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Abstract

We describe the large N saddle point, and the structure of fluctuations about the saddle point, of a

theory containing a sharp, critical Fermi surface in two spatial dimensions. The theory describes the

onset of Ising order in a Fermi liquid, and closely related theories apply to other cases with critical

Fermi surfaces. We employ random couplings in flavor space between the fermions and the bosonic order

parameter, but there is no spatial randomness: consequently, the G-Σ path integral of the theory is

expressed in terms of fields bilocal in spacetime. The critical exponents of the large N saddle-point are

the same as in the well-studied non-random RPA theory; in particular, the entropy density vanishes in

the limit of zero temperature. We present a full numerical solution of the large N saddle-point equations,

and the results agree with the critical behavior obtained analytically. Following analyses of Sachdev-

Ye-Kitaev models, we describe scaling operators which descend from fermion bilinears around the Fermi

surface. This leads to a systematic consideration of the role of time reparameterization symmetry, and

the scaling of the Cooper pairing and 2kF operators which can determine associated instabilities of the

critical Fermi surface. We find no violations of scaling from time reparameterizations. We also consider

the same model but with spatially random couplings: this provides a systematic large N theory of a

marginal Fermi liquid with Planckian transport.
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I. INTRODUCTION

The problem of the critical Fermi surface without quasiparticle excitations has received extensive

interest in recent years [1], given its central role in the theory of the half-filled Landau level,

quantum critical points (QCPs) in metals, and for Fermi surfaces of fractionalized particles coupled

to emergent gauge fields in gapless spin liquids [2–40]. Much has been understood about the

structure of the theory, but a fully systematic analysis of the critical theory, its operator spectrum,

and possible low temperature instabilities to symmetry-broken or topological states has remained

elusive. Initially, it was assumed that a theory with a large number of flavors, N , of fermions could

provide such a systematic theory. But, in an influential analysis, Sung-Sik Lee [8] showed that

certain higher loop corrections implied a break down of the large N expansion, and that the theory

remains strongly coupled even at large N . Various workarounds have been proposed since then,

but none are fully satisfactory: they either involve deploying additional expansion parameters,

introduce non-analytic terms not present in the original theory, or depend upon choosing N -

dependent energy scales.

In this paper, we wish to apply insights gained by the study of another class of realizations

of compressible quantum matter without quasiparticle excitations: the Sachdev-Ye-Kitaev (SYK)
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class of models [41–44]. These model involve random couplings, but after an average over ran-

domness, the resulting theory realizes a compressible non-Fermi liquid which is amenable to a

systematic large N expansion via a path integral over bilocal fields [44–46] often called the G-Σ

theory (the low energy limit of the G-Σ theory is a theory of two-dimensional quantum gravity

[42, 44, 47–49]). Furthermore, the model is strongly self-averaging in the non-Fermi liquid phase

i.e. for sufficiently large N , the properties of a single sample are indistinguishable from those of the

average, and so it is technically far easier, and permissible, to work with the average theory. Re-

cent works [50–53] have used this method to obtain operator spectra and instabilities of non-Fermi

liquids realized by SYK models. The idea of simplification realized by an average over similar

strongly-coupled theories is also playing an important role in recent investigations in quantum

gravity, and averages over random matrices or conformal field theories yield systematic large N

holographic realizations of the path integral of simple theories of gravity [54–61].

In the context of finite-dimensional systems with Fermi surfaces, Aldape et al. [37] introduced

the idea of coupling the fermions to a boson, and making the associated Yukawa-like fermion boson

coupling a random function of flavor indices, but not of space. In such a model, the sharp Fermi

surface is maintained even in the presence of randomness, and a systematic large N saddle-point

with regimes of non-Fermi liquid behavior is obtained. They used this strategy to describe non-

Fermi liquid behavior across a transition from a Fermi liquid to a fractionalized Fermi liquid (FL*).

We also note Ref. [62] which applies this idea to critical Dirac fermions in 1+1 dimensions, and

obtained evidence for maximal chaos in the large N limit with vanishing entropy density in the

zero temperature limit. We emphasize that in all these cases there is no spatial disorder, and the

disorder is entirely in coupling-constant space. A given sample with a particular set of couplings

will not be identical to another sample, but the difference will vanish in the large N limit. To

compute the differences between samples we have to include fluctuations of the replica off-diagonal

components of the bilocal Green’s functions [45], but we will not do that here. The replica off-

diagonal components vanish in the N = ∞ saddle point theory, and it is even possible that the

replica off-diagonal fluctuations do not modify the universal critical properties at higher orders in

1/N , because we do not expect the critical properties to be sensitive to the microscopic values of

the couplings.

We follow these recent works [37, 62], and examine the non-Fermi liquid with a critical Fermi

surface formed at the QCP involving the onset of Ising order a two-dimensional Fermi liquid.

We note that the location of the critical Fermi surface in momentum space obeys an extended

Luttinger theorem [63, 64], even in the presence of the random couplings. Our large N theory of

a critical Fermi surface has the same critical behavior at N = ∞ as already anticipated in the

early work [1–4]. Specifically, there is no extensive entropy in the zero temperature limit in our

approach, unlike previous studies of critical Fermi surfaces employing a large N limit with random
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couplings [22, 23, 31, 39]. And there is anisotropic dynamic scaling on the Fermi surface, with the

frequency ω ∼ q
3/2
⊥ for momenta q⊥ normal to the Fermi surface, and ω ∼ q3

‖ for momenta parallel

to the Fermi surface.

We introduce our model, its averaged effective action, and the setup of the large-N expansion

in Section II. This involves a path integral over a G-Σ action in which the fields are bilocal in

spacetime; this should be compared to previous studies [44–46] in which the fields were bilocal

only in time. The large N critical theory is obtained in Section III by taking the low energy limit

on separate patches on the Fermi surface. We then present a full numerical solution of the large

N equations for the complete Fermi surface in Section IV, and find results which are in agreement

with the analytic patch analysis in Section III.

We begin our discussion of the fluctuations about the large N saddle point in Section V by a

consideration of the role of time reparameterization symmetry. The special role of this symmetry,

and an associated soft mode, was first noted for the SYK model [42, 44, 49, 65–69] where it leads to

a violation of scaling at times of order N . The symmetry is also present in the saddle-point action

for the critical Fermi surface. However, we shall find here that there is no corresponding soft mode

for the critical Fermi surface, and no associated violation of scaling. This time reparameterization

analysis is carried out in a single patch theory, which on its own realizes a ‘chiral non-Fermi liquid’

[11]. The soft mode analysis involves examination of the eigenmodes of a ladder operator, which

determine composite operators in the particle-hole sector. We limit our consideration to momenta

orthogonal to the Fermi surface, in which case the eigenmode equations simplify to one-dimensional

integral equations. We do not find any non-trivial operators in this sector, apart from the conserved

density operator whose correlations were studied by Kim et al. [5].

One operator that could have appeared in a single patch theory is the fermion pair operator

associated with Amperean pairing [70, 71]. This requires consideration of physics beyond the

scaling limit, and is discussed in Appendix A.

Section VI describes the structure of the G-Σ theory beyond the large N saddle point. We

will obtain formal expressions for the fermion self energy at order 1/N in terms of the inverse

of the ladder operator of the large N theory. These considerations will be quite general, and

can be applied equally to the single patch theory of Section V, the lattice theory of Section III,

or the antipodal patch theory to be considered in Section VII, also bears a resemblance to the

corresponding analysis of the SYK model in Ref. [49].

Section VII turns to the examination of the scaling structure for the non-chiral case, with a

closed Fermi surface. Then, a number of singular effects arise from antipodal pairs of patches on

the Fermi surface:

• Ref. [9] showed that three-loop diagrams lead to a small correction to the fermion anomalous

dimension, ηψ. Our 1/N expansion will contain a similar correction to the value of ηψ, but it
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will be a systematic contribution at order 1/N , unlike the previous analysis which was not

controlled in their large N limit.

• In the particle-particle sector, fermions on antipodal patches can undergo a Cooper-pairing

instability. A renormalization group analysis of this was presented in Ref. [12] employing

an expansion [10] which combined large N with a bare long-range interaction controlled

with small ε. In our large N expansion, the N = ∞ equations for the scaling dimension

of the Cooper pair operator reduce to integral equations which appeared in the γ-model of

Chubukov and collaborators [24–27], and also coincide with equations studied in the SYK

model [72, 73]. We find either a non-trivial scaling dimension for the Cooper pair operator,

or an instability to a paired ground state with no critical Fermi surface.

• In the particle-hole sector, fermions on antipodal patches yield density fluctuations at the

2kF wavevector. The scaling dimension of the 2kF operator was computed in the combined

large N/small ε expansion in Ref. [10]. Our large N theory yields integral equations in

momentum and frequency for the scaling dimension of particle-hole operators on antipodal

patches, and we solve these equations numerically. These equations have not been studied

previously.

Finally, in Section VIII we consider a model in which the Yukawa coupling is spatially random,

in addition to the randomness in the flavor space. This model also provides a systematic large N

theory of a sharp Fermi surface, but for a marginal Fermi liquid. The physical properties of this

model turn out to be quite similar to a different model considered by Aldape et al. [37], including

Planckian transport discussed in Section VIII D.

II. LATTICE MODEL AND EFFECTIVE ACTION

This section will introduce a lattice model for the onset of Ising order in a Fermi liquid on the

square lattice, and described the structure of its large N saddle point.

We consider fermions ψik with a flavor index i = 1 . . . N and momenta k obeying periodic

boundary conditions. These fermions are coupled to soft Ising fields φik representing Ising-nematic

order corresponding to a breaking of C4 rotational symmetry. In imaginary time (τ ), the lattice
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action is

S =

∫
dτ
∑
k

N∑
i=1

ψ†ik(τ) [∂τ − 2t(cos kx + cos ky)− µ]ψik(τ)

+
1

2

∫
dτ
∑
q

N∑
i=1

φiq(τ)
[
−∂2

τ − 2J(cos qx + cos qy − 2) +m2
b

]
φi,−q(τ)

+

∫
dτ
∑
k,q

(cos kx − cos ky)
N∑

i,j,l=1

[gijl
N
ψ†i,k+q(τ)ψjk(τ)φlq(τ)

]
. (2.1)

Here t is the fermion hopping, µ is chemical potential, the coupling J determines the dispersion

of the boson, and mb is the bare boson mass. We will henceforth set the nematic form factor

cos kx− cos ky to 1 for simplicity, since it does not qualitatively affect any of the physics we will be

interested in apart from at a measure zero set of special points in momentum space with kx = ±ky.
In the absence of this form factor, the φik field no longer has an interpretation as a fluctuating

order parameter, as condensing φik does not break any symmetries. However, one may still think

of φik as a phonon field, in which case a q = 0 instability corresponds to phase separation.

The novelty in our approach is that the Yukawa couplings gijl are independent, translationally-

invariant complex Gaussian random variables with zero mean and variance g2, and gjil = g∗ijl. We

will comment where needed on the differences that appear upon taking real gijl. Upon performing

an SYK-like disorder average at large N , we obtain

S =

∫
dτ
∑
k

N∑
i=1

ψ†ik(τ) [∂τ − 2t(cos kx + cos ky)− µ]ψik(τ)

+
1

2

∫
dτ
∑
q

N∑
i=1

φiq(τ)
[
−∂2

τ − 2J(cos qx + cos qy − 2) +m2
b

]
φi,−q(τ)

+N
g2

2

∫
dτdτ ′

∑
k,q

G(k, τ − τ ′)G(k + q, τ ′ − τ)D(τ − τ ′, q)

−N
∫
dτdτ ′

∑
k

Σ(k, τ ′ − τ)

[
G(k, τ − τ ′) +

1

N

N∑
i=1

ψik(τ)ψ†ik(τ
′)

]

+
N

2

∫
dτdτ ′

∑
q

Π(q, τ ′ − τ)

[
D(q, τ − τ ′)− 1

N

N∑
i=1

φiq(τ)φi,−q(τ
′)

]
. (2.2)

Here, we have introduced fermion (boson) Green’s functions G (D) and self energies Σ (Π) as

dynamical degrees of freedom by employing them as Lagrange multipliers. We have already as-

sumed the saddle point structure in which the G, Σ, D, Π fields are functions only of differences in

spacetime positions; but in the full path integral, these fields are bilocal in spacetime. The action

is quadratic in fermions and bosons, and integrating them out yields the G-Σ-D-Π action of the

theory with a prefactor of N .
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The saddle point equations δS/δΣ = δS/δG = 0 = δS/δD = δS/δΠ, yield the familiar RPA-

Dyson equations, exact at large N :

Σ(r, τ) = g2D(r, τ)G(r, τ ), Π(r, τ) = −g2G(−r,−τ)G(r, τ ),

G(k, iωn) =
1

iωn + 2t(cos kx + cos ky) + µ− Σ(k, iωn)
,

D(q, iΩm) =
1

Ω2
m − 2J(cos qx + cos qy − 2) +m2

b − Π(q, iΩm)
. (2.3)

These equations may be solved numerically by using Fourier transforms in space and time, and

iterative updates, as will be described in Section IV. Care needs to be taken that D−1(q, iΩm) > 0

throughout the iterative procedure. At criticality, we must first determine m2
b by requiring that

m2
b − Π(0, 0) = 0 at infinite system size and zero termperature, and then use this value of m2

b in

the finite-size and finite-temperature problem. The number of points in the numerical analysis can

be reduced somewhat by exploiting the KMS conditions G(τ + β) = −G(τ), D(τ + β) = D(τ) =

D(−τ), and the spatial C4 symmetry G(x, y) = G(±x,±y), D(x, y) = D(±x,±y).

A. Issues with the boson thermal mass

In this RPA theory, criticality is achieved when m2
b − Π(0, 0)|L=∞

T=0 = 0, where L is the system

length. At T 6= 0 and/or finite L, there is a ‘thermal mass’ for the boson given by M2(T, L) =

m2
b − Π(0, 0) = Π(0, 0)|L=∞

T=0 − Π(0, 0). This follows the finite temperature/length correction to

the free fermion compressibility, which is very small, and, for the nearest-neighbor square lattice

considered here, is negative at low T , which causes a first-order transition at small T 6= 0 at generic

fermion fillings. This is undesirable.

