However, the universal scaling, in general, will only

hold for |E|/T . 1, thus decrease of the temperature requires the decrease in

When applied to Fermi liquids, the derivatives of gFL(!, T ) do not contain any 1/T extra divergences.

Instead, every derivative comes with a factor of ⇠ T/
p
"F� and the non-linear response becomes

|jFL,nl| =
T 2�(T )

evF
FFL

0

@�(T )|E|
ekF

s
�(T )

e2kF vF "F
,
T

"F

1

A , (6.54)

which is featureless at small values of T , since for any physical scenario of response measurement both of

the arguments are small.

Considering the non-linear terms in the Joule heating related response is a more complicated task

due to the presence of non-linear corrections, but can be achieved in a similar manner. There, since the
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evolution of the m = 0 harmonic is drastically di↵erent from the m 6= 0 harmonics, we will need to track

the expressions for the even and odd levels of perturbation separately. However, only odd perturbation

orders will have non-zero current due to inversion symmetry. To construct the leading order in 1/T

solution, we first ignore non-linear corrections, construct the solution as if the non-linear corrections were

absent, and then show that non-linear correction do not generate new terms with a faster 1/T scaling.

Since, in general �0(T ) ⌧ � for a small enough T , the presence of the extra density harmonics in the

response will make the Joule heating much stronger than the non-linear response. Thus the largest term

includes the excitation of a density harmonic m = 0 at all even orders of perturbation theory and the

current harmonic at m = 1 at all the odd orders. Thus, every odd (2n+1)’th order contains n+1 factor

of W and n factors of W0. Every even 2n order, on the other side, contains n factors of W and W0.

Additionally, the n-th order of perturbation theory contains n� 1 derivatives over ! that can act on W

or W0. In Sec. V we showed that in the case of 3’rd order response �0 and thus W0 do not depend on !

due to energy conservation. However for higher order responses such cancellation, in general, is no longer

true and derivatives of W0 will be present. The structure of the collision integral for m = 0 harmonic also

implies that �0 only contains the !/T dependence, thus the derivatives of W0 induce extra factors of 1/T

in a similar manner to the derivatives of W . Thus the leading order perturbations are

�f (2n+1)
J�main ⇠ E2n+1Wn+1(@2n! Wn

0 )
@f̄

@!
⇠ E2n+1W

n+1Wn+1
0

T 2n�1

@f̄

@!
, (6.55)
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! Wn
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@f̄
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⇠ E2nW

nWn+1
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T 2n�2

@f̄

@!
. (6.56)

With the expressions above we can now estimate the non-linear corrections brought by the presence of

lower order terms as extra e↵ective sources for higher order terms similar to I 0nl in Eq. (4.39) and IB,nl in

Eq. (4.43). However, unlike in our previous calculations, we will have to account for all the extra terms

present in the equation, which can be found in Appendix A. The fermion non-linear dynamics correction,

in general, has only terms of the form
R
d⌦�f0 �f . Thus the terms that arise from these corrections, in

general, take a form

�f2(n+m)
non�lin ⇠ W0

✓Z
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◆
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n (6.57)
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�0�
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n (6.58)

Considering that we expect �0 ⇠ T for the higher order responses, the non-linear terms above are of the

same order in the powers of 1/T as the main sequence of terms in Eqs. (6.55) and (6.56). The non-linear

corrections that come from non-trivial boson dynamics come in the form of the terms of two kind. First
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kind of the terms, which we have already seen in Eq. (6.25), consists of quadratic corrections of the form

�fnon�lin,bos,2 ⇠
✓Z

d⌦

⌦

Z
d! �f0

◆
�f. (6.59)

The second class of terms is the only third order non-linear correction that appears in the theory, and

according to the full calculation in Appendix A, it has a form

�fnon�lin,bos,3 ⇠
✓Z

d⌦

⌦

Z
d! �f0�f0

◆
�f. (6.60)

In a similar manner to Eqs. (6.57) and (6.58), these expressions do not induce new leading order correc-

tions. This fact can be observed just from the structure of Eqs. (6.59) and (6.60), because the overall

power of ! and ⌦ in the expressions is the same as in Eqs. (6.57) and (6.58): the extra factor of 1/⌦

matches the extra integral over ⌦.

