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Universal amplitude ratios for two-dimensional melting on smooth and periodic substrates
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Universal amplitude ratios in the theory of continuous dislocation-mediated melting are calculat-
ed. Measurement of these ratios can serve as an additional test of the theory of melting of two-
dimensional solids on smooth and periodic substrates.

I. INTRODUCTION

The production of a continuous-melting transition
mediated by dislocations in two-dimensional solids by
Kosterlitz and Thouless! has stimulated extensive theoreti-
cal*”® and experimental work.’~?2 The theory in its
present form>® gives detailed predictions about the melt-
ing of solids in triangular lattices on both smooth and
periodic substrates. When extended to melting on period-
ic substrates, the theory is applicable only to floating or
incommensurate solids in a weak periodic potential. All
the analyses in this paper will be applicable only to these
cases.

The continuous-melting theory predicts a phase transi-
tion as a result of the unbinding of dislocation pairs in the
solid. Below the melting temperature, dislocations occur
only in the form of bound pairs. The absence of unpaired
dislocations at the longest wavelengths indicates the pres-
ence of quasi-long-range crystalline order. This crystal-
line order implies an algebraic decay of the translational
correlations. If on a lattice of sites [R], we define the dis-
placements of the particles by u(R), and pg(R) by

PG(R) =e iG-[R+u(R)] ,

then

(pg(R)p5(0)y ~R "D

at large distances for any wave vector G. An experimen-
tally measurable consequence of this decay of correlations
is the presence of power-law singularities in the x-ray
structure function at the set of the wave vectors of the re-
ciprocal lattice |G |7

S q)=2 eiq-R(eiq-[u(R)—u(O)])
R

(1.1)

ﬁ—-2""’]6-(7')

~[q—G| (1.2)

In practice there are appreciable finite-size corrections to
this power-law form.” This form of $(q) is maintained
right up to the melting temperature. On a smooth sub-
strate the exponent 16, satisfies the following inequalities

just below the melting temperature T,,,>
T <16, (Tw) <%, (1.3)
where Gg is the smallest reciprocal lattice vector. The
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upper limit is not affected by the presence of a periodic
substrate, while the lower limit decreases only for a large
substrate potential. For simplicity, in the remaining
analysis we will only refer to the value of % at the recipro-
cal lattice vector Gg; more generally, "7G=G2"760/G(2)-5
Henceforth, we will therefore drop the subscript G from
76,

Above the melting temperature, the unbinding of dislo-
cation pairs leads to a proliferation of dislocations at
scales larger than a correlation length £, (7). This de-
stroys the quasi-long-range translational order, and the
translational correlations now decay exponentially,

{pc(R)PG(0) ) ~exp (1.4)

_ R
(D |°

Nelson and Halperin® pointed out that the presence of un-
paired dislocations is not enough to destroy orientational
order in the lattice. Such a phase, which retains a
memory of the orientation of the crystal it melted from, is
known as the hexatic phase. The structure factor now be-
comes large in a ring of q space with a radius approxi-
mately G,. The presence of orientational correlations
shows up by an angular modulation of the structure factor
in this ring. In the radial direction, the structure factor
should be approximately Lorentzian with a width & (T").

As the system approaches the melting temperature
from above, £, is predicted to diverge with the leading
behavior given by*—°

b
&, ~exp —lt o ] (1.5)
with
T—T,
t=T_ . - (1.6)
m

oisa parameter which measures the strength of the sub-

strate potential. In the limit of a weak potential, o lies be-
tween O and 1,” decreasing from its smooth substrate
value of 1 with an increase in the strength of the potential.
o will be defined more precisely later in this paper. The
exponent V(o) satisfies the constraints
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P(+1)=0.36963- - ,

¥(0)=0.4, (1.7)
0.36963 -+ <o) <0.4. e

;

Similar singularities also occur below T,. It was

shown by Nelson and Halperin® that the shear modult S I,
the bulk modulus B, and K" (—27K" is the coefficient of
the logarithmic interaction term between dislocaticns®)
have the following behavior just below the melting tem-
perature: e

1 i o) !
S S— P A
WT—Ty) pt a _
1 1 o) &
S S P , (1.8)
B(T—T,) B* 1] e
KN(T—T, )——(1 bt %) 7

(All elastlc constants in this paper are in units 1§)f '
kzT,, /ab, a, being the lattice spacing.) We show that
the experimentally measurable exponent 17 has a smnl,ir
singularity below T,

!
(19)

i
The behavior of n below T, and that of &, above T, 'is
plotted in Fig. 1.