To remedy this issue, we include a fixed length constraint
∑

q

∑N
i=1 φiq(τ)φi,−q(τ) =

N/γ. This can arise from the U → ∞ limit on the quartic boson self-interaction∑
r U/(2N)(

∑N
i=1 φi,r(τ)φi,r(τ)−N/γ)2, which in turn is generated by integrating out fermions in

the full, non-RPA theory. Performing a Hubbard-Stratonovich transformation and sending U →∞
gives the action with a Lagrange multiplier λr(τ),

S1 = S +
1

2

∫
dτ
∑
r

iλr(τ)

(
N∑
i=1

φir(τ)φir(τ)− N

γ

)
. (2.4)

At the large N saddle point, iλr(τ) = m2
b , and we get the model described in Sec. II, with an

additional constraining equation in the set of Dyson equations: D(r = 0, τ = 0) = 1/γ. We can

now control the phase diagram by tuning γ; m2
b is adjusted along with L and T to keep γ fixed.

At γ = γc, m
2
b |L=∞
T=0 − Π(0, 0)|L=∞

T=0 = 0. We therefore tune γ so that M2(T, L) vanishes at the

lowest numerically accessible T and largest L. Our numerical solution, as well as analysis with the
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simpilfied continuum RPA boson propagator D(q, iΩm) = 1/(Ω2
m + q2 + |Ωm|/|q| + M2(T )), find

M2(T,∞) ∼ T ln(1/T ) at low T at criticality, which is parametrically smaller than the expected

RPA quantum critical scaling M2(T,∞) ∼ T 2/3 [13, 74]. This anomalous thermal mass also leads

to an anomalous contribution to the fermion self energy, from the thermal (Ωm = 0) fluctuations

of the bosons, that doesn’t obey the expected quantum critical scaling; however, this was shown

to be in qualitative agreement with recent analysis of quantum Monte Carlo simulation data [75]

from the full, non-RPA theory, which indicates that the RPA model is a reasonable description of

the actual physical problem, at least above some temperature scale.

B. Thermodynamics

The RPA grand canonical free energy, exact at the large N saddle point, is given by (Z = e−S1)

F/N = −T
∑
k,ωn

ln

[
iωn + 2t(cos kx + cos ky) + µ− Σ(k, iωn)

iωn + 2t(cos kx + cos ky) + µ

]
− T

∑
k

ln
[
1 + e(2t(cos kx+cos ky)+µ)/T

]
+
T

2

∑
q,Ωm

ln

[
Ω2
m − 2J(cos qx + cos qy − 2) +m2

b − Π(q, iΩm)

Ω2
m − 2J(cos qx + cos qy − 2) +m2

b

]
+ T

∑
q

ln
[
1− e−(m2

b−2J(cos qx+cos qy−2))1/2/T
]

− T
∑
k,ωn

Σ(k, iωn)G(k, iωn)− L2m
2
b

2γ
+ I0. (2.5)

Here expressions for free fermion and free boson free energies have been added and subtracted to

ensure numerical convergence, and L is the system size. Note that, for the boson contribution to the

free energy, we are subtracting IT = (T/2)
∑

q,Ωm
ln[Ω2

m−2J(cos qx+cos qy−2)+m2
b ], which is unreg-

ulated, but only adding the (regular) difference IT − I0 = T
∑

q ln[1− e−(m2
b−2J(cos qx+cos qy−2))1/2/T ],

where I0 = (1/2)
∫

Ωm

∑
q ln[Ω2

m − 2J(cos qx + cos qy − 2) +m2
b ]. This difference represents the free

energy of free boson excitations, and vanishes as T → 0. We therefore also add back the formally

infinite constant I0 on the third line of (2.5), which is physically just the ground state energy of

the collection of dispersive free boson harmonic oscillators with mass m2
b :

I0 =
1

2

∑
q

√
m2
b − 2J(cos qx + cos qy − 2). (2.6)

The entropy is then given by S/N = −(1/N)(∂F/∂T )|µ,γ, where the derivative is taken numerically

at fixed inverse length γ and chemical potential µ.

III. LARGE N CRITICAL THEORY

In this section, we analyze the low-energy version of the quantum critical RPA model around

a single patch of the Fermi surface. We take L = ∞ to begin with, and will be concerned only

9
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FIG. 1: Patch theory for fermions in the vicinity of the points k0 on the Fermi surface.

about quantum fluctuations here. We hence do not bother about using the fixed length constraint

to determine the boson thermal mass, and we just discard the purely thermally fluctuating boson

modes of the theory by hand.

The critical singularties of the lattice N =∞ theory of Section II are described by a continuum

theory which focuses on a single patch of the Fermi surface around a chosen wavevector k0 on the

Fermi surface [3, 9] – see Fig 1. We choose a point along the x axis, and then the fermion dispersion

near this point is kx + k2
y, where we have scaled the kx and ky axes so that the co-efficients are

unity. In this manner, we obtain the action for single patch theory is (
∫
k
≡
∫
dkxdky/(2π)2)

S =

∫
dτ

∫
k

N∑
i=1

ψ†ik(τ)
[
∂τ + kx + k2

y

]
ψik(τ) +

1

2

∫
dτ

∫
q

N∑
i=1

φiq(τ)
[
q2
y

]
φi,−q(τ)

+N
g2

2

∫
dτdτ ′

∫
k,q

G(k, τ − τ ′)G(k + q, τ ′ − τ)D(τ − τ ′, q)

−N
∫
dτdτ ′

∫
k

Σ(k, τ ′ − τ)

[
G(k, τ − τ ′)− 1

N

N∑
i=1

ψik(τ)ψ†ik(τ
′)

]

+
N

2

∫
dτdτ ′

∫
q

Π(q, τ ′ − τ)

[
D(q, τ − τ ′)− 1

N

N∑
i=1

φiq(τ)φi,−q(τ
′)

]
. (3.1)

However, the φiq fields are now defined to have φiq(iΩm = 0) = 0 as the thermal fluctuations are

excluded.

10



The saddle point equations are

Σ(r, τ) = g2D(r, τ)G(r, τ ), Π(r, τ) = −g2G(−r,−τ)G(r, τ ),

G(k, iωn) =
1

iωn − kx − k2
y − Σ(k, iωn)

,

D(q, iΩm 6= 0) =
1

q2
y − Π(q, iΩm)

. (3.2)

We can solve the saddle point equations analytically at T 6= 0. First we note that sgn(ωn −
Im[Σ(k, iωn)]) = sgn(ωn). We then assume Σ(k, iωn) = Σ(iωn) is momentum-independent. Then

Π(q, iΩm) = −g2T
∑
ωn

∫
k

1

iωn − kx − k2
y − Σ(iωn)

1

iωn + iΩm − kx − qx − (ky + qy)2 − Σ(iωn + iΩm)

= −ig2T

2

∑
ωn

∫
ky

sgn(ωn + Ωm)− sgn(ωn)

iΩm − qx − 2kyqy − q2
y + Σ(iωn)− Σ(iωn + iΩm)

= g2 T

8|qy|
∑
ωn

sgn(ωn) (sgn(ωn + Ωm)− sgn(ωn)) = − g
2

8π

|Ωm|
|qy|

. (3.3)

Further,

Σ(k, iωn) = g2T
∑

Ωm 6=0

∫
q

1

q2
y + g2

8π
|Ωm|
|qy |

1

iωn + iΩm − kx − qx − (ky + qy)2 − Σ(iωn + iΩm)

= −ig2T

2

∑
Ωm 6=0

∫
qy

sgn(ωn + Ωm)

q2
y + g2

8π
|Ωm|
|qy |

= −2ig4/3π1/3 T

3
√

3

∑
Ωm 6=0

sgn(ωn + Ωm)

|Ωm|1/3
= −isgn(ωn)25/3g4/3T

2/3

3
√

3
H1/3

( |ωn| − πT
2πT

)
.

Σ(k, iωn, T = 0) = −isgn(ωn)
g4/3

π2/3
√

3
|ωn|2/3. (3.4)

The function H1/3(x) is Mathematica’s HarmonicNumber[x,1/3] and is related to generalized

Reimann zeta functions [38]. We can therefore see that the assumptions we made about Σ(k, iωn)

are self-consistent. The fermion self-energy vanishes at the first Matsubara frequencies ωn = ±πT .

IV. NUMERICAL SOLUTION OF THE LATTICE MODEL

In this section we describe the numerical solution of the saddle point equations (2.3) for the

lattice model, along with the fixed-length constraint

D(r = 0, τ = 0) = 1/γ. (4.1)

We solve these equations on a square lattice with periodic boundary conditions and consider

systems of linear dimensions L = 32 − 256. As mentioned previously, the equations are solved

11



efficiently by employing fast Fourier transforms in both space and imaginary time. Furthermore,

we find convergence of the iterative procedure is significantly enhanced by solving the equations

progressively form high to low temperature, using the solution from the previous higher temper-

ature as a seed for a given temperature. This procedure is typically started at a relatively high

temperature, T ∼ t.

A. Lattice parameters

From the bare fermion and boson dispersion in (2.3) we identify the following energy scales:

{t,
√
J, g2/J}. (4.2)

Other relevant electronic energy scales are the bandwidth W = 8t and the density of states (DOS)

at the Fermi energy N0 ∼ 1/W . We define a dimensionless coupling constant as

λ0 =
g2

JW
. (4.3)

The other important dimensionless parameter is
√
J/t ∼ c/vF , where c and vF are the boson and

fermion velocities, respectively. In terms of lattice parameters, vF ∼ ta and c ∼
√
Ja, where a is

the lattice constant. Here we focus on the regime c ∼ vF . For all the data presented below we

fix the following parameters: λ0 = 0.125,
√
J/t = 2, and µ = −0.5t. For reference, this chemical

potential corresponds to a Fermi energy εF = 3.5t and DOS N0 ' 0.19/t. As explained in Sec. II A,

the boson mass, mb, is determined self-consistently for a fixed value of γ.

B. Results

1. Phase diagram

To access the QCP, we first map out the phase diagram of the model as a function of γ and

temperature T . The results are shown in the left panel of Fig. 2 and are based primarily on the

behavior of the renormalized boson mass,

M2(T ) = m2
b − Π(0, 0), (4.4)

shown in Fig. 2 (right). We find a QCP at the value γc ' 6.7t, where we observe the boson mass

vanishes approximately linearly, M2 ∼ T . Up to logarithmic corrections, which are hard to detect

numerically, this is consistent with earlier analytic calculations [13, 74]. This scaling holds in the

quantum-critical fan above the QCP, as is seen from the color scale in Fig. 2. For γ > γc, the system

12
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FIG. 2: Left: Phase diagram as a function of γ in units of γc ' 0.15 and temperature T . The

color scale shows the exponent, x, with which the boson mass approaches its T = 0 value:

M2(T )−M2(T = 0) ∼ T x. Up to logarithmic corrections, we expect x = 1 at the QCP and x = 2

in the Fermi liquid regime. In the region T < T ?, M2(T ) ∼ e−T
?/T and the behavior of the system

is governed by the soft thermal fluctuations of the boson. For γ < γc, the system is ordered only

at T = 0. Right: Boson mass as a function of T for γ > γc (red), γ = γc (black), and γ < γc

(blue). The inset shows the behavior of the boson mass at the g = 0 QCP, where M2 ∼ T 2.

is a Fermi liquid at low temperatures, with the boson mass behaving as M2 −M2(T = 0) ∼ T 2.

For γ < γc, the system is ordered only for T = 0, with the boson mass vanishing according to

M2 ∼ exp(−T ?/T ) (the T ? line in the figure is obtained by fitting the M2(T ) to this functional

form). The absence of a finite temperature ordering transition is a result of the Hohenberg-Mermin-

Wagner theorem [76, 77], as such a transition corresponds to spontaneously breaking the O(N)

symmetry of the original (disorder averaged) model. The exponentially vanishing mass as T → 0

is known from the behavior of the O(N) model at large-N in two dimensions. We remark that

the boson mass behaves in the same way even in the absence of the fixed length constraint, (4.1).

Below the temperature scale T ?, the system crosses over into a regime governed by soft thermal

fluctuations of the boson, and, as will be further discussed below, the fermion self-energy has

a form distinct from that of a Fermi liquid. For comparison, we also show the behavior of the

boson mass at the g = 0 QCP of the decoupled model in the inset of the right panel of Fig. 2, in

which case M2 ∼ T 2 (even for g = 0, the bosonic sector is self-interacting due to the fixed length

constraint, (4.1)).

To better characterize the single-fermion properties of the system across the phase diagram, we
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FIG. 3: (a) Imaginary part of the fermion self-energy averaged over the Fermi surface, as a

function of Mastubara frequency, ωn, on the Fermi liquid side (γ ' 1.25γc) for βt = 40− 100.

Red shows the full self-energy, −〈ImΣ〉FS, while blue and green show the quantum, −〈ImΣQ〉FS,

and thermal, −〈ImΣT 〉FS, contributions, respectively. Different symbols correspond to different

temperatures. For the full Σ, the points for various temperatures fall essentially on the same

curve, indicating Σ has converged to its T = 0 value. The components ΣQ and ΣT show a more

significant temperature dependence. We find −ImΣ ∼ ωn at small frequency, consistent with a

Fermi liquid. In this regime, the contribution from ΣT is small.