Thus, the scaling of the non-linear response associated with Joule heating for small temperatures can

be written as

|jJ,nFL| =
eT 2kFp
��0

FJ,nFL

✓
evF |E|
T
p
��0

◆
(6.61)

if �0 � ⌫ - dominates over ⌫, or

|jJ,nFL| =
eT 2kFp
�⌫ã(T )

FJ,nFL

 
evF |E|

T
p
�⌫ã(T )

!
(6.62)

when ⌫ � �0. Note, however, that the expression in Eq. (6.61) requires a clear understanding of the

energy relaxation mechanism in the system. The mechanism has not yet been theoretically understood

and requires further study. However, in the optical regime ⌫ � �0, the presence of �0 can be neglected

and we retrieve a general expression shown in Eq. (6.62).

The corresponding expressions in Fermi liquids yield, again, expressions with arguments suppressed

by T/
p
�0"F . The expression in adiabatic limit becomes

|jJ,FL| = ekF�0

r
"F
�
FJ,FL

✓
evF |E|

�0(T )
p
�"F

◆
, (6.63)

and expression in the optical limit becomes

|jJ,FL| = ekFaFL⌫

r
"F
�
FJ,FL

✓
evF |E|

i⌫aFL
p
�"F

◆
. (6.64)

Thus, while in Fermi-liquids non linear responses remain rather featureless, the strange metal behavior,

again, manifests a |E|/T scaling.
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VII. CONCLUSIONS

In this work we have studied the non-linear conductivity of a non-Fermi liquid with linear-in-T resistiv-

ity using a model of a quantum critical metal with disordered electron-boson couplings. The non-analytic

behavior of the scattering rate Im⌃R = �+↵|!| reflects in an anomalous enhancement of the third-order

conductivity / TF /T in comparison to a Fermi liquid. We have identified two qualitatively di↵erent

contributions to third-order nonlinear response. In particular, excitation of the zeroth angular harmonic

of the distribution function describes the Joule heating e↵ects and leads to a nonlinear response inversely

proportional the energy relaxation rate, �0, which is zero for a closed system and linear in temperature for

bosons being kept in equilibrium. �0 is typically smaller than all the other relaxation rates, making this

contribution dominant. Nonetheless, we demonstrate that choosing polarization of electric field allows to

select contribution arising from excitation of di↵erent harmonics of the distribution function too. We find

that the resulting third-order conductivity is uniquely related to the slope of the linear-in T resistivity.

Finally, we demonstrate that at low temperatures, the nonlinear corrections to transport become singular

suggesting a universal |E|/T scaling of nonlinear transport in non-Fermi liquid for |E|/T . 1. Overall,

our work demonstrates that nonlinear transport can be a useful tool to probe and characterize non-Fermi

liquid state in future experiments.
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Appendix A: Self-energy corrections

Here we showcase all the necessary algebraic details on the conversion of Keldysh equations for G<

and D< into kinetic equations for �f and �fB. We first start from showing how the setup of the v-g0

model leads to particularly simple expressions for �⇧R, �GR, and �f and �fB.

First of all, consider �GR and �GA. We expand Eq. (3.4) up to a linear order in �G and �⇧. For the
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GR component, we receive

�GR = ḠR � �⌃R � ḠR. (A1)

Performing a Wigner transform on Eq. (A1) yields

�GR(!, k) = Ḡ2
R(!, k)�⌃R(t,!) + ... (A2)

but the derivative terms disappear. However, integrating it over k with the assumption of the form of

ḠR = [!�vFk�⌃R(!)]�1 yields 0 since all the poles of the expression are above the integration contour,

and therefore
Z

dk �GR(!,k) = 0. (A3)

An equivalent statement holds for �GA. Moreover, when we expand to an arbitrary order in �⌃R, the

same argument can be applied to claim that Eq. (A3) holds at all the levels of perturbation. Now we are

required to understand the structure of �⇧R. We perform a Wigner transform on the component of Eq.

(3.9) that corresponds to ⇧R and obtain

i⇧R(x,⌦) =
g02c2

2

Z
d!

2⇡

d2k

(2⇡)2
d2k0

(2⇡)2
⇥
GR(!,k)GK(! � ⌦,k0) +GK(!,k)GA(! � ⌦,k0)

⇤
. (A4)

Expanding the expression in the orders of perturbation and yields

i�⇧R(x,⌦) =
g02c2

2

Z
d!