The principal result of this paper is that the follo pvmg
universal relationships exist between the coefficienis b,

by, bp, bK,, and b,: )

WT—Tp)=n"(1—by, |t 7).
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FIG. 1. Schematic drawing of the behavior of n below T,
and of &, above T,,. The product bb,, is predicted to be &n ex-
actly calculable universal function of 7* and o. ; :
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bb,=F,(0) ,

bbB =FB(U) ’
‘ (1.10)
bbK,=FK,(0) R

bby,=F,(o,n") .

Fy, Fg, Fy,, and F, are universal functions of their argu-
ments and are exactly calculable. In a weak potential, the
function F, is unique. For stronger potentials F, may be
one of two possible functions—which one of these func-
tions is chosen will depend upon the system under con-
sideration. The values p*, B*, and #* are nonuniversal.
Similar universal amphtude ratios have been noted earlier
in superfluid “He films.?

- Dislocation-mediated melting seems to have been ob-
$erved in a number of experiments. Melting of the elec-
iron solid on helium® was observed by Grimes and
Adams The melting temperature of this solid appears to
be consistent with a dislocation-mediated mechanism.!®
The measurement of the shear modulus of the electron
solid,'™ the observation of propagating shear waves,!> and
the measurement of the power absorbed by dislocations
moving in response to an external stress,!* have all lent
$upport to this interpretation. Gases physiadsorbed onto
exfoliated graphite have proven to be an attractive system
for observing the melting of two-dimensional solids. Xe-

. hon adsorbed on graphite has been shown to exhibit both
™ first- and second-order transitions.

#=15 The second-order
transitions occur at higher pressures and display the
¢haracteristics of a dislocation-mediated mechanism. The
measured behavior of &(T), ¥, and n(T) is consistent with
For the system of
argon on graphite, the x-ray measurements of McTague
et al.'’ and specific-heat measurements!® show evidence
of a dislocation-mediated transmon,, although recent
suggest a very weak first-
order phase transmon X-ray measurements of methane
on graphite?® yield structure factors consistent with (1.2),
1.4), and (1.5).

" As noted earlier, the theory predicts that the solid melts
into a phase with quasi-long-range orientational order.
The experiments of Rosenbaum et al.”! on monolayers of
%enon on graphite have shown evidence of orientational
‘brder in the absence of translational order, although this
tould be a substrate effect. Free-standing liquid-crystal
films exhibit genuine hexaticlike phases,22 and the predict-
ed hexatic—to—liquid transition.

The measurements of Dimon et al.'* show that xenon
on graphite is a likely candidate for measuring the ampli-
tude ratios calculated in this paper. Precise measurements
of the correlation length above the melting temperature
£ .(T), and the behavior of 7(T) below the melting tem-
perature are required. The following procedure may be

* hdopted for testing the predicted amplitude ratios. From

'he measurement of £, (T), the values of ¥ and b can be

“gxtracted. The known function (o) will then give the

value of 0.2* Fitting 7(T) to the form (1.9) will yield the
values of 7* and b,. Inserting the values of b, by, o, and
7" into the last of Egs. (1.10) will then give a constraint
on the theory.
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A potential problem with the apphcatlon of the results
of this paper is the small size of the critical region.2®2%
The asymptotic form of the correlation length only be-
comes applicable when & > 10® lattice spacings. Since
this is larger than most experimental systems, finite-size
effects may also become important.