(b) Same as (a) but on the ordered side (γ ' 0.96γc) for βt = 8− 14. In this regime −ImΣ is an

increasing function of ωn at small frequency, where it is dominated by ΣT .

decompose the fermion self-energy as

Σ(k, iωn) = ΣT (k, iωn) + ΣQ(k, iωn), (4.5)

where subscripts T and Q denote the “thermal” and “quantum” contributions, respectively. The

thermal contribution is defined as that from the zero Matsubara frequency transfer term in the

self-consistent equation for Σ, while the quantum contribution comes from non-zero Matsubara

frequency transfer:

ΣT (k, iωn) =
g2T

L2

∑
k′

D(k − k′,Ω = 0)G(k′, iωn), (4.6)

ΣQ(k, iωn) =
g2T

L2

∑
n′ 6=n

∑
k′

D(k − k′, iωn − iωn′)G(k′, iωn′). (4.7)

This decomposition has been used to analyze finite-T corrections to quantum-critical scaling [19,
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20, 29, 75, 78] and here we find it particularly useful in analyzing the behavior both at the QCP,

γ = γc, and on the ordered side, γ < γc.

We first discuss the behavior of the fermion self-energy away from the QCP. In Fig. 3, we show

the negative imaginary part of the fermion self-energy, 〈−ImΣ(ωn)〉FS, where the brackets denote

averaging momentum dependence over the Fermi surface (in general we find Σ is weak function of

the direction of k along the Fermi surface; see Fig. 5a. Fig. 3a shows the self-energy for γ > γc,

where we find a linear frequency dependence, consistent with a Fermi-liquid, corresponding to

fermion mass enhancement. Data are shown for a set of temperatures in the range βt = 40− 100.

The data points for different temperatures fall on the same curve, indicating Σ has essentially

converged to its T = 0 value. In the Fermi liquid regime, the contribution from ΣT is small.

Fig. 3b shows the self-energy on the ordered side, γ < γc. In this case, the low-frequency behavior

is significantly affected by ΣT . On the ordered side, the exponentially small boson mass makes

it challenging to numerically access low temperatures, and the data shown in the figure are for

βt = 8 − 14. Even here the full self-energy is essentially temperature-independent, while the

separate contributions, ΣQ and ΣT , show a stronger temperature dependence. In contrast to the

Fermi-liquid regime, on the ordered side and at low frequency, the self-energy is essentially constant

over the frequency range ωn ' (1− 3)t and at lower frequency becomes an increasing function of

decreasing frequency. The small boson mass, satisfying M � T , and large thermal self-energy,

ΣT , explain why we denote region T < T ∗ in Fig. 2 as being characterized by “strong thermal

fluctuations”. We note that the data on the ordered side of the transition are only very slightly

tuned away from the critical point, γ ' 0.96γc, yet the behavior of the self-energy is nevertheless

drastically different from that at the QCP (to be further discussed in the next section), indicating

a rapid crossover in the behavior of the system on the ordered side. Finally, we remark that in

both regimes, 〈−ImΣQ(πT )〉FS is negative; this curious fact has been explained in [29].

2. Behavior at the QCP and comparison with the patch theory

We now describe the behavior at the QCP, γ = γc. Fig. 4 shows the entropy density, S/L2, at

the QCP, which we find vanishes as T → 0. The entropy is computed by numerical differentiation

of the free energy, F , which is shown in the bottom inset of Fig. 4 and computed according to (2.5).

We also find the Fermi surface remains sharp at the QCP, in accord with Luttinger’s theorem.

This can be seen in the top inset of Fig. 4, where we show an imaginary-time proxy for the fermion

spectral weight at zero energy:

G(k, τ = β/2) =

∫ ∞
−∞

dω
1

2 cosh(βω/2)
A(k, ω), (4.8)
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FIG. 4: Entropy density, S/L2, as a function of T at the QCP. This is expected to vanish as

∼ T 2/3 as T → 0, but our data is not precise enough to distinguish from a linear T dependence.

The entropy is obtained by numerical differentiation of the free energy density, F/tL2, shown in

the bottom inset. The top inset is G(k, τ = β/2), which is essentially the fermion spectral

function averaged over an energy window of order T about the Fermi energy, for βt = 100. We

see the Fermi surface remains sharply defined at the QCP, in accord with Luttinger’s theorem.

where A(k, ω) is the fermion spectral function. This quantity is essentially the spectral function

averaged over an energy range of order T about the Fermi energy and has been frequently used

in numerical studies, as it avoids the need for analytic continuation of Matsubara frequency data

[79–81].

The behavior of the fermion self-energy at the QCP is shown in Figs. 5 and 6. Fig. 5a shows

the variation of −ImΣ along the Fermi surface. The dependence on angle along the Fermi surface

is weak, and essentially tracks the behavior of the non-interacting DOS. The inset of the figure

shows −ImΣ across the entire Brillouin zone and we find it is peaked on the Fermi surface. These

observations are in line with the analytic predictions of Sec. III. Fig. 5b shows the Fermi-surface

average of −ImΣ. The data are shown for a set of temperatures in the range βt = 40− 160. Fig. 6

shows the decomposition into ΣQ and ΣT . We find the temperature dependence of the full Σ is

weak at all but the lowest frequencies, where the thermal contribution, shown in Fig. 6b, is still

sufficiently large to obscure the expected ω
2/3
n scaling. The quantity ImΣQ precisely removes this

thermal contribution and, from Fig. 6a, we see that, although ImΣQ shows a stronger temperature

dependence than ImΣ, the low-frequency behavior is indeed compatible with ω
2/3
n scaling as T → 0,

as in Eq. (3.4). In the temperature regime shown in Fig. 6, earlier work has predicted that the the

thermal self-energy should behave as −ImΣT ∼ T/ωn, [29, 75]. We find this scaling is indeed well
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FIG. 5: (a) Imaginary part of fermion self-energy at the QCP, normalized by the first Matsubara

frequency ω0 = πT , as a function of angle, θ, along the Fermi surface for βt = 100. The variation

as a function θ is small, essentially tracking the density of states of the non-interacting band

structure. Inset shows the same quantity through the whole first Brillouin zone, where we see it

is sharply peaked at the Fermi surface. (b) Imaginary part of fermion self-energy at the QCP,

averaged over the Fermi surface, for the range βt = 40− 160. For all but the lowest frequencies,

Σ has essentially converged to its T = 0 behavior by βt ' 40.

satisfied, as seen in the inset of Fig. 6b.

Finally, Fig. 7 shows the “dynamical part” of the boson self-energy, defined as δΠ(q,Ωn) =

Π(q,Ωn)− Π(q,Ωn = 0), for two q vectors and range of temperatures βt = 50− 100. We find the

expected linear scaling with frequency, δΠ ∼ Ωn, when Ωn < vF |q| (recall vF ∼ ta). The scaling

with Ωn/vF |q|, as in Eq. (3.3), is not perfectly satisfied due to the anisotropy of the Fermi surface

(in the low-energy calculations, a circular Fermi surface is assumed). The dependence of δΠ on

the angle of q may be seen in the inset of Fig. 7, where δΠ is shown for a larger set of q’s, in the

range 0 < |q|a < 0.8.

V. SINGLE PATCH THEORY AND TIME REPARAMETERIZATIONS

We now turn to a characterization of the fluctuations about the large N saddle point in the

spatially uniform model with a critical Fermi surface described in Sections II and III. Here we will

focus on the single patch critical theory in (3.1), and will defer consideration of the special role of

antipodal patches [9] to Section VII.

In the SYK model, the flucutations are characterized by the structure of the 4-point correlators
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FIG. 6: Decomposition of imaginary part of fermion self-energy at the QCP, averaged over the

Fermi surface, for the range of inverse temperatures βt = 40− 160. (a) The quantum part,

ImΣQ, shows more significant T -dependence than the full ImΣ, tending toward the predicted

ω
2/3
n behavior as T → 0. (b) Thermal part, ImΣT , displays a significant temperature dependence,

tending slowly to zero as T → 0. The inset shows the thermal part obeys the scaling behavior

−ImΣT ∼ T/ωn [29, 75].

of the large N saddle point [44, 49], and this is dominated by the time reparameterization mode.

Formally, it appears that the single patch saddle-point of the large N theory in Section III has

a time reparameterization symmetry, and so we examine it here for a corresponding soft mode.

However, as we show below, the spatial structure of the critical Fermi surface theory does play

an important role, and we find there is no special contribution from time reparameterizations.

Instead, we find that the 4-point correlators are controlled by response functions of the conserved

fermion density, which were explored earlier in Ref. [5].

Integrating out the fermions from the single patch continuum action (3.1), leads us to consider

the following G− Σ action

S

N
=− Tr ln(∂τδ

(3) − sf (i∂x + ∂2
y)δ

(3) + Σ) +
1

2
Tr ln(−sb∂2

yδ
(3) − Π)

+
g2

2
Tr(G ·GD)− Tr(Σ ·G) +

1

2
Tr(Π ·D). (5.1)

The Tr(·) is defined on the indices of spacetime (x, y, τ ), similar to [82]:

Tr(A · B) ≡
∫

d3x1d3x2A(x1, x2)B(x2, x1).

We have also inserted two parameters sf , sb in front of momenta for convenience of the analysis

below.
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FIG. 7: Dynamical part of boson self-energy, δΠ, as a function of Ωn/ta|q|, where ta ∼ vF . Data

are shown for representative q vectors in the inverse temperature range βt = 50− 100, where δΠ

has essentially converged to its T = 0 limit. The small frequency behavior is linear, as predicted

from the low-energy analysis in Sec. III, albeit with a slope that depends on the direction of q, as

would be expected for an anisotropic Fermi surface. Inset shows δΠ for q vectors in the range

0 < |q|a < 0.8 for βt = 100.

The saddle point equations are (we focus at zero temperature and ignore the zero-mode sub-

traction for bosons)

Σ(r, τ) = g2G(r, τ)D(r, τ) (5.2)

Π(r, τ) = −g2G(−r,−τ)G(r, τ ) (5.3)

G(k, iωn) =
1

iωn − sf (kx + k2
y)− Σ(k, iωn)

(5.4)

D(q, iΩn) =
1

q2
y − Π(q, iΩn)

(5.5)

We recall the solutions of these equations at zero temperature obtained in Section III:

Σ(k, iω) = −isgn (ω)25/3g4/3T
2/3

3
√

3
H1/3

( |ω| − πT
2πT

)
(T → 0) , (5.6)

Π(q, iΩ) = − g
2

8π

|Ω|
|qy|

. (5.7)

We describe the structure of fluctuation around the saddle point. We introduce a collective

notation for Green’s functions G = (D,G) and self energies Ξ = (Π,Σ), and let Λ = diag(−1/2, 1)

acting on the two component space of (D,G) or (Π,Σ). Following derivations in [82, 83], we can
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expand the G− Σ action around the saddle point to quadratic order as

δS =
1

2

(
δΞT δGT

)
Λ

(
WΣ −1

−1 WG

)(
δΞ

δG

)
, (5.8)

where T means transpose on spacetime indices. Here WΣ and WG are defined as

WΣ =
δG∗[Ξ]

δΞ
, WG =

δΞ∗[G]

δG , (5.9)

where G∗[Ξ] is the saddle point expression of G viewed as a functional of Ξ, and similarly for Ξ∗[G].

We can further integrate out δΞ in (5.8), to obtain

δS =
1

2
δGTΛW−1

Σ (WΣWG︸ ︷︷ ︸
KG

−1)δG , (5.10)

where we have defined the kernel KG = WΣWG. Therefore, soft fluctuations are related to unit

eigenvalue of KG.

A. Time Reparameterization

We now note the time reparameterization symmetry of (5.1). Consider the following reparam-

eterization

τ = f(σ), dx = (f ′(σ))1/zdx̃, dy = (f ′(σ))1/(2z)dỹ. (5.11)

Then ignoring the irrelevant ∂τ term, the action is invariant under the change of variables

G(x, x′, y, y′, τ, τ ′) =
1

(f ′(σ)f ′(σ′))a
G̃(x̃, x̃′, ỹ, ỹ′, σ, σ′) (5.12)

Σ(x, x′, y, y′, τ, τ ′) =
1

(f ′(σ)f ′(σ′))1+3/(2z)−a Σ̃(x̃, x̃′, ỹ, ỹ′, σ, σ′) (5.13)

D(x, x′, y, y′, τ, τ ′) =
1

(f ′(σ)f ′(σ′))1+3/(2z)−2a
D̃(x̃, x̃′, ỹ, ỹ′, σ, σ′) (5.14)

Π(x, x′, y, y′, τ, τ ′) =
1

(f ′(σ)f ′(σ′))2a
Π̃(x̃, x̃′, ỹ, ỹ′, σ, σ′) (5.15)

sf (i∂x + ∂2
y)δ(x, x

′)δ(y, y′)δ(τ, τ ′) =

s̃f
1

(f ′(σ)f ′(σ′))1/2+5/(4z)
(i∂x̃ + ∂2

ỹ)δ(x̃, x̃
′)δ(ỹ, ỹ′)δ(σ, σ′) (5.16)

sb∂
2
yδ(x, x

′)δ(y, y′)δ(τ, τ ′) = s̃b
1

(f ′(σ)f ′(σ′))1/2+5/(4z)
∂2
ỹδ(x̃, x̃

′)δ(ỹ, ỹ′)δ(σ, σ′) (5.17)

The consistency with saddle point equation yields a = 2/3, z = 3/2, and sb, sf are marginal

couplings.
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Let us consider the consequence of reparameterization symmetry on the kernel KG. In the

low-energy conformal limit (ignoring ∂τ term), the saddle point equations can be written as

G · (sf (i∂x + ∂2
y)δ

(3) − Σ) = 1,

D · (−sb∂2
yδ

(3) − Π) = 1.
(5.18)

Due to the reparameterization symmetry, it’s valid to consider an infinitesimal reparameteri-

zation δε : f(τ) = τ + ε(τ) on both sides. Because the Schwinger-Dyson equation holds, we can

rewrite δεΣ, δεΠ in terms of δεG, δεD, and therefore we obtain

(1−KG)δεG = WΣδεk. (5.19)

This is a two component equation for (δεD, δεG). On the RHS, δεk is the reparameterization of

momentum term

δεk = (sfδε(i∂x + ∂2
y)δ

(3),−sbδε∂2
yδ

(3)). (5.20)

In the original SYK model, the RHS is absent and the reparameterization mode is an eigenvector

of KG with eigenvalue one [44]. This eigenvalue one is responsible for the βJ enhancement in

four-point functions. In the current model, the presence of δεk term will destroy the dominance

of the unit eigenvalue mode in the action for fluctuations, and the reparameterization fluctua-

tion will not have βJ enhancements. Therefore, the low-energy theory will contain not only the

reparameterization but also other fluctuations.