2⇡

d2k

(2⇡)2
d2k0

(2⇡)2
�GK(!,k)

⇥
ḠR(! + ⌦,k0) + ḠA(! � ⌦,k0)

⇤
, (A5)

as all the quadratic in perturbation corrections disappear due to Eq. (A3). With the use of a substitution

of equilibrium quantities ḠR = [! � vFk � ⌃R(!)]�1 and equivalent expression for ḠA = Ḡ⇤
R into Eq.

(A5), the terms ḠR and ḠA cancel and we obtain

�⇧R = �⇧A = 0. (A6)

This instantly implies that �DR = �DA = 0, because �DR = D̄R � �⇧R � D̄R. Moreover, that holds in all

the levels of perturbation theory, since �DR is in general proportional to the powers of �⇧R.

Additionally we demonstrate how the expression for �f simplifies in this model. We consider f defined

in Eqs. (4.15) and expand it up to a linear order in perturbation. The expression for �f becomes

�f(x,!, k̂) = �2ivF

Z +1

�1

dk

2⇡

⇥
�i�F Im ḠR

� iF̄ Im �GR + @x�F@k Re ḠR � @t�F@! Re ḠR

+@!�F@tRe �GR] . (A7)

47



However, notice that F̄ doesn’t depend on k and therefore all the terms with �GR and �GA integrate to

0. Additionally, notice that since F doesn’t have a strong k dependence, we can perform the integral over

k for the terms with derivatives of F to see that all the poles of remaining expressions are on one side of

the contour and all the terms with derivatives of �F cancel. Thus we obtain

�f(x,!, k̂) = �ivF

Z +1

�1

dk

2⇡
�F (ḠA � ḠR). (A8)

The same argument applied to �fB does not result in the cancellation of all the terms, since the terms

that contain the derivatives of �FB will have a much more complicated structure. Thus the expression

for �fB will contain not just �F , but also its time derivatives.

Now we proceed to convert the kinetic equations in real space for G< and D< given in Eqs. (4.3)

and (4.4) into kinetic equations for �f and �fB. As a first step, we expand the equations in the orders

of perturbation �G< and �D< (including all terms of all the self-energies and Green’s functions). As a

second step, We apply the Wigner transform, and as a final step we integrate the resulting equations

for �G< and �D< over k and q correspondingly. After algebraic simplification we obtain a system of

equations of the form

a(!, T ) @t�f � (vF ·E)@!(f̄ + �f) + (@!f̄) (@tRe �⌃R) = � i

2
�⌃K+

+ (2f̄ � 1) Im �⌃R + 2 Im (⌃̄R + �⌃R) �f + @! Re �⌃R @t�f � @tRe �⌃R @!�f, (A9)

2⌦ @t�fB =
i

2
�⇧K � i

2
C(⌦)@t �⇧K + 2 Im ⇧̄R �fB, (A10)

where we introduced notation

a(!, T ) = 1� @! Re ⌃̄R, (A11)

C(⌦) =
c2d⌦

2(m4 + c2d⌦
2) arctg

⇣
cd⌦
m2

⌘ . (A12)

The expressions for the equilibrium self-energies are known from previous works [CITE] by using a Mat-

subara technique, so

Im ⇧̄R = �cd⌦, (A13)

where cd = g02c2k2F /8⇡v
2
F . The expressions for ⌃̄R for non-zero temperature are rather complicated and

we devote a separate appendix (Appendix B) for understanding it’s structure. For T > 0 the expressions
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for a(!, T ) becomes

a(!) = 1 +
g02kF
8⇡2vF

"
ln

 
c2⇤2

q

2⇡cdT

!
� Re (0)

✓
1

2
� i!

2⇡T

◆#
, (A14)

Im ⌃̄R = ��� g02kF
8⇡vF

T


ln

✓
2⇡cdT

m2

◆
� 2Re ln�

✓
1

2
� i!

2⇡T

◆�
, (A15)

and greatly simplifies for T = 0 case to be

a(!) = 1 +
g02kF
8⇡2vF

ln

����
T⇤

!