It is possible that computer simulations on the Lapla-
cian roughening model?’ do not suffer from this problem.
The Laplacian roughening model?® is a modification of
the solid-on-solid model for interfacial roughening, and is
related by a duality transformation to the disclination and
dislocation Hamiltonians of the melting problem on
smooth substrates. Simultations of the temperature
dependence of K'(T) already exist,”’ although more pre-
cise data will be necessary before a fit to Eq. (1.8) can be-
come meaningful. The behavior of the translational
correlation length &, (T') can be determined from the large
distance behavior of the tilt-tilt correlation function, g (7),
just below the transition from a rough oriented interface
to a rough unoriented interface.?’” The knowledge of
K'(T) and & (T) should make it possible to determine the
amplitude ratio bbK,. On a smooth substrate, this quanti-

ty is predicted to be F,(1)=1.713.

II. CALCULATION

The analysis will be carried out with a continuum elas-
tic Hamiltonian for a floating solid on a periodic sub-
strate. The result for a smooth substrate will then be a
special case. A Hamiltonian which describes small fluc-
tuations from the crystal in the Spresence of a weak incom-
mensurate substrate potential is

_‘f z[2ﬂuu+7»ukk+r(8 u,—3u,)*] . (2.1)

The parameters 1 and A are the usual Lame elastic con-
stants and u;; is the strain tensor. The bulk modulus B is
related to 2 and A by

B=p+A. (2.2)

The parameter y is an elastic constant dependent upon the
strength of the substrate potential. The relation y =0 is
satisfied for a smooth substrate. Below the melting tem-
perature, ¥ will also be shown to have a singularity:

1 1

=——b, |t |".

PP — (2.3)
y(T—T,) 7*

Dislocations may now be introduced into the system. The
free energy for the dislocation degrees of freedom implied
by Hg is™

¥, o
- 2 — 27 3 (K b In(r!/ay)
sT iy

— KO (b 1)tV /()2

—3b b+ (2.4)

T 26,

i
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where r/=r'—r/,r’ denotes the position of the ith disloca-
tion with dimensionless Burger’s vector b, and E, is a
phenomenological core energy. The sum over {ij) occurs
over all pairs of dislocations. The constants K" and K°
are related to the elastic constants by

r— 1 ) uB ny

27 |u+B  p+vy
(2.5)

go—_1 | B _ _py

27 |p+B  pu+y

At low temperatures dislocations will occur only as
bound pairs. The pairs at the shortest wavelengths ma; 37
be integrated out leading to a renormalization of K7,
and the elastic constants. Introducing a vortex fugacxty
y =exp(—E, /kyT), we obtain the recursion relations®

de§’= — 6y H{ (KN + (KO L o(mK )

—K’K"Il(w‘K“g)} , (2.62)
i’g’:_eﬁz{ 2K 'K °Iy(wK®)

— s [(K?+ (KO (mK O}, (2.6b)
L 2"y + 2mEo (KO (2.60)
__%l__ =3myUo(nK?), (2.6d)
‘”2 l_l =3my [ Io(7K®) —I,(zK )], (2.6e)
iﬁi:sﬂyz[lo(wxﬂ)+ll(wxe>] . (2.60)

dil

At the melting temperature, the renormalized value of K”
is universal:

Kr*_é i
—-

2.7
We will analyze these equations only to second order in y
and 2—7K". This will be sufficient to obtain the critical
exponents and amplitude ratios. It is therefore permissi-
ble to replace K" and K% on the right- hand side (rhs) of
Eqgs. (2.6) by their renormalized values K ™ and K% fex-
cept in the first term on the rhs of (2.6¢)]:

% 6"‘= 1 ‘U.* B* _ ,u*y"‘
21,‘,2 #* + B* #* +,y*
Following the notation of Young,6 we now introduce

variables to simplify the appearance of Eq. (2.6). We de-
fine

(2.8)

o
o= i e (2.9a)
x=2—7K", (2.9b)



1 ~y .
= Io(20) Co
O L , S (290)
140 —0'11’1"20')/.[0(20‘)]
Iy(20) ;
=1°a—”y (2.9d)

Equations (2.62) and (2.6¢) now take the simple form

i

‘fi’l‘ =72, 2.102)
”2’ —x¥ +2aY?. (2.10b)

The equations for the elastic constants may be stream-

lined in a similar manner. We obtain
! _ 2
7 C,Y?, (2.11a)
dB~! )
7 =CyY?, (2.1]‘b)
dy~! :
=C,Y?. (2.11c) -
dl ‘
C,, Cp, and C, are defined by
1 l
C, =— - , (2.12a)
B 8m 1402 ~[ol{(20)/I5(20)] ‘a
cy= |1 D122 .13
B - 10(20') . 4
C. = +Il(20') C (21?)
v I0(20) ~un . !C

We now analyze the renormalization-group flows of the
variables x and Y. Equations (2.10) may be used to yield
dY

YT =x +2aY .