We can also repeat the above discussion for the U(1) gauge symmetry

δλG(x, x′, y, y′, τ, τ ′) = i(λ(τ)− λ(τ ′))G(x, x′, y, y′, τ, τ ′) ,

δλΣ(x, x′, y, y′, τ, τ ′) = i(λ(τ)− λ(τ ′))Σ(x, x′, y, y′, τ, τ ′) .
(5.21)

This symmetry is emergent at low-energy given that the ∂τ term in the action is irrelevant. Running

the above argument for this U(1) symmetry, we obtain an eigenvector of KG with unit eigenvalue:

(1−KG)δλG = 0 , (5.22)

and there is no momentum term on the RHS because the symmetry is uniform in space. In

what follows, we will demonstrate that δλG is the only unit eigenvector of KG that obeys sliding

symmetry.

B. Sliding symmetry

An important symmetry of the patched Fermi surface problem is the sliding symmetry

φ(x, y)→ φ(x, y + θx),

ψ(x, y)→ e−i[(θ/2)y+(θ2/4)x]ψ(x, y + θx) .
(5.23)
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In Fourier space, the representation is simpler

φ(qx, qy)→ φ(qx − θqy, qy),

ψ(kx, ky)→ ψ(kx − θky −
θ2

4
, ky +

θ

2
).

(5.24)

We can see there are two different representations of the sliding group. One is the boson

class [0], and another is the fermion class [1]. Given two momenta k1, k2 that transforms under

representation [n1] and [n2] respectively, we can fuse them into a new representation simply by

momentum addition

k3 = αk1 + βk2,

which transforms under representation [n3] and n3 = αn1 + βn2. Here α, β are rational numbers

such that n3 is an integer. In our problem, we will only encounter class [0] and [1].

Each representation is associated with some invariants. For example q of [0] has invariant qy

and k of [1] has invariant kx + k2
y.

The eigenfunctions of the kernel KG are bosonic or fermionic two point functions B(k, p) and

F (k, p) (see (5.30)), where k is the relative momentum and p is the CoM momentum. For B(k, p),

both (k, p) are class [0]. For F (k, p), k is class [1] and p is class [0]. Therefore B is in class [0]⊗ [0]

and F is in class [0]⊗ [1]. They are in tensor product representations.

By trial and error, we find the following invariants of the above tensor product representations

up to quadratic order:

[0]⊗ [0] : ky, py, pxky − pykx
[0]⊗ [1] : py, kx + k2

y, px + 2pyky
(5.25)

C. Feynman Diagrams

In this part we give a diagrammatic prescription to compute KG. We have the following

diagrammatic representations for δεG and δεD

(
δεD(3; 4)

δεG(3; 4)

)
=

 4

3

δεD

4

3

δεG

 , (5.26)

where numbers are short-hands for spacetime coordinates.

Using the saddle point equations, we can also write down the Feynman diagrams for WΣ and
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WG:

WΣ(1, 2; 3, 4) =


1

2

3

4

0

0
1

2

3

4

 , (5.27)

WG(1, 2; 3, 4) =


0 −g2

(
1

2

3

4

+
1

2

3

4

)
g2

2

(
1

2

3

4

+
1

2

3

4

)
g2

1

2

3

4

 , (5.28)

where a black arrowed line denotes fermion propagator, a dashed arrowed line denotes boson

propagator, and an unarrowed dashed line denotes spacetime δ-function. The first entry is boson

and the second entry is fermion. Recalling Λ = diag(−1/2, 1), we see that ΛWΣ and ΛWG are

explicitly symmetric as required by quadratic expansion. Therefore we can obtain the diagram for

KG = WΣWG as

KG(1, 2; 3, 4) =


0 −g2

(
1

2

3

4

+
1

2

3

4

)
g2

2

(
1

2

3

4

+
1

2

3

4

)
g2

1

2

3

4

,

 (5.29)

Examination of these diagrams shows that summing the series (1−KG)−1 is equivalent to summing

ladder diagrams of fermions with the so-called ‘Maki-Thomson’ and ‘Aslamazov-Larkin’ corrections

to all orders; the first order terms of this type were examined by Kim et al. [5].

D. Eigenvalues of the Kernel

Let us investigate the eigenvalues of the kernel (5.29). Unit eigenvalues will correspond to

composite scaling operators [52, 53, 72, 73, 84] appearing in the operator product expansion of

a particle and a hole in the single patch theory, as they lead to singularities in ladder expansion

(1−KG)−1.

Assume the eigenvectors have the following ansatz

k + p/2

k − p/2

V = V (ω,k,Ω,p) =

(
B(k, p)

F (k, p)

)
, (5.30)

where k = (ω,k) is the relative momentum (frequency), and p = (Ω,p) is the conserved center of

mass momentum (frequency).
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We now calculate how KG acts on the above ansatz, and obtain(
B̃

F̃

)
= KG

(
B

F

)
, (5.31)

where

B̃(k1, p) = −g2D(k1 + p/2)D(k1 − p/2)

∫
d3k2

(2π)3
[G(k2 − k1)F (k2, p) +G(k1 − k2)F (−k2, p)] ,

(5.32)

F̃ (k1, p) = g2G(k1 + p/2)G(k1 − p/2)

×
∫

d3k2

(2π)3

[
1

2
G(k1 − k2) (B(k2, p) + B(−k2, p)) +D(k1 − k2)F (k2, p)

] (5.33)

E. Using Sliding Symmetry

We can use sliding symmetries to simplify the kernel KG. The generic sliding symmetric eigen-

functions B,F depend on the invariants discussed in (5.25) (we assumed that higher order invari-

ants can be factorized into lower order ones):

B(k2, p) = B(ω2,Ω, k2y, py, k2ypx − pyk2x), (5.34)

F (k2, p) = F (ω2,Ω, k2x + k2
2y, py, px + 2pyk2y). (5.35)

One can verify that the kernel KG actually preserves the above sliding symmetric ansatz.

F. Further simplification

Because the CoM momentum p is conserved by KG, we are free to specify its value. Similarly for

the frequency Ω. We will limit ourselves here to the case py = 0 because then, as shown below, the

integral equations can be simplified to one over frequency alone. So we will be restricting attention

to longitudinal density fluctuations of the fermions on the Fermi surface, in the terminology of Kim

et al. [5]. The case with py 6= 0 corresponds to the transverse ‘diamagnetic’ sector [5], which we

do not analyze below.

The kernel further simplifies if we set py = 0, which simplifies one of the arguments in the

ansatz:

B(k2, p) = B(ω2, k2y,Ω, px) (5.36)

F (k2, p) = F (ω2, k2x + k2
2y,Ω, px) (5.37)
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Therefore, in (5.32), for the first term we do k2x → k2x − k2
2y followed by k2y → k2y + k1y, and

for the second term we do k2x → k2x + k2
2y, and then integrate over k2y:

B̃(k1, p) = −g2D(k1 + p/2)D(k1 − p/2)

∫
d3k2

(2π)3

×
[
G(ω2 − ω1, k2x − (k1x + k2

1y)− 2k1yk2y)F (ω2, k2x, p)

+G(ω1 − ω2, (k1x + k2
1y)− k2x − 2k1yk2y)F (−ω2,−k2x, p)

]
= −g2D(k1 + p/2)D(k1 − p/2)

∫
dω2dk2x

(2π)2

× i

4|k1y|
sgn (ω1 − ω2) [F (ω2, k2x, p)− F (−ω2, k2x, p)] ,

(5.38)

and in the second term of last line we also flipped −k2x → k2x.

For the first term of (5.33), we directly integrate over k2x, and for the second term, we shift

k2x → k2x − k2
2y and then integrate over k2y:

F̃ (k1, p) = g2G(k1 + p/2)G(k1 − p/2)

∫
dω2

2π

×
[ ∫ dk2y

2π

−i
4

sgn (ω1 − ω2)(B(ω2, k2y) + B(−ω2, k2y))

+

∫
dk2x

2π

4π1/3

3
√

3g2/3|ω1 − ω2|1/3
F (ω2, k2x, p)

]
.

(5.39)

Plugging p = (Ω, px, 0) into (5.38) and (5.39), we see that the sliding symmetry is preserved.

Furthermore, the action of KG is highly degenerate because it only cares about the integration

of F,B over all spatial momenta. We can therefore integrate out all spatial momenta to get a

functional only in frequency space. Let

BI(ω) =

∫
dky
2π

B(ω, ky), (5.40)

FI(ω) =

∫
dkx
2π

F (ω, kx). (5.41)

For simplicity we have suppressed (Ω, px) dependence in the arguments.

The projected action of KG is

B̃I(ω1) = − 8iπ4/3

3
√

3g2/3|ω2
1 − Ω2/4|1/3 (|ω1 − Ω/2|2/3 + |ω1 + Ω/2|2/3 + |ω2

1 − Ω2/4|1/3)

×
∫

dω2

2π
sgn (ω1 − ω2) [FI(ω2)− FI(−ω2)] ,

(5.42)
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and

F̃I(ω1) =
ig2

2

sgn (ω1 + Ω/2)− sgn (ω1 − Ω/2)

iΩ− px − [Σ(ω1 + Ω/2)− Σ(ω1 − Ω/2)]

∫
dω2

2π

×
[−i

4
sgn (ω1 − ω2)(BI(ω2) + BI(−ω2)) +

4π1/3

3
√

3g2/3|ω1 − ω2|1/3
FI(ω2)

]
.

(5.43)

In the conformal limit |Ω|, |px| � g, we can ignore the iΩ−px term in (5.43), and after rescaling

b = g2/3B, we can rewrite the above equations to be independent of g:

b̃I(ω1) = − 8iπ4/3

3
√

3|ω2
1 − Ω2/4|1/3 (|ω1 − Ω/2|2/3 + |ω1 + Ω/2|2/3 + |ω2

1 − Ω2/4|1/3)

×
∫

dω2

2π
sgn (ω1 − ω2) [FI(ω2)− FI(−ω2)] ,

(5.44)

F̃I(ω1) = − i
2

sgn (ω1 + Ω/2)− sgn (ω1 − Ω/2)[
Σ̄(ω1 + Ω/2)− Σ̄(ω1 − Ω/2)

] ∫ dω2

2π

×
[−i

4
sgn (ω1 − ω2)(bI(ω2) + bI(−ω2)) +

4π1/3

3
√

3|ω1 − ω2|1/3
FI(ω2)

]
,

(5.45)

where Σ̄ = g−4/3Σ.

G. Unit eigenvalue of KG

The action of KG in (5.44),(5.45) can be classified into two sectors. The first one is bI = 0 and

FI(ω) even. The second sector is bI(ω) even and FI(ω) odd.

1. FI even sector

In this case the conformal KG reduces to (5.45) with bI = 0. By numerical diagonalization, we

found only one mode with unit eigenvector. It is generated by the U(1) gauge symmetry

δλG(x, x′, y, y′, τ, τ ′) = i(λ(τ)− λ(τ ′))G(x, x′, y, y′, τ, τ ′) ,

δλΣ(x, x′, y, y′, τ, τ ′) = i(λ(τ)− λ(τ ′))Σ(x, x′, y, y′, τ, τ ′) .
(5.46)

There is no action on D,Π or the kinetic term. The Fourier transform of δλG is

δλG(Ω, ω,k) = λΩ [iG(ω − Ω/2,k)− iG(ω + Ω/2,k)] , (5.47)

where Ω is the CoM frequency, ω is the relative frequency and k is the relative momentum.

λΩ =
∫

dτeiΩτλ(τ).
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Integrating out the spatial momentum, we get

FI(Ω, ω) =

∫
dkx
2π

δλG(Ω, ω, kx) =
1

2
(sgn (ω − Ω/2)− sgn (ω + Ω/2)) , (5.48)

and BI(Ω, ω) = 0. We can analytically verify that this is an exact eigenvector of the conformal

KG with unit eigenvalue. If we retain the iΩ− px term, the correction is of order Ω1/3g−4/3.

2. FI odd sector

To numerically diagonalize the kernel, we first substitute (5.44) into (5.45) to eliminate bI :

F̃I(ω) =
2

3

θ(Ω2/4− ω2)

|ω − Ω/2|2/3 + |ω + Ω/2|2/3
∫ Ω/2

−Ω/2

dω′
[

1

|ω − ω′|1/3 + h(ω, ω′)

]
FI(ω

′) , (5.49)

where

h(ω, ω′) =

∫ ∞
−∞

dν
sgn (ν − ω)sgn (ν − ω′)

|ν2 − Ω2/4|1/3 (|ν − Ω/2|2/3 + |ν + Ω/2|2/3 + |ν2 − Ω2/4|1/3)
. (5.50)

Here we have used the explicit form of Σ(ω).

In (5.49), Ω is the only external scale so we can safely set Ω = 1. By numerically diagonalizing

KG, we found no eigenvalue close to 1.

VI. DIAGRAMMATICS OF G-Σ THEORY

In this section we discuss the diagrammatics of the G-Σ theory, with the goal of developing

a systematic 1/N expansion. As the large N limit is expressed as the saddle point of a G-Σ

action, and the self energy does not have a prefactor of 1/N in the Dyson equation, the difficulties

described in Ref. [8] do not arise here. The structure of the expansion for the bilocal fields is

dictated by the form of the G-Σ action, and the bilocal field propagator resums an infinite number

of terms from the previous approach [8].