���� , (A16)

Im ⌃̄R ⌘= ��� g02kF
8⇡vF

|!|. (A17)

The analytic continuation of the thermal Matsubara self-energies and Green’s function greatly simplifies

our approach, since it allows us to escape the necessity to compute the equilibrium expressions of self-

energies ⌃̄R and ⇧̄R in the Keldysh formalism.

In the following subsections we show that the self-energy perturbations �⌃K and �⌃R are quadratic

functionals of �f and �fB, while �⇧K is a quadratic functional only of �f . This calculation will conclude

the derivation of the system of kinetic equations, since that will make the Eqs. (A9) and (A10) closed

for �f and �fB. We study the structure of those self-energies in great detail in the following subsections

for two physically distinctive scenarios. The first scenario is a closed system scenario, where the boson is

only coupled to the fermionic field in the theory and plays a crucial role as a dynamic degree of freedom.

The second, simpler scenario, involves an external heat bath strongly coupled to the boson and causing

thermalization of the Bosonic degree of freedom. At the end we attempt to construct a continuous family

of the theories whose limiting cases produce thermalized and conservative bosonic modes’ behavior.

1. Thermalized boson

Above we obtained kinetic equations for �f and �fB in Eqs. (A9) and (A10). However, in the form

that we provided the system of equations is not closed yet: it contains the expressions for self-energies

�⌃R, �⌃K , and �⇧K . Below we show that these perturbations to self-energies are linear in �f and �fB

and therefore the system of the equations closes.

First of all, we inspect the structure of the self-energy of the fermionic field �⌃K and �⌃R. The expan-

sion of �⌃R and �⌃K involves linear and quadratic terms in �G and �D, Thus we split the perturbations

of self-energies into three terms: �⌃K,�G and �⌃K,�G are linear fermionic perturbations �G, �⌃K,�D and
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�⌃K,�D are linear in bosonic perturbations �D, and �⌃K,�G�D and �⌃K,�G�D are quadratic in �G and �D:

�⌃K = �⌃K,�G + �⌃K,�D + �⌃K,�G�D, (A18)

�⌃R = �⌃R,�G + �⌃R,�D + �⌃R,�G�D, (A19)

where the perturbation due to fermions is

i�⌃R,�G = �c2g02

4

Z
d⌦

2⇡

d2q

(2⇡)2
d2k

(2⇡)2
⇥
D̄R(⌦,q)�GK(! � ⌦,k) + D̄A(⌦,q)�GK(! + ⌦,k)

⇤
. (A20)

and

i�⌃K,�G = �c2g02

4

Z
d⌦

2⇡

d2q

(2⇡)2
d2k

(2⇡)2
D̄K(⌦,q) (�GK(! � ⌦,k) + �GK(! + ⌦,k))

+ iv2
Z

d2k

(2⇡)2
�GK(!,k). (A21)

For now we focus on the case of thermalized bosonic degrees excitations, and therefore for now we set

�DK = 0, and therefore �fB = 0. This instantly implies that �⌃R and �⌃K are linear in �G only, since

�⌃R,�D = �⌃K,�D = �⌃R,�G�D = �⌃K,�G�D = 0. We will consider the impact of dynamics of bosonic

field on the fermion in the next subsection. Algebraically simplifying the expression in Eq. (A20) and

rewriting it in the terms of �f leads to

i�⌃K,�G = �2v2
kF
vF

Z
dk̂0

2⇡
�f(k̂0,!)� 2g02

kF
vF

Z
d⌦

2⇡

dk̂0

2⇡
B(⌦)

�
2f̄B(⌦) + 1

�
�f(! + ⌦, k̂0), (A22)

where B(⌦) = �c2
R d2q

2⇡ Im D̄R. We obtain an expression for �⌃R,�G in a similar way:

Im �⌃R,�G = �g02kF
vF

Z
d⌦

2⇡

dk̂0

2⇡
B(⌦) �f(! + ⌦, k̂0) (A23)

and with B0(⌦) = �c2
R d2q

2⇡ Re D̄R:

Re �⌃R,�G =
g02kF
vF

Z
d⌦

2⇡

dk̂0

2⇡
B0(⌦) �f(! + ⌦, k̂0). (A24)

The k̂ corresponds to the remaining angle of the momentum k degree of freedom after the integration

over |k| is performed.