This equation is homogeneous in x and Y. It can theJ e-
fore be integrated to yield

| Y +[(14+aH)2—a]x |7

X | Y=[(1+e) P talx |'TF=c[t]7, @14

where ¥ is defined by

e (1 +a2)1/2__a
2(14-a2)1/?

and ¢ is a constant of 1ntegrat10n
n'enormallzatlon-group trajectories as given by Eq. (2. 14)
are plotted in Fig. 2. Figure 3 shows a plot of ¥ as fun(c-
tion of 0. When c is 0 the system is on the critical mani-
fold. A small change in temperature will change the ini-
tial values of Y and x by an amount that is proportioral
to the change in temperature. This gives us the tempera-
ture dependence of the rhs of Eq. (2.14). At a tempera-
ture t above the critical temperature, let the initial values
of x and Y be (—x;,Y;). If one integrates the
renormalization-group equations to a value of [ =I* suth
that (x,Y) reach a value (xf, ¥Yy) well away from the criti-
cal point, then ?
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- FIG. 2. Sample renormalization-group flows in the x —Y
plane. To determine the correlation length one integrates the
flow equations from (—x;, ¥7) to {xy, Y¢).

E,=ap exp(l*) R 2.16)

where ag is a micrescopic length. The parametef ¥ is
ngen by

*r dx
—X; Y2 *
jRescaling x and Y by

I*= (2.17)

(2.18)

0.41

0.40 T

0.38—

0.37+

0.36 ] 1 I L I { I I [
7000 010 020 030 040 050 060 070 080 050 1.00

o

FIG. 3. Exponent v as function of o.
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we obtain
e 1 xp /e |t ™ dx. .
ce|t]? Y exse|t M V2
The leading temperature dependence of [* has now been
brought to the front of the integral. The limits of the in-
tegral may be replaced by — e and + oo without affect-

ing the coefficient of the 1/]| ¢ |” term. So we obtain for
the value of b defined in Eq. (1.5),

4

(2.19)

b=+, e == - (2.20a)
c
where
+ X
A={ —L;%, (2.20b)
with
| P+ [(1+aD)?—a)x |?
X | Y—=[(1+a)?palx|""=1. (2.20c)

Note that 4 is a function of ¢ only.

As noted earlier, the value of x at the melting tempera-
ture is 0. Away from the melting temperature, we expect
x to have a behavior similar to the elastic constants, i.e.,

x(T—Ty)=—b,|t]". 2.21)

The value of x at long wavelengths will be obtained as /
tends toward oo in the renormalization-group equations.
Below T,,, Y tends toward O in this limit. From Eq.
(2.14) we can therefore obtain

4

b= — - — - (2.22a)
x [(1+a2)1/2_a]V[(1+a2)1/2+a]1—v

Using Eqgs. (2.20) and (2.22a), we get

bb, = 4

[(1+a2)1/2_a]‘7[(1+a2)1/2+a]1—7 ) (?'ZZb?
This is the first of our universal amplitude ratios. Note
that the nonuniversal quantity ¢ has dropped out.

We now turn to a determination of the universal ampli-
tude ratios for the elastic constants. From Egs. (2.10a)
and (2.11a) we obtain

-1
=
d Cy .

This indicates that near the critical temperature, the
changes in x and p~! are proportional. An immediate
consequence is that

bb, =F,(0)=C,bb, .

(2.23)

(2.24)

The amplitude ratios for B~! and y ! can be obtained in
a similar manner;

bbg=Fg(c)=Cgbb, ,
bb,=C,bb, .