Using notations in Sec. V, we can expand the G-Σ action around the saddle point as

S = NS0 +NS2[δG, δΞ] +NS3[δG, δΞ] +NS4[δG, δΞ] + . . . (6.1)

Here Sn means the term which contains n-th power of δG and δΞ. In particular, S2 is given by (5.8).

For convenience of power counting, we decide to make propagators of δG and δΞ independent of N

and push N power counting into vertices. This can be done by rescaling (δG, δΞ)→ N−1/2(δG, δΞ),

and therefore NSn[δG, δΞ]→ N1−n/2Sn[δG, δΞ].
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A. Propagator

Using (5.8) and (5.10), we can write down the propagator of δG as

GGG(1, 2; 3, 4) ≡ 〈δG(1, 2)δG(4, 3)〉 =

[
1

KG − 1
WΣΛ−1

]
(1, 2; 3, 4) ≡

1

2

3

4

. (6.2)

Here the numbers in the argument denote space time indices. For example 1 means (x1, y1, τ1).

On the RHS we also defined its diagrammatic representation.

Similarly we can derive the propagator for δΞ to be

GΞΞ(1, 2; 3, 4) ≡ 〈δΞ(1, 2)δΞ(4, 3)〉 =

[
WG

1

KG − 1
Λ−1

]
(1, 2; 3, 4) ≡

1

2

3

4

. (6.3)

Here we use thick lines to denote Green’s functions δG and wavy lines to denote self energies δΞ.

There are also mixed correlators between δG and δΞ

GΞG(1, 2; 3, 4) ≡ 〈δΞ(1, 2)δG(4, 3)〉 = −
[

1

KΣ − 1
Λ−1

]
(1, 2; 3, 4) ≡

1

2

3

4

, (6.4)

GGΞ(1, 2; 3, 4) ≡ 〈δG(1, 2)δΞ(4, 3)〉 = −
[

1

KG − 1
Λ−1

]
(1, 2; 3, 4) ≡

1

2

3

4

, (6.5)

where KΣ = WGWΣ and it shares the same nonzero spectrum with KG = WΣWG.

The rule of concatenation is that only edges of the same type (solid or wavy) can concatenate

with the following restriction on arrow direction:

1. For fermionic components G and Σ, the arrows of the two concatenating edges should be

paired in opposite direction.

2. For bosonic components D and Π, the arrows can be paired in either direction, but both

ways of pairing should be regarded as identical. This is because D and Π are even functions.

B. Vertices

There are two kinds of vertices in the theory, they come from expanding the determinant terms

and the interaction term in G-Σ action (5.1) respectively.

Expanding the two determinants in (5.1), we obtain non-Gaussian terms of the form

S ⊃
∞∑
n=3

1

n
N1−n/2 Tr(Λ(GδΣ)n) . (6.6)
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These terms give rise to the “sheet” vertices (following the terminology in [49]). At cubic order,

the diagrammatic representation is

1 2

3

45

6

a

aa

= − 1√
N

ΛaGa(3, 2)Ga(5, 4)Ga(6, 1). (6.7)

The vertex can connect to 3 self energy propagators of the same type a = Σ or a = Π. Here

ΛΣ = 1 and ΛΠ = −1/2.

The second type of vertex comes from the G(τ)G(−τ )D(τ) term:

S ⊃ g2

2
√
N

Tr(δG · δGδD). (6.8)

It generates the “seam” vertex in [49], which can be diagrammatically represented as

1

2

= − g2

√
N
, (6.9)

where the two arrowed edges connect to fermionic components (δG) and the unarrowed edge

connects to bosonic component (δD).

C. 1/N correction to self energy

Using the above vertices, we can write down the first order 1/N corrections to self energies,

which is given by a tadpole diagram of δΞ:

(δΞ)1 =
1√
N
〈δΞ〉 . (6.10)

There are two diagrams as shown in Fig. 8, which are due to the “sheet” vertex and the “seam”

vertex respectively.

We focus on the correction of electron self-energy Σ, and write down the expression based on

the diagrams in Fig. 8. The “sheet” vertex contributes

δΣ1a(1, 2) =
1

N

∫
3,4,5,6,7,8

[
−GΣΣ(1, 2; 3, 4)GΣΣ(6, 5; 2, 8)G(3, 8)G(5, 4)G(7, 6)

+
1

2
GΣΠ(1, 2; 3, 4)GΠΠ(6, 5; 2, 8)D(3, 8)D(5, 4)D(7, 6)

]
.

(6.11)

Here numbers in the arguments denote space time coordinates. The notation of the form GΣΣ

refers to the Σ-Σ or fermion-fermion component of the propagator GΞΞ. G and D are the saddle

point single particle propagators.
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(a) “sheet” vertex (b) “seam” vertex

FIG. 8: Diagrams contributing to self energy at O(1/N). We have suppressed arrows at

concatenated edges.

The “seam” vertex contributes

δΣ1b(1, 2) = −g
2

N

∫
3,4

[
GΣG(1, 2, 3, 4)GGD(4, 3; 4, 3)

+
1

2
GΣD(1, 2, 3, 4)GGG(4, 3; 4, 3)

]
,

(6.12)

where the 1/2 in the second line is a symmetry factor.

We note that the above diagrams are the same as in SYK models [49]. It is trivial to obtain

corrections for other fields such as δG, δD and δΠ: We merely need to change the first subscript

of the G(1, 2; 3, 4) propagator in the above expressions to the corresponding field.

VII. ANTIPODAL PATCH THEORY AND FERMION BILINEAR OPERATORS

This section moves beyond the single patch theory considered so far, and examines the role of

antipodal patches around the Fermi surfaces – see Fig. 9.

The single patch theory in Section V examined the fluctuations about the large N saddle point

using a perspective similar to that of the soft mode analysis of Kitaev and Suh [49] for the SYK

model. An alternative approach [44, 50–53, 72, 73] is to compute all new operators that appear

in the operator product expansion of 2 fermions. In the present large N approach, applicable

equally to the SYK model and the antipodal patch theory, such a computation is equivalent to
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FIG. 9: Antipodal patches on the Fermi surface with continuum fermions ψs, s = ±1.

computing the eigenmodes of the two-particle Bethe-Salpeter equation for the fermion vertex,

shown schematically in Fig. 10.

= +

FIG. 10: Schematic equation for the two-particle vertex in the large N limit. The full lines are

the renormalized fermion Green’s functions and the dashed line is the boson Green’s function

Examination of these diagrams around the Fermi surface shows that the only new operators

that appear from this vertex are those corresponding to the Cooper pairing and 2kF operators, as

discussed in Refs. [10, 12], and we will discuss these cases in the following subsections.

The case of the pairing operator, discussed in Section VII B turns out to be simpler, because

we are able to use the sliding symmetry of Section V B to simplify the analysis. With this simpli-

fication, the resulting integral Bethe-Salpeter equation turns out to act only on frequency space;

indeed, it is identical in form to the equations obtained for the SYK model [44, 50–53, 72, 73, 84, 85].

The case of the 2kF operator, discussed in Section VII C, is more complicated because the

reduction to a purely frequency space integral equation is not possible. Instead we have consider

an equation involving both the frequency and the tangential momentum on the Fermi surface,
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whose solution requires a numerical analysis.

For the results of this section, we will consider a more general setting than that of the Ising

critical point considered so far. It is known that the Ising boson leads to an attractive interaction

between the fermions on antipodal points on the Fermi surface. A very similar theory applies to

the problem of a gauge field coupled to a Fermi surface; for a single U(1) gauge field, the interac-

tion between anti-podal Fermi surface points is respulsive. Recent works [86–88] have considered

problems with multiple gauge fields, and the assignment of gauge charges is such that some gauge

fields are repulsive and others are attractive. So we will consider generalization of the theory

(3.1) with N flavors of fermions, M1 flavors of bosons which mediate an attractive interaction

(in the pairing channel) between antipodal points on the Fermi surface, and M2 flavors of bosons

which mediate a repulsive interaction. By rescaling the bosons, we will normalize the mean-square

Yukawa coupling for both classes of bosons as in (3.1) with the same value g; the value of g will

drop out in the scaling equations we consider in this section. Having obtained the same Yukawa

coupling, we do have to consider the co-efficient of the (∂yφ)2 term in (3.1) more carefully [87, 88].

We take this co-efficient to equal K1 and K2 for the two bosons, and we will see below that the

ratio K1/K2 influences the critical exponents. For the gauge field case, the values of K1,2 are

equal to the corresponding diamagnetic susceptibility of the system [88], and this depends upon

the lattice scale properties.

A. Scaling analysis

Let us write down the explicit form of the Lagrangian density of the 2-patch theory, generalizing

the action in (3.1)

L =
∑
s=±1

N∑
i=1

ψ†is
[
∂τ − is∂x − ∂2

y

]
ψis +

∑
a=1,2

Ka

2

Ma∑
i=1

(∂yφia)
2

+
∑
s=±1

2∑
a=1

s3−a
Ma∑
l=1

N∑
i,j=1

gaijl
N
ψ†isψjsφla . (7.1)

Here s = ±1 is the index of the two anti-podal patches (see Fig. 9), and a = 1, 2 represents the

attractive and repulsive bosons respectively. We now recall the scaling analysis of this theory [9]

under the assignments

dim[y] = −1

dim[x] = −2

dim[τ ] = −z
dim[ψ(r, τ)] = (1 + z + ηψ)/2 (7.2)
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This consistently yields

dim[G(k, ω)] = −2 + ηψ (7.3)

In the present theory, the large N exponents are z = 3 and ηψ = 0. Earlier work [9, 10] found a

small correction to ηψ at three loop order. Similar correction will appear in our large N expansion

at at first order in 1/N : an important point is that such a result is fully systematic in our 1/N

expansion, unlike the result in Ref. [9]. The diagrams contributing to the self energy at order 1/N

were presented in Fig. 8, and we show in Fig. 11 examples of the contributions to these diagrams

in terms of the fermion and boson Green’s functions. In Ref. [9], the diagrams contributing to ηψ

are those in Fig. 10b,c, and these are terms in the infinite series of diagrams in Figs. 8 and 11; we

also need to include particle-particle ladders in addition to the particle-hole ladders shown, and

these appear upon considering the case of real gijl. As in Ref. [9], we expect that it is important

to include antipodal patches in these diagrams to obtain the contribution to ηψ.

Let us now turn to a consideration of the scaling dimensions of the fermion bilinear operators.

1. 2kF operator

The physical quantity we are interested in is the singular behavior of the 2kF susceptibility, χ2kF .

However, this is too difficult to compute in our large N theory. So we try an alternative route

below by relating its scaling dimension to that of a vertex function Φ2kF . For the 2kF operator,

this is relatively straightforward, as there is no violation of hyperscaling in the graphs.

Let us define the scaling dimension of the 2kF operator

ρ2kF = ψ†+ψ− (7.4)

by

dim[ρ2kF (r, τ)] = ∆2kF (7.5)

The correspondence with the ∆ defined by Mross et al. [10] in their (32) is ∆ = ∆2kF /2. At tree

level, we have ∆2kF = 2 dim[ψ] = 1 + z + ηψ. Then the scaling dimension of the 2kF susceptibility

is

dim[χ2kF (k, ω)] = 2∆2kF − 3− z (7.6)

We define the vertex function Φ2kF as the 3-point correlator of ρ2kF with 2 fermion operators,

after amputating the external Green’s functions. Then

dim[Φ2kF ] = dim[ρ2kF ]− 6− 2z − 2 dim[G(k, ω)]− 2 dim[ψ]

= ∆2kF − 1− z − ηψ (7.7)
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FIG. 11: Examples of graphs in the sheet and seam contributions in Fig. 8 to the fermion self

energy. As in Fig. 10, the full line is the fermion, and the dashed line is the boson. For the

contribution to ηψ, the top fermion line in the first graph should form a closed fermion loop to

allow interactions between antipodal patches (i.e. no Aslamazov-Larkin type insertions in the

top ladder).

We can check now that

dim[χ2kF (k, ω)] = 2 dim[Φ2kF ] + 3 + z + 2 dim[G(k, ω)]

= 2 dim[Φ2kF ]− 1 + z + 2ηψ . (7.8)

We expect the solution of the vertex function to scale as

Φ2kF (ω) ∼ ωdim[Φ2kF
]/z (7.9)
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(and similarly for χ2kF ). We will compute the frequency dependence of Φ2kF (ω) below in Sec-

tion VII C, which therefore yields the scaling dimension ∆2kF via (7.7).

2. Cooper pair operator

This is a little more subtle, because the intermediate loop integrals are independent of ky, and

so the integral over ky just yields a factor of kF ; this leads to violation of hyperscaling.

Let us define the scaling dimension of the Cooper operator

Ψ = ψ+ψ− (7.10)

by

dim[Ψ(r, τ)] = ∆Ψ (7.11)

Then the scaling dimension of the Cooper pair susceptibility is

dim[χΨ(k, ω)] = 2∆Ψ − 4− z (7.12)

Note that this differs from (7.6) by an extra -1 on the r.h.s., corresponding to the absence of

the ky integral in evaluating χ. Without vertex corrrections, evaluation of the Cooperon bubble

shows that χΨ(k = 0, ω) ∼ ω1−2(1−ηψ)/z, and so dim[χΨ(k, ω)] = z − 2 + 2ηψ; then (7.12) yields

∆Ψ = 1 + z + ηψ, which checks out correctly with dim[ψ] in (7.2).

For the vertex operator, the relationship remains the same as in (7.7) i.e.

dim[ΦΨ] = ∆Ψ − 1− z − ηψ (7.13)

Without vertex corrections, we should have dim[ΦΨ] = 0, and this agrees with the corresponding

value of ∆Ψ quoted above. Another way to think about (7.13) is that the 2 fewer ky integrals in

the evaluation of the 3-point correlator cancel with corresponding factors from dim[G(k, ω)]. We

can also check now that

dim[χΨ(k, ω)] = 2 dim[ΦΨ] + 2 + z + 2 dim[G(k, ω)]

= 2 dim[ΦΨ]− 2 + z + 2ηψ . (7.14)

We will compute the frequency dependence of

ΦΨ(ω) ∼ ωdim[ΦΨ]/z (7.15)

next in Section VII B, which determines ∆Ψ via (7.13).
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B. Pairing operator

We consider instabilities towards superconducting pairing. First, we note that with the complex

flavor-random Gaussian interaction gijk, no anomalous Green’s functions and self energies appear

in the large N saddle point, and there is therefore no intrinsic pairing instability, at least at large N .