Substitution of the self-energy perturbation expressions from Eqs. (A22), (A23), and (A24) into the

kinetic equation in Eq. (A9) we obtain a closed kinetic equation for �f :

A[@t �f ]� (vF ·E)@!(f̄ + �f) = I�[�f ] + Ig0 [�f ] + Inl[�f ]. (A25)
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Above we introduced the following notation for the terms of a few di↵erent types. For the dynamic term

that only involves @t�f we introduced a linear functional A defined as

A[@t �f ] = a(!)@t �f(k̂,!) +
2g02kF
vF

@!f̄

Z
d⌦

2⇡
B0(⌦)

Z
k̂

2⇡
@t �f(! + ⌦, k̂). (A26)

The collision integral terms I�, Ig0 , and Inl are defined as

I�[�f ] = �2�(�f(k̂,!)� �f0(!)), (A27)

Ig0 [�f ] = �2g(!) �f(k̂,!) +
2g02kF
vF

Z
d⌦

2⇡
B(⌦)

�
2f̄B(⌦)� 2f̄(!) + 2

� Z dk̂

2⇡
�f(! + ⌦, k̂). (A28)

Inl[�f ] = �g02kF
vF

Z
d⌦

2⇡

Z
dq̂

2⇡

Z
dk̂0

2⇡
B(⌦) �f(! + ⌦, k̂0)�f(!, k̂)+

+
g02kF
vF

Z
d⌦

2⇡

Z
dk̂0

2⇡
B0(⌦)

h
@!�f(! + ⌦, k̂0) @t�f(!, k̂)� @t�f(! + ⌦, k̂0) @!�f(!, k̂)

i
. (A29)

Note that since we derive the equation under an approximation of ⌫ ⌧ T , the second line in the expression

for Inl is sublleading with respect to the first line and can be neglected leading to Eq. (4.35). Term I�

corresponds to the term produced by potential disorder, and term Ig0 corresponds to the linearized in �f

interaction with the bosonic mode, and term Inl corresponds to the non-linear corrections created by the

interaction. In the expressions above we used

B(⌦) =
1

4⇡
arctg

✓
cd⌦

m2
B

◆
, (A30)

B0(⌦) =
1

8⇡
ln

 
c4⇤4

q/c
2
d

m4
B/c

2
d + ⌦2

!
. (A31)

As we can see, all the terms in the Eq. (A25) depend linearly on �f only, therefore we obtained a closed

equation for �f .

2. Dynamic boson

In this subsection we direct our attention to deriving the kinetic equations that govern the self-

consistent dynamics of both boson �f and a fermion �fB. We start from considering the structure of

self-energy corrections to, at first, prove that the Eqs. (A9) and (A10) are still closed under �f and �fB.

In a similar manner to the subsection Appendix A 1, we focus on the structure of �⌃R,�D, �⌃K,�D,

�⌃R,�G�D, and �⌃R,�G�D in Eqs. (A18) and (A19), along with the structure of �⇧K . Through a Wigner

transformation and expansion in �D in Eq. (3.6) derive the contributions to fermionic self-energies created

by the dynamics of a boson:

i�⌃R,�D = �c2g02

4

Z
d⌦

2⇡

d2q

(2⇡)2
d2k

(2⇡)2
�DK(⌦,q)

⇥
ḠR(! � ⌦,k) + ḠR(! + ⌦,k)

⇤
(A32)
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and

i�⌃K,�D = �c2g02

4

Z
d⌦

2⇡

d2q

(2⇡)2
d2k

(2⇡)2
�DK(⌦,q)

�
ḠK(! � ⌦,k) + ḠK(! + ⌦,k)

�
. (A33)

After algebraic simplification and rewriting in terms of �f and �fB we recover

Im �⌃R,�D = �g02k2F
vF

Z
d⌦

2⇡
B(⌦)

Z
dq̂

2⇡
�fB(⌦, q̂). (A34)

and Re �⌃R,�D = 0. The expression for �⌃K,�D becomes

i�⌃K,�D =
2g02k2F
vF

Z
d⌦

2⇡
(1� f̄(! � ⌦)� f̄(! + ⌦))B(⌦)

Z
dq̂

2⇡
�fB(⌦, q̂). (A35)

The q̂ degree of freedom corresponds to the direction of q after the integration over |q| has been performed.