(2.25a)
(2.25b)

The functions bb, (o), bbp(c), and bb, (o) are plotted in
Fig. 4. For a smooth substrate, ¢ takes the value 1 and
the amplitude ratios are then equal to
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FIG. 4. Universal amplitude ratios bb,, bbgp, and bb, as a
function of o.

bb,=3.425 ,
bb,=0.105 ,
bbp=0.032 , (2.26)
bb,=1.713
bb,=0.178 .

Note however that ¥ is 0 on a smooth substrate and

23

22+

7*=027

21~

20+
Fplovn®)
19

1 l 1 1 | | I 1

15 L
6o 01 02 03 04 05 06 07 08 09 10
o

FIG. 5. Universal amplitude ratio bb,, as a function of o for
various values of n*. These values are correct for weak sub-
strate potentials. The lines end abruptly because only a limited
set of values of #* and o give physically sensible elastic con-
stants.
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FIG. 6. Universal amplitude ratio bb,, for a smooth substrate
as a function of 7*.

remains so under a reniormalization-group transformation.
It is however still possible to formally evaluate bb, as the
limit of the coefficient of the cusplike singularity in y~'
as y tends toward O on a smooth substrate. On superfluid
*He films, the quantity analogous to bb,, takes on the

value 7/2.% :

It now remains to determine the amplitude ratio associ-"
ated with 7. This ratio turns out to be a straightforward
algebraic consequence of Egs. (2.24) and (2.25) and the re-
lation®

_4r Qu+B+y)
3 (u+yXu+B)

The details of the calculation are presented in the Appen-
dix. The function F. (o-,'r; ) is plotted as a function of o
for various values of 7* in Fig. 5. This form of the func-
tion is good for weak substrate potentials. On a Sl’l’lOOthl
substrate, where o= 1, the amplitude ratio turns out to be

1.142—0.265(1—37*

*

1

b
This is plotted as a function of * in Fig. 6. There is no
amblgulty in this function and it should be valid for 1m=lt-
ing on any smooth substrate.

)1/2

.
bb,= —1.712. (2.28)

II1. CONCLUSION F

We have calculated several amplitude ratios for
dislocation-mediated melting. These amplitude ratios
i

31 UNIVERSAL AMPLITUDE RATIOS FOR TWO-DIMENSIONAL ...

m

4481

should be useful in testing this theory of melting on
¢mooth and periodic substrates. In particular, for melting
on periodic substrates, these amplitude ratios should elim-
inate the ambiguity associated with having a range of al-
lowed values for the critical exponents.-
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APPENDIX

!

' In this appendix we present the details of the calcula-
ii oq of bb,.
(

Inserting the expansions (1.8) and (2.3) into
27), and comparing the result with (1.9), we get
b = b ()b, (¥* ) b, (u* ) +bp(B*)*
U N*+'P'* [L* +B*
2b,, (%) +bg(B*)* + b, (y*)?
- ; (A1)
2LL* +B* +,}/*

The values of u¥, B¥, and 7/ are needed. Using the
values of K™ =2/m, o, and 7%, and Eqs. (2.5), (2.8), and
{2.27) we obtain

4
K= (a2 (A2)
* 47
B , A3
2/(140)—[1+(1—35*)172] (A3)
= o (A4)

2/(1—o)—[1+£(1=37*)17?] °

! Note that given the values of o, n*, and K™, there are
two p0351b1e values of the elastic constants. Not all values

] of o and 7 will give physically sénsible elastic moduli.

We need in addition to impose the constraints that yu, B,
and y are positive, and for a positive Poisson’s ratio it is

required that B >u. On a smooth substrate, only the neg-
ative sign can satisfy these constraints. This remains true
for small values of ¢ also. The results we have presented
are obtained by chocsing the negative sign, inserting Eqgs.
(A2)—(A4) into (A1), and using (2.24) and (2.25).

Note
also that for this choice of sign, o can only take positive

wvalues to yield a positive Poisson’s ratio. For stronger
'substrate potentials, the positive sign may also give physi-
ccally sensible results. The values of the elastic constants
for the two signs, given the values of #* and o, are widely
‘separated.
‘periment to pick the correct sign, using other estimates of
‘the sizes of the elastic constants.

It should therefore not be difficult in any ex-
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