To achieve controlled pairing at large N in this approach, we must include an additional attractive

U : −(U/N)
∑N

i,j=1

∑
k ψ
†
ikψ
†
i,−kψj,kψj,−k. The attractive U is then renormalized exactly by the

naive resummation of pairing bubbles, and may also be handled in a saddle-point formalism with

static anomalous Green’s functions and self-energies [89]. In a regular Fermi liquid, this leads to

the famous BCS instability even for infinitesimal U as the pairing bubbles diverge as ∼ ln(1/T ) in

the IR. However, in this non-Fermi liquid, the ω2/z self-energy dominates in the IR, and the pairing

bubble (which is not further dressed by the complex gijk) is no longer IR divergent. Therefore, this

model is further resistant to an infinitesimal attractive U . The disordered model in Sec. VIII with

complex random interactions is a marginal Fermi liquid, and this pairing bubble then diverges as

ln(1/ ln(1/T )) in the IR, so the infinitesimal attractive U does cause an instability, but it is much

weaker than that in a Fermi liquid.

To get intrinsic pairing instabilities at large N without the need for an additional U , we consider

real Gaussian flavor-random gijk. These now do allow for dynamic anomalous Green’s functions

and self energies in the large N saddle point itself [34], and exact Eliashberg equations can be

derived and solved numerically. However, to analyze the pairing instabilities in the metal, we

first adapt a simpler approach by assuming the system is a metal, and then looking at the exact

renormalization of the pairing vertex at large N [50]. The pairing vertex may be described by the

large N exact self-consistent eigenvalue equation shown in Fig. 10,

EΦΨ(q, iΩm) = −
∑
a

Maζag
2

N
T
∑

ωn 6=Ωm

∫
k

ΦΨ(k, iωn)G+(k, iωn)G−(−k,−iωn)Da(k − q, iωn − iΩm).

(7.16)

Here a = 1, 2 sums over the attractive and repulsive bosons and ζa = 2a − 3 = −1 (+1) for

the attractive (repulsive) interactions. Approaching from high T , the transition occurs at T = Tsc

when the largest eigenvalue Emax = 1. Note that this doesn’t determine the nature of the transition

itself, which instead requires solving the full non-linear Eliashberg equations [89] (as detailed in

that reference, these non-linearities can sometimes cause some surprises like producing a first-order

transition).

We now formulate the theory using two antipodal patches subject to the same real gijk [9].

This multiplies (3.3) by 2 and divides (3.4) by 21/3. We can then exploit the ±kx + k2
y and ky

dependencies of G and D respectively, i.e. the sliding symmetry, to again see that a self-consistent
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momentum-independent pairing vertex exists, and its eigenvalue equation is given by

EΦΨ(iΩm) = −
∑
a

Maζag
2

N

T

3
√

3

∑
ωn 6=Ωm

ΦΨ(iωn)

|ωn + iΣ(iωn)|
(4π)1/3

(gKa)2/3|ωn − Ωm|1/3
, (7.17)

At low energies and T = 0, where we drop the bare ωn term in the RHS of (7.17), because it is

irrelevant in the infrared (IR), we obtain a universal equation independent of g

EΦΨ(iΩm) =
K
3

∫
dωn
2π

2πΦΨ(iωn)

|ωn|2/3|ωn − Ωm|1/3
, (7.18)

where the dimensionless constant

K ≡ M1K
2/3
2 −M2K

2/3
1

M1K
2/3
2 +M2K

2/3
1

(7.19)

determines the balance between the attractive and repulsive interactions. Equation (7.18) has the

same form as that for the γ = 1/3 case of the γ-model of quantum-critical pairing studied by

Chubukov and collaborators [24–27]; it also co-incides with equations studied in the SYK model

[44, 50–53, 72, 73, 84, 85].

We now follow [50]. We assume the eigenvector has the form1

ΦΨ(iΩm) =
1

|Ωm|α
. (7.20)

In the notation of the scaling analysis of Section VII A 2, this identifies

dim[ΦΨ] = −zα . (7.21)

We assume 0 < Re [α] < 1/3 to ensure a convergent integral in (7.18), and then we have

E = Kπ
2
(
3 cot

(
πα
2

)
+
√

3
)

sec
(
π
(
α + 1

6

))
9Γ
(

1
3

)
Γ(1− α)Γ

(
α + 2

3

) . (7.22)

For K = 1, Setting E = 1 indicates a complex scaling dimension α = 1/6 ± i × 0.53734 ... ,

which implies that a pairing instability exists and the ground state is superconducting. As the

value of K is reduced, the magnitude of the imaginary part of α also reduces, going to zero at

K = K∗ = 0.12038 ..., at which point α = 1/6 exactly. For K∗ > K > 0 , E = 1 has two solutions

with purely real α: α1, with 1/6 > α1 > 0 and α2 = 1/3− α1, indicating the apparent absence of

1 There are also odd parity eigenvectors ΦΨ(iΩm) = sgn(Ωm)/|Ωm|α. However, we can see from the diagrams

involved in the renormalization of the pairing vertex that the physical eigenvector must be of even parity.
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a superconducting instability arising purely out of the relevant operators in the low energy critical

theory, when the repulsive interaction is strong enough 2.

When α is purely real, both the roots α1 and α2 do not determine the scaling of the Cooper pair

susceptbility. In particular, the root 1/3 > α2 > 1/6 is not allowed. This may be seen as follows:

if we allow for anomalous Green’s functions and self energies in the saddle point equations, then

the function ΦΨ(iΩm) can be identified as the anomalous component of the self energy. This then

leads to a contribution to the saddle point free energy at O(Φ2
Ψ):

FΦ

N
∼ −

∫
q

∫
dΩm

2π
|ΦΨ(q, iΩm)|2G(q, iΩm)G(−q,−iΩm) ∼ −

∫
dΩm

2π

|ΦΨ(iΩm)|2
|Ωm + iΣ(Ωm)| . (7.23)

The integral diverges in the IR for α2 (but is finite for α1), which makes the free energy of the

ground state divergent as T → 0, and therefore unphysical, as the entropy S = −∂F/∂T becomes

negative [25]. Rejecting α2, and using (7.14) and (7.21), we then have the scaling dimension

dim[χΨ(k, ω)] = 1− 6α1, (7.24)

for Ma, N →∞. In Fig. 12, we show α1 as a function of K.
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FIG. 12: Plot of Re[α] and Im[α], for the solutions which have Re[α] ≤ 1/6 and Im[α] > 0, as a

function of K. For 1 > K > K∗, Re[α] = 1/6 and Im[α] 6= 0.

We may also define a family of models by changing the boson propagator to (2 < z ≤ 3) [10]:

D(q, iΩm) =
1

|qy|z−1 +
g2

4π

|Ωm|
|qy|

. (7.25)

2 For K < 0, there is no solution for E = 1 with an even parity eigenvector. Therefore, there is no superconducting

instability, and the scaling of the Cooper pair susceptibility is also not renormalized from the pairing bubble value

of dim[χΨ(k, ω)] = 1
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When z = 2, the system is a marginal Fermi liquid, with Σ(iω) ∼ iω ln(|ω|). We now repeat the

above procedure for generic 2 < z ≤ 3. In place of (7.22) we obtain

E = −Kπ
2 csc

(
πα
2

)
csc
(
π
z

)
sec
(
π
(
α
2

+ 1
z

))
4Γ(1− α)Γ

(
−2
z

)
Γ
(
α + 2

z

) , (7.26)

with

K ≡ M1K
2/z
2 −M2K

2/z
1

M1K
2/z
2 +M2K

2/z
1

. (7.27)

For z → 2, the complex scaling dimension is α = 1/2 − 1/z ± i ×
√
z/2− 1, when K = 1. The

threshold K∗ = (z− 2)/8 as z → 2. These observations imply that the superconducting instability

still survives in the marginal Fermi liquid limit for K > K∗.
At T 6= 0, our approach of neglecting the purely thermal fluctuations of the gauge bosons φ

causes a superconducting instability to occur for all K > 0 (but not for K ≤ 0), with Tsc ∼
g4/(z−2), because the fermion self energy vanishes at the first Matsubara frequencies [26]. This is

parametrically the same energy scale at which the non-Fermi liquid behavior itself onsets, i.e. when

|Σ(iωn)| becomes comparable to |ωn|. The true physical problem requires a careful consideration

of the thermal fluctuations of the massless gauge bosons, and their effects on the fermion Green’s

function, in two spatial dimensions, along the lines of Ref. [90], as the cancellation of the thermal

fluctuations from the equation for the superconducting gap function via Anderson’s theorem [91]

does not occur in the simultaneous presence of attractive and repulsive boson interactions [35].

We will therefore perform this analysis in future work.

We also briefly comment on the effects of nonzero T in the case where the two φ’s are not gauge

bosons, and are therefore allowed to have a thermal mass as in Sec. II, M2(T ) ∼ T ln(1/T )� T 2/3,

that arises from operators that are irrelevant in the critical patch theory. This causes both the

bosons to induce thermal self energies for the fermions, ΣT,a(iωn) ' −isgn(ωn)saT
1/2 ln1/2(1/T ),

with a non-universal prefactor sa, as in Sec. IV, that depends on parameters from outside the

patch theory. One can then show, following Ref. [92], that the pertinent equation for ΦΨ can be

reduced to (we consider z = 3 here for simplicity, the consequences are similar for other 2 < z < 3

as well)

EΦΨ(iΩm) ' −
∑
a

Maζag
2

N

T

3
√

3

∑
ωn 6=Ωm

ΦΨ(iωn)

|ωn + iΣQ(iωn) + 2iΣT,2(iωn)|
(4π)1/3

(gKa)2/3|ωn − Ωm|1/3
.

(7.28)

As T → 0, since iΣT,2(iωn=±1) � ωn=±1, iΣQ(iωn=±1), there is no enhancement due to the first

Matsubara frequency, and the thermal part of the self energy dominates. The largest eigenvalue

therefore scales as ∼ T 1/6/ ln1/2(1/T ), which vanishes as T → 0 instead of diverging. However,

while approaching from high T , if s2 is small, one still encounters the pairing instability coming
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from the first Matsubara frequency, but Tsc is reduced as s2 is increased, and beyond a certain

value of s2, the superconducting transition does not occur.

C. 2kF operator

We can also write down the analog of (7.16) for a charge density wave instability with wavevector

twice the Fermi wavevector, comprising of particle-hole pairs from opposite patches of the Fermi

surface3:

EΦ2kF (q, iΩm) = −
∑
a

Maζag
2

N
T
∑

ωn 6=Ωm

∫
k

1

iωn − kx − k2
y − Σ(iωn)

1

iωn + kx − k2
y − Σ(iωn)

× 1

Ka(ky − qy)2 +
g2

4π

|ωn − Ωm|
|ky − qy|

Φ2kF (k, iωn). (7.29)

We can then see that self-consistent eigenvectors Φ2kF (qy, iΩm) exist that do not depend on qx.

This simplifies (7.29) at T = 0 and low energies to

EΦ2kF (qy, iΩm) = −
∑
a

iMaζag
2

2N

∫
ky ,ωn

sgn(ωn)

k2
y − ig4/3

21/3π2/3
√

3
sgn(ωn)|ωn|2/3

(
M1

K
2/3
1 N

+ M2

K
2/3
2 N

)
× |ky − qy|
Ka|ky − qy|3 + g2

4π
|ωn − Ωm|

Φ2kF (ky, iωn). (7.30)

We can then rescale (ky, qy) → g2/3(ky, qy) to absorb the coupling g, producing a strong-coupling

expression analogous to (7.18), given by setting g = 1 in (7.30).

We examine a scaling solution for (7.30) with an eigenvector of the form

Φ2kF (qy, iΩm) =
1

|qy|α
Ψ

(
Ωm

|qy|3
)
, (7.31)

which will determine an eigenvalue E(α) 4. As with the pairing case, we are interested in eigenvalues

which solve E(α) = 1. If the solution has α real, then this α will determine the scaling dimension

of the 2kF operator. In the notation of Section VII A 1,

dim[Φ2kF ] = −α . (7.32)

3 Since we are considering an operator in the particle-hole channel, non-trivial renormalizations can now occur for

both real and complex gijk
4 We can again see from the diagrams involved in the renormalization of the 2kF vertex, that the physical eigenvector

must be an even function of qy
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A complex α will indicate a charge density wave (CDW) instability.

Upon rescaling (ωn,Ωm)→ (ωn|ky|3,Ωm|qy|3) and then ky → kyqy, we transform (7.30) to a one

dimensional integral equation involving only the scaling function Ψ:

EΨ(Ωm) = −
∑
a

iMaζa
2N

∫ ∞
−∞

dωn
2π

Ψ(ωn)sgn(ωn)

1− isgn(ωn)|ωn|2/3
21/3π2/3

√
3

(
M1

K
2/3
1 N

+
M2

K
2/3
2 N

)

×
[∫ ∞
−∞

dky
2π

|ky − 1||ky|1−α
Ka|ky − 1|3 + 1

4π
|ωn|ky|3 − Ωm|

]
, (7.33)

which we can solve numerically when 0 < Re[α] < 2, which ensures a convergent ky integral.