The corresponding quadratic in �G and �D corrections can be computed in a similar manner and result

in �⌃R,�G�D = 0 and

i�⌃K,�G�D = �4g02kF
vF

Z
d⌦

2⇡

Z
dk̂

2⇡

Z
dq̂

2⇡
B(⌦) �fB(⌦, q̂)

⇣
�f(! � ⌦, k̂) + �f(! + ⌦, k̂)

⌘
. (A36)

The perturbation to the bosonic self-energy is can be written as

i�⇧K =
1

2
g02c2

Z
d!

2⇡

Z
d2k

(2⇡)2
d2k0

(2⇡)2
⇥

⇥
(ḠK(! � ⌦,k0) + ḠK(! + ⌦,k0))�GK(!,k) + �GK(! � ⌦,k)�GK(!,k)

⇤
. (A37)

After rewriting through �f and �fB we receive

i�⇧K =
2g02c2k4F

v2F

Z
d!

2⇡

Z
dk̂

2⇡

dk̂0

2⇡
⇥

⇥
h
(1� f(! � ⌦)� f(! + ⌦))�f(!, k̂) + �f(! � ⌦, k̂) �f(!, k̂0)

i
. (A38)

We use all the expressions for self-energy perturbations for �⌃R, �⌃K , and �⇧K that appear in Eqs. (A18)

and (A19) and substitute them into fermion and boson kinetic equations. This leaves us with the system

of di↵erential equations of the form

A[@t �f ]� (vF ·E)@!(f̄ + �f) = I�[�f ] + I 0g0 [�f, �fB] + I 0nl[�f, �fB], (A39)

@t �fB + cd �fB = IB[�f ] + IB,nl[�f ]. (A40)

First, let’s direct our attention to the fermion kinetic equation described by Eq. (A39). Note that in

the kinetic equation for the fermions the disorder term I� and the dynamic term A stay unmodified in

comparison to the case of thermalized boson in Eq. (A25), while the linearized boson interaction-induced
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I 0g0 and the non-linear corrections I 0nl are now modified by the presence of �fB. The new term I 0g0 in Eq.

(A39) is now

I 0g0 [�f, �fB] = Ig0 [�f ] +
g02kF
vF

Z
d⌦

2⇡

Z
dq̂

2⇡
B(⌦)(f̄(! + ⌦) + f̄(! � ⌦)� 2f̄(!)) �fB(⌦, q̂), (A41)

where Ig0 is the collision integral from the thermalized boson case. The non-linear corrections into fermion

dynamics become

I 0nl[�f, �fB] = Inl[�f ] +
g02kF
vF

Z
d⌦

2⇡

Z
dq̂

2⇡

Z
dk̂0

2⇡
B(⌦)⇥

⇥
h
�fB(⌦, q̂)

⇣
�f(! � ⌦, k̂0) + �f(! + ⌦, k̂0)� 2�f(!, k̂)

⌘i
. (A42)

This shows that the kinetic equation for fermions is now contains both �f and �fB as unknown functions.

The corresponding linearized IB and quadratic correction IB,nl collision integrals in Eq. (A40) are given

by

IB[�f ] =
g0c2k2F
2v2F

Z
d!

2⇡

Z
dk̂

2⇡

1

⌦
(1� f(! � ⌦)� f(! + ⌦))⇥ (�f � C(⌦)@t�f) , (A43)

IB,nl[�f ] =
g02c2k2F
2v2F

Z
d!

2⇡

Z
dk̂

2⇡

dk̂0

2⇡

1

⌦

h
�f(! � ⌦, k̂)�f(!, k̂0)� C(⌦)@t

⇣
�f(! � ⌦, k̂)�f(!, k̂0)

⌘i
.

(A44)

The term IB and IB,nl only depend on fermion perturbations �f , since all the e↵ective drag for the

equilibrium scattering of bosons is already accounted for in the term proportional to cd. Thus it is more

convenient to interpret those terms as the coupling terms between bosonic and fermionic excitations.

Appendix B: Related expressions for self-energies, scattering rates, and other useful expressions

at non-zero temperature

In Section IV we found ourselves in the need to understand the !- and T - dependence of the fermion

self-energy to complete the description of kinetic equations. In addition, we showed that the self-energies

of fermions at T = 0 are non-analytic at ! = 0. This leads to the diverging as T ! 0 coe�cients in the

response according to Sec. VI. To regularize this divergence, we need to properly treat the self-energy of

the fermion at T 6= 0, evaluate the integral ever ! in Eq. (6.27) and only then consider a limit T ! 0.