If we consider the physically important case of a Fermi surface coupled to a single repulsive

gauge field that occurs in some U(1) spin liquids, and thereby set M1 = 0, we can eliminate K1 by

rescaling (ωn,Ωm)→ K1(ωn,Ωm). If we additionally set the number of boson flavors M2 equal to

the number of fermion flavors N , like we have in most of this paper, then (7.33) has a solution for

E = 1 with α ' 1± 0.52i, indicating an instability to CDW ordering. This instability persists for

all M2 > N . As M2/N is reduced, Im[α] reduces, and for M2/N . 0.67 (M2/N = 1/2 for spin-1/2

U(1) spin liquids), we once again have two real roots for E = 1: 0 < α1 < 1, and α2 = 2 − α1,

with α1 = α2 = 1 at M2/N ' 0.67, and the instability disappears. An analogous argument about

the IR finiteness of the ground state free energy as in Sec. VII B requires that Re[α] < 1, rejecting

the root α2, and using (7.8), the scaling dimension of the 2kF susceptibility is then

dim[χ2kF (k, ω)] = 2(1− α1), (7.34)

in the limit of large Ma, N . For the spin-1/2 U(1) spin liquid, we then have the estimate from our

large N strongly coupled theory of α1 ' 0.58, and dim[χ2kF (k, ω)] ' 0.84.

For a net attractive interaction between the antipodal patches, with M1 > M2, there are no

solutions to (7.33) with E = 1, and the scaling dimension, dim[χ2kF (k, ω)] = 2, is thus not

renormalized. For other combinations of Ma, Ka, N , CDW instabilites can occur, but there are

always regimes in which there is no instability even with a net repulsive interaction. In Fig. 13,

we show α1 as a function of (M2 −M1)/N for Ka = 1 and (M1 +M2)/N = 1, demonstrating this.

In particular, reducing the value of M2 −M1 and increasing the value of N both disfavor CDW

instabilities, and vice versa.

We can also consider the analog of (7.33) for arbitrary 2 < z ≤ 3, as we did in Sec. VII B. With

a net repulsive interaction, we find that CDW instabilities are disfavored as z → 2, with α1 → 0 as

z → 2 [10], for all values of Ma, Ka, N , and favored as z → 3, although whether or not α1 actually

manages to reach 1 and then move into the complex plane the as z → 3 depends on the values of

Ma, Ka, N .
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FIG. 13: Plot of Re[α] and Im[α], for the solutions which have Re[α] ≤ 1 and Im[α] > 0, as a

function of (M2 −M1)/N , with Ka = 1 and (M1 +M2)/N = 1. For 0 < (M2 −M1)/N . 0.77,

there is neither a 2kF instability nor a pairing instability in the scaling theory.

At T 6= 0, our neglect of the thermal gauge boson fluctuations and the vanishing of the fermion

self energy at the first Matsubara frequencies causes the eigenvalue E in (7.29) to diverge as ∼ T 1/z

as T → 0, which causes a 2kF CDW instability for any net repulsive interaction. Therefore, we

must carefully consider the effects of the thermal fluctuations of the massless gauge bosons φ. As

in the pairing case of Sec. VII B, we will consider in detail the effects of the thermally fluctuating

gauge boson modes using a gauge invariant formalism in future work.

In the case where the two φ’s are not gauge bosons and are therefore allowed to have a thermal

mass M2(T ) ∼ T ln(1/T )� T 2/z, the eigenvalue E does not diverge as T → 0, and one can then

have a stable regime for net repulsive interactions even at finite T , depending on parameter values.

VIII. SPATIALLY DISORDERED MODEL

This section will consider a generalization of the model (2.1) to the case where the couplings

gijl are also random functions of position. This results in a theory in which the non-Fermi liquid

effects are weaker, and we obtain a large N expansion of a marginal Fermi liquid. The properties

of this marginal Fermi liquid are similar to those studied recently in Ref. [37] for a different model.

Taking the (complex) Yukawa coupling gijl in (2.1) to be a Gaussian random in space as well,

which satisfies gijl(x) = gjil(x)∗ and

〈gijk(x)gi′j′k′(x
′)∗〉 = g2δ(x− x′)δii′δjj′δkk′ . (8.1)

After performing a disorder average, and inserting self-energies as Lagrange multipliers, we obtain
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the action

S =

∫
dτd2x

∫
dτ ′d2x′∑

i

ψ†i (τ, x)(∂τ + εk − µ)δ(τ − τ ′)δ(x− x′)ψi(τ ′, x′)

+
1

2

∑
i

φi(τ, x)(−∂2
τ + ω2

q + iλ(x, τ))δ(τ − τ ′)δ(x− x′)φi(τ ′, x′)

− Σ(τ ′, x′; τ, x)

(
NG(τ, x; τ ′, x′) +

∑
i

ψi(τ, x)ψ†i (τ
′, x′)

)

− 1

2
Π(τ ′, x′; τ, x)

(
−ND(τ, x; τ ′, x′) +

∑
i

φi(τ, x)φi(τ
′, x′)

)

+
g2N

2
G(τ ′, x′; τ, x)G(τ, x; τ ′, x′)D(τ, x, τ ′, x′)δ(x− x′)

− iN

2γ
λ(τ, x)δ(x− x′)δ(τ − τ ′)

(8.2)

The difference from the translationally invariant model is the extra δ-function in the g2 term;

consequently the G, Σ, D, Π fields are now only bilocal in time, and not bilocal in space. The

kinetic terms in the first two lines are differential operators that act on (τ, x). Integrating out ψ

and φ, we obtain the G-Σ action

S

N
= − ln det(∂τ + εk − µ+ Σ) +

1

2
ln det(−∂2

τ + ω2
q + iλ− Π)

−
∫

dτd2x

∫
dτ ′d2x′

(
Σ(τ ′, x′; τ, x)G(τ, x; τ ′, x′)− 1

2
Π(τ ′, x′; τ, x)D(τ, x; τ ′, x′)

)
+

∫
dτd2x

∫
dτ ′d2x′

g2

2
G(τ, x; τ ′, x′)G(τ ′, x′; τ, x)D(τ, x; τ ′, x′)δ(x− x′)

−
∫

dτd2x
iλ(τ, x)

2γ
.

(8.3)

The saddle point equations are (assuming λ is constant)

G(τ, x; τ ′, x′) =

(
1

−∂τ + µ− εk − Σ

)
τ,x;τ ′,x′

, (8.4)

D(τ, x; τ ′, x′) =

(
1

−∂2
τ + ω2

q + iλ− Π

)
τ,x;τ ′,x′

, (8.5)

Σ(τ, x; τ ′, x′) =
g2

2
G(τ, x; τ ′, x′) [D(τ, x; τ ′, x′) +D(τ ′, x′; τ, x)] δ(x− x′), (8.6)

Π(τ, x; τ ′, x′) = −g2G(τ, x; τ ′, x′)G(τ ′, x′; τ, x)δ(x− x′), (8.7)

D(0, 0; 0, 0) =
1

γ
. (8.8)
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Unlike the translationally invariant case, the self-energies are momentum independent, and we

obtain the following reduced set of equations (m2
b = iλ)

Ḡ(iω) =

∫
d2k

(2π)2

1

iω + µ− εk − Σ(iω)
, (8.9)

D̄(iν) =

∫
d2q

(2π)2

1

ν2 + ω2
q +m2

b − Π(iν)
, (8.10)

Σ(τ) =
g2

2
Ḡ(τ)

[
D̄(τ) + D̄(−τ)

]
, (8.11)

Π(τ) = −g2Ḡ(τ)Ḡ(−τ), (8.12)

1

γ
= T

∑
ν

∫
d2q

(2π)2

1

ν2 + ω2
q +m2

b − Π(iν)
(8.13)

We will introduce momentum space cutoffs Λk for the fermions and Λq for bosons. They have

dimension of energy. g has dimension [energy]−1/2, hence g2Λk is dimensionless. γ has dimension

[energy]−1.

We investigate Eqs. (8.9)-(8.12) in the patch theory, i.e. setting εk−µ = kx+k2
y and ω2

q = q2
x+q2

y .

In this model the two components of the boson momentum scale the same way so we have to retain

both. Assuming that the bandwidth is the largest energy scale, we can perform the integrals in

(8.9) and (8.10), which lead to

Ḡ(iω) = Λk
−isgnω

2
, (8.14)

D̄(iν) =
1

4π
ln

(
ν2 − Π̄(iν) + Λ2

q

ν2 − Π̄(iν) + ∆(T )2

)
, (8.15)

where Λk =
∫

dky/(2π) and the boson propagator is evaluated with Pauli-Villars regulator with

cutoff Λq. Here we have subtracted off the zeroth Matsubara frequency from Π by defining Π̄(iν) =

Π(iν)− Π(0), and we have also rewritten mb using the thermal mass ∆(T )2 = m2
b − Π(0).

At zero temperature, Eq.(8.14) yields

Ḡ = − Λk

2πτ
, (8.16)

and it follows from saddle point equations that

Π(τ) =

(
gΛk

2πτ

)2

. (8.17)

To compute Π in frequency space, we use the frequency space version of (8.12):

Π(iν) = −g2T
∑
ωn

G(iωn)G(iωn + iν). (8.18)

We subtract off the zeroth Matsubara frequency

Π̄(iν) ≡ Π(iν)− Π(0) =

(
gΛk

2

)2

T
∑
ωn

(sgn (ωn)sgn (ωn + ν)− 1) = −π|ν|
(
gΛk

2π

)2

. (8.19)
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A. Thermal Mass

Using (8.13), we can determine the low-temperature asymptotics of the thermal mass at criti-

cality to be (for details, see Appendix. B)

∆(T )2 =

−πa0TW0

(
− 1

π
ln

(
2πT

a0eγ

))
ln

(
2πT

a0eγ

) , (8.20)

where W0 is the principle Lambert W-function and γ is Euler’s constant. Here a0 = π (gΛk/(2π))2.

The asymptotic behavior of W0(x) is

W0(x→∞) ∼ lnx− ln lnx ,

This result indicates that ∆(T )→ 0 as T → 0 slightly faster than
√
T by some log corrections. A

plot of ∆(T ) is given in Fig. 14.

B. Fermion Self Energy

The electron self-energy is

Σ(iω) = g2T
∑
µ

Ḡ(ω + µ)D̄(µ)

=
−ig2Λk

4π
sgn (ω)T

1

2
ln

(
Λ2
q

∆(T )2

)
+

∑
0<µ<|ω|

ln

(
µ2 + |µ|a0 + Λ2

q

µ2 + |µ|a0 + ∆(T )2

) , (8.21)

where the sum cancels in pair when |µ| > |ω|. The sum can be performed exactly

Σ(iω) =
−ig2TΛk

4π
sgn (ω) ln

 ΛqP

(
1 +

a0+i
√

4Λ2
q−a2

0

4πT
, |ω|−πT

2πT

)
P

(
1 +

a0−i
√

4Λ2
q−a2

0

4πT
, |ω|−πT

2πT

)
∆(T )P

(
1 +

a0+
√
a2

0−4∆(T )2

4πT
, |ω|−πT

2πT

)
P

(
1 +

a0−
√
a2

0−4∆(T )2

4πT
, |ω|−πT

2πT

)


(8.22)

where P (a, b) = Γ(a+ b)/Γ(a) is the Pochhammer function. Some limiting cases of Σ(iω), showing

marginal Fermi liquid behavior, are

Σ(|ω| � T, a0) =
−ig2TΛk

4π
sgn (ω) ln

[
2πT

∆(T )
P

(
1

2
+
a0 +

√
a2

0 − 4∆(T )2

4πT
,
1

2

)

× P

(
1

2
+
a0 −

√
a2

0 − 4∆(T )2

4πT
,
1

2

)]
,

(8.23)
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Σ(T � |ω| � a0 � Λq) =
−ig2TΛk

4π
sgn (ω)

[ |ω|
2πT

(
1 + ln

Λ2
q

|ω|a0

)
+

1

2
ln

a0T

∆(T )2

]
, (8.24)

Σ(T, a0 � |ω| � Λq) =
−ig2TΛk

4π
sgn (ω)

[ |ω|
πT

(
1 + ln

Λq

|ω|

)
− a0

2πT
ln
|ω|

2πT
+ σ0(∆(T ), T )

]
.

(8.25)

Here σ0 is retained to ensure a finite T → 0 limit

σ0(∆(T ), T ) = ln
T

∆(T )
+ ln Γ

(
1 +

a0 −
√
a2

0 − 4∆(T )2

4πT

)
+ ln Γ

(
1 +

a0 +
√
a2

0 − 4∆(T )2

4πT

)
.

(8.26)

Notice that in the ω →∞ limit, the sum in (8.21) is nothing but the constraint (B4),therefore we

have

Σ(|ω| � Λq) =
−iΛk

2
sgn (ω)

g2

γ
. (8.27)

C. Free Energy

The free energy F is given by the value of saddle point action

βF

N
= − ln det(∂τ + εk − µ+ Σ) +

1

2
ln det(−∂2

τ + ω2
q + iλ− Π)

−
∫

dτd2x

∫
dτ ′d2x′

(
Σ(τ ′, x′; τ, x)G(τ, x; τ ′, x′)− 1

2
Π(τ ′, x′; τ, x)D(τ, x; τ ′, x′)

)
+

∫
dτd2x

∫
dτ ′d2x′

g2

2
G(τ, x; τ ′, x′)G(τ ′, x′; τ, x)D(τ, x; τ ′, x′)δ(x− x′)

−
∫

dτd2x
iλ(τ, x)

2γ
,

(8.28)

where the variables should be substituted by their saddle point values. The complete evaluation

of the above free energy is given in Appendix. B and we summarize the result here.

The free energy contains two contributions F = F1 + F2. The first part is the free energy of

free fermion
F1

NV
= −TΛk

∫
dkx
2π

ln(1 + e−βkx) , (8.29)

where V is the spatial volume of the system and β = 1/T . The second part F2 is the contribution

due to interacting bosons. It has a lengthy analytic expression in Appendix. B, and the numerical

plot is given in Fig. 15

Consequently the heat capacity can be written as C = NV (γ1 + γ2)T , which corresponds to

contributions from F1 and F2 respectively. Here γ1 = (π/6)Λk, and γ2 is plotted in Fig. 16.
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FIG. 14: Plot of ∆(T ). ∆(0) = 0, a0 = 5, Λq = 300. Blue line is the numerical solution of the

thermal mass from (B7). Red line is the low temperature asymptotics Eq. (8.20).
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FIG. 15: Plot of bosonic contribution to free energy (F/NV )2 as a function of T . The zero

temperature part is subtracted. ∆(0) = 0, a0 = 5, Λq = 300. The total free energy also contains a

free fermion contribution Eq.(8.29) which is not shown here.