For this we consider a small T expression for the fermion self-energy derived in [22, 24] and given by

⌃̄R = �i�+ i
g02kF
8⇡vF

T

"
ln
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q
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� 2
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2⇡cdT
+

1

2
� i!

2⇡T

!
� ln�

✓
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1
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◆

� ln�
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q

2⇡cdT
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+ ln�
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m2

2⇡cdT

◆!#
, (B1)

53



where �(z) is an Euler gamma-function and ⇤q – a UV cuto↵ of the boson. Assuming that scale of the UV

cuto↵ ⇤q is dominant over all the other scales, the expression for the self-energy can be further simplified

based on the structure of m(T ). The structure of doping at the critical value, according to [CITE], is

m2(T ) =
⇡cdT

ln
⇣
⇤2
qc

2

cdT

⌘ (B2)

The fermion self-energy in Eq. (B1) then simplifies to

⌃̄R = �i�+ i
g02kF
8⇡vF

T
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i!

⇡T
ln
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2⇡cdT

!
� ln
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1

2
� i!

2⇡T

◆#
. (B3)

The relevant for the kinetic equation expressions of g(!, T ) ⌘ Im ⌃̄R and a(!, T ) ⌘ 1 � @!⌃̄R are then

given by

a(!, T ) = 1 +
g02kF
8⇡2vF

"
ln

 
c2⇤2

q

2⇡cdT

!
� Re (0)

✓
1

2
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(B4)

g(!, T ) =
g02kF
8⇡vF

T
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✓
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◆
� 2Re ln�
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1

2
� i!

2⇡T
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(B5)

Notice that in these expression the dependence on ! comes exclusively in the form of !/T . This will

induce extra factors of 1/T , when the derivatives of a(!, T ) and g(!, T ) are taken:

@!a(!) =
g02kF
16⇡3vF

1

T
Im (1)

✓
1

2
� i!

2⇡T

◆
(B6)

@!g(!) = � g02kF
8⇡2vF

Im (0)
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1

2
� i!

2⇡T

◆
(B7)

@2!a(!) = � g02kF
32⇡4vF
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Re (2)
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(B8)

@2!g(!) =
g02kF
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(B9)

A useful property of �-functions can be used to further simplify answers the expressions above:
�����
✓
1

2
� ix

⇡

◆����
2

=
⇡

ch(x)
. (B10)

It allows to rewrite the real part of the logarithm of �-function as

Re ln�
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� i!

2⇡T

◆
=
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2

⇣
ln⇡ � ln ch

⇣ !
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(B11)

This allows us to write an analogous expressions for g(!), and it’s derivatives as

g(!) =
g02kF
8⇡vF

T ln

✓
2cdT

m2
ch
⇣ !
2T

⌘◆
, (B12)

@!g(!) =
g02kF
16⇡vF
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⌘
, (B13)

@2!g(!) =
g02kF
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ch 2
�

!
2T

� . (B14)
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Coe�cient a(!) cannot be simplified in that way.

The structure of the self-energy ⌃̄R away from the critical doping, where the Fermi-liquid regime is

expected to be dominant, takes a form

m2(T ) ⇡ �2 = const, (B15)

which gives the boson a temperature-independent gap �. Assuming we are in the low temperature regime

and � � T , the self-energy simplifies to

⌃̄R = �i��� g02kF
8⇡2vF

! ln

 
c2⇤2

q

e�2

!
� ig02kF cd

16⇡2vF�2

�
⇡2T 2 + !2

�
(B16)

under assumption that m2 ⌧ cdT at su�ciently large temperature.

which is exactly the expectation for a Fermi-iquid, since the expression above leads to

a(!, T ) = 1 +
g02kF
8⇡2vF

ln

 
c2⇤2

q

e�2

!
, (B17)

g(!, T ) =
g02kF cd

16⇡2vF�2

�
⇡2T 2 + !2

�
. (B18)

These expressions are in full correspondence to the naive expectations for Fermi liquids that we showcased

in Sec. I.
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