D. Conductivity

The computation of the conductivity in the spatially disordered model is very similar to that

in Ref. [37]. In particular, the conductivity σDC is governed by the scattering rate set by the

imaginary part of the retarded fermion self energy, as vertex corrections vanish due to the isotropic

momentum-independent scattering of the fermions off the bosons. The quantity of interest is5

1

τtr

' −Im[ΣR(ω = 0, T 6= 0)] =
g2Λk

8π
TL1, (8.30)

5 The transport scattering rate is actually set by averaging the lifetime over a frequency range ∼ T [22, 37], but,

in this case, that only makes a small differnce in its numerical value vs. just using the zero frequency lifetime.
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FIG. 16: Plot of bosonic contribution to heat capacity

C2/(NV ) = −T/(NV )(∂2F2/∂T
2) = Tγ2(T ). ∆(0) = 0, a0 = 5, Λq = 300. The total heat

capacity is the sum of two contributions C = NV T (γ1 + γ2), where γ1 = (π/6)Λk takes the free

fermion value.

where L1 ∼ ln(2 ln(a0e
γ/(2πT ))/π) is very slowly varying and we therefore just treat it as an O(1)

constant. We have set Planck’s and Boltzmann’s constants ~ = kB = 1 so far, but will restore

them below.

There have been several experimental claims of “Planckian dissipation” in the recent literature

[93–95] occuring at putative QCPs with linear-in-T resistivity in correlated electron materials.

The meaning of this statement is that the transport scattering rate defined with respect to an

interaction-renormalized effective mass m∗ is 1/τ ∗tr ' kBT/~. Therefore

1

τ ∗tr
=

ne2

σDCm∗
=

ne2

σDCm

m

m∗
=

1

τtr

m

m∗
' kBT

~
, (8.31)

where m is the bare electron mass, e is the electron charge and n is the density of electrons.

There is also a theoretical argument for the consideration of τ ∗tr as the appropriate time: as-

suming a momentum independent self energy, 1/τtr is related to the imaginary part of the electron

self-energy at zero frequency, Σ(0), and so its scaling behavior is tied up with the scaling dimen-

sion of the electron operator. Only by computing the ratio Σ(0)/(∂Σ/∂ω) do we obtain a quantity

which scales with frequency alone, and this yields 1/τ ∗tr.

The effective mass m∗ is determined somewhat away from the QCP in a Fermi liquid regime,

where the electron quasiparticle is well defined at low energies, using quantum oscillation mea-

surements, specific heat measurements or measurements of the fermion dispersion near the Fermi

surface via angle-resolved photoemission spectroscopy (ARPES). In our model we have, from the
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fermion propagator in the Fermi liquid phase that arises for γ > γc

m∗

m
≡ 1 + i

∂Σ(iω)

∂ω

∣∣∣∣∣
ω→0,T→0

= 1 +
g2Λk

4π2
L2, L2 ∼ ln

(
Λq√
a0

√
γγc
γ − γc

)
∼ O(1). (8.32)

We consider a regime of strong coupling, where g2Λk � 1. Our results in prior subsections about

the various quantities at the QCP then remain valid as long as we restrict ourselves to energy scales

� 1/g2, where we consider Λk ∼ Λq, as the boson and fermion self energies then remain smaller

than their respective bandwidths. Then m∗/m ' g2Λk/(4π
2). Putting everything together, we

then have
1

τ ∗tr
' π

2

kBT

~
L1

L2

, (8.33)

which is O(kBT/~), i.e. “Planckian”. In fact, some of theO(1) variations in the measured prefactor

in the experimental results may be attributable to where m∗ is measured relative to the QCP, as

that will introduce O(1) variations in L2, and at what temperatures the measurements are carried

out, as that will introduce O(1) variations in L1.

E. Instabilities

For complex random gijk, this model does not have any pairing instability at large N , as is

also the case for the translationally invariant model. However, for real random gijk, there is a

pairing instability at low energies, and following the methods of Sec. VII B, we estimate the

superconducting transition temperature Tsc ∼ (Λ2
q/(g

2Λ2
k))e

−1/(g2Λk). This can be appreciably

large in the strong coupling regime g2Λk � 1, in which case we also expect superconductivity with

real random gijk to set in at parametrically around the same scale as the Planckian behavior sets

in with complex random gijk, and the Planckian behavior may therefore be completely obscured

by superconductivity.

Following the analysis in Sec. V D of Ref. [23], we can see that the scaling dimension of the

2kF vertex is not renormalized by the momentum independent scattering of fermions. Therefore,

there is no 2kF CDW instability at large N .

IX. CONCLUSIONS

We have shown that a model with random Yukawa couplings provides a large N theory of

a critical Fermi surface. Many existing results are unified in a systematic perspective, and a

formalism is now available to determine 1/N corrections.

The primary critical field characterizing the critical Fermi surface is a fermion ψ with anomalous

dimension ηψ. Its correlations on a single patch of the Fermi surface are characterized by a
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dynamic scaling exponent z, and anisotropic scaling along the spatial directions perpendicular (x)

and parallel (y) to the Fermi surface (see Fig. 1). We define scaling dimensions with the choice

dim[qy] = 1, and then a sliding symmetry of the Fermi surface [9] implies dim[qx] = 2. The large

N theory has z = 3 and ηψ = 0. A three-loop analysis [9] found no correction to z = 3, and a small

non-zero value for ηψ. In our approach the expansion for ηψ is systematic in 1/N , and contained

in the infinite set of graphs in Figs. 8 and 11, which include the graphs in Ref. [9]. Further loop

corrections to the RPA theory have been studied in Refs. [15, 16], and it would be interesting to

examine the consequences of bilocal field propagators required by our 1/N expansion: it is possible

that the scaling described in our analysis will prevail.

Starting from the primary field ψ, we can now build composite operators, as in the SYK model.

In the single patch theory of Fig. 1, in the particle-hole sector, we found only the conserved

density operators that have been studied in Ref. [5]. The saddle-point action does have time

reparameterization symmetry in the scaling limit, but we showed that, unlike the SYK model, this

did not translate into a singular time reparameterization mode because of the non-trivial action

of the time reparameterization on the spatial co-ordinates. So there is no corresponding expected

violation of scaling here at frequencies of order 1/N , in contrast to the SYK model [44, 49, 65–69].

The particle-particle sector of the single patch theory is also where the Amperean pairing operator

[70, 71] resides, and we discuss it in Appendix A.

In a non-chiral system, we have to also consider the role of antipodal patches on the Fermi

surface, as in Fig. 9. In this case, interesting composite operators do arise from fermions on

opposite patches, in both the particle-particle and particle-hole sectors. In the particle-particle

sector, we have the Cooper pair operator, and its analysis in our N = ∞ theory reduces to that

of the γ model of Chubukov and collaborators [24–27]. Section VII B obtained results for the

scaling dimension of the Cooper pair operator for the case where there are multiple scalars coupled

to the fermions with both attractive and repulsive interactions, as is needed for the models of

Refs. [86–88].

In the particle-hole sector of the antipodal patch theory, we have the operator associated with

charge density waves at the 2kF wavevector. This has been studied earlier by Mross et al. [10].

Our large N theory leads to integral equations in frequency and momentum, which we numerically

solved in the scaling limit in Section VII C. These solutions led to a rich set of possibilities for the

scaling dimension of the 2kF density wave operator.

In Section IV we presented numerical solutions of the large N saddle point equations while

keeping the full Fermi surface in a convenient lattice regularization. At the QCP, we found good

agreement with predictions of the low-energy patch theory for the scaling behavior of the fermion

and boson Green’s functions. Even away from the QCP, the large-N phase diagram is interesting

in its own right, where we found the ordered side is characterized by a rapid onset of strong thermal
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fluctuations, in which M � T and the boson is essentially static, behaving in a manner similar

to quenched disorder for the fermions. We also note that we have not found a superconducting

transition down to the lowest accessible temperatures. However, the superconducting Tc should be

finite (it can likely be accessed in numerical calculations by increasing the coupling strength) and

it will be interesting to study the nature of superconductivity across the phase diagram presented

here.

Finally, in Section VIII we presented a large N theory for a marginal Fermi liquid, obtained by

considering a Yukawa coupling which was random in both flavor and position space. The results

here are similar to Aldape et al. [37] for a different model: there is a nearly linear-in-T contribution

to the imaginary self part of the energy of the fermion, and Planckian transport, as described in

Section VIII D.

We close with some general remarks about ‘Eliashberg theory’, a framework used to solve

a variety of problems in condensed matter physics involving the coupling of electrons to a boson

with a Yukawa-type coupling [31, 32, 34–36, 96]. Two long-standing questions with this framework

have been: is there a general systematic expansion whose saddle-point is the Eliashberg theory,

and what are the systematic corrections to Eliashberg theory? We stress the importance of a

systematic framework, because only then can we ensure proper treatments of symmetries and

anomalies required for Luttinger-like theorems [64]. For problems without spatial randomness, the

answer from recent works [37, 62] and the present paper is that Eliashberg theory is the large N

saddle point of a theory in which the Yukawa coupling is a random function of indices in flavor

space. Corrections to this saddle-point are obtained from a G-Σ theory which is, in general, bilocal

in spacetime. The propagators of the bilocal fields resum infinite sets of diagrams in the underlying

theory, such as those in Fig. 8 and 11. All of this analysis has close connections to random models

in the SYK class [34–36], which realize the simpler case with G-Σ fields bilocal only in time.

Numerical studies of the models in the SYK class (see e.g. Refs. [69, 97, 98]) have tested the

predictions of such large N theories and shown that they are quite accurate at finite N .

The structure of our saddle-point equations also have similarities to those of extended dynamical

mean field theory [99–103], which become exact in the limit of large dimensions. Note that their

self energies are momentum independent, similar to those in Section VIII in the model with

spatial disorder. It would be interesting to extend our methods to obtain systematic corrections

to dynamical mean field theories without introducing spatial disorder.
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Appendix A: Amperean pairing

In this appendix, we consider the fate of the “Amperean pairing” instability within a single

patch of the critical scaling theory for real random gijk. This instability was proposed by Ref.

[70], and involves finite momentum pairing of fermions near the same point of the Fermi surface,

given by the operator ΨA =
∑

k,ωn
ψ+(k, iωn)ψ+(−k,−iωn), where both fermions belong to the

same patch. Ref. [70] argued that since the computation of the correlation function χA = 〈ΨAΨA〉
for free fermions (with the frequency integration done first, as performing the kx integral first

incorrectly returns zero) involves momenta with |kx| < k2
y, the computation in the interacting case

must be similar, and they imposed a hard cutoff of k2
y on the kx integrals in their analysis of the

Amperean pairing instability. However, due to the destruction of the quasiparticle by the ω2/z self

energy, the cutoff on kx does not turn out to be strictly k2
y, and integration regions with |kx| > k2

y

also contribute substantially to χA. We will therefore implement a cutoff of ΛAk
2
y, on |kx|, where

ΛA is a dimensionless parameter on which the scaling dimension of χA will depend. We note that

ΛA must be taken to infinity at the end of the computations as the range of kx integration is

actually unrestricted, and we will therefore study the behavior of the scaling dimension in this

limit.

Considering a single patch and a single type of boson φ, we have the equation for the renormal-

ization of the Amperean pairing vertex ΦA at T = 0 6:

EΦA(qx, qy, iΩm) =
Mg2

N

∫
ky ,ω

∫ ΛAk
2
y

−ΛAk2
y

dkx
2π

G+(k, iωn)G+(−k,−iωn)

× |ky − qy|
|ky − qy|3 + g2|ωn − Ωm|/(8π)

ΦA(kx, ky, iωn). (A1)

We can see that ΦA does not depend upon qx, and therefore we can drop the kx dependence of ΦA

on the RHS. At low energies, the equation then simplifies to

EΦA(qy, iΩm) =
Mg2

2Nπ

∫
ky ,ω

tanh−1

(
2ΛA

1 + Λ2
A + |Σ(iωn)|2/k4

y

)
× |ky − qy|
|ky − qy|3 + g2|ωn − Ωm|/(8π)

ΦA(ky, iωn)

k2
y

. (A2)

6 Our results for 2 < z < 3 are qualitiatively similar to those for z = 3 below.
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Note that the r.h.s. vanishes in the limit ΛA → ∞: this reflects the fact that, in (A1), the poles

in G+(k, iωn) and G+(−k,−iωn) as a function of kx are in the same half-plane, in contrast to the

situation with antipodal pairing in Section VII B. Using the same kind of scaling function and

manipulations as in Sec. VII C, we obtain a one-dimensional integral equation

EΨA(iΩm) =
M

2Nπ

∫ ∞
−∞

dωn
2π

ΨA(iωn) tanh−1

(
2ΛA

1 + Λ2
A + M2|ωn|4/3

3N2π4/3

)

×
∫ ∞
−∞

dky
2π

|ky − 1||ky|1−α
|ky − 1|3 + |ωn|ky|3 − Ωm|/(8π)

. (A3)

We are again interested in values of α with 0 < Re[α] ≤ 1, for which E = 1, as in Sec. VII C. For
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FIG. 17: Plot of the scaling dimension α of the Amperean pairing vertex in the single patch

critical theory with M/N = 1/2, vs. the cutoff parameter ΛA.

the case of the spin-1/2 U(1) spin liquid, with M/N = 1/2, we obtain α ' 0.33 for ΛA = 1. As

the value of ΛA →∞, we find that α→ 0 (Fig. 17), independent of M/N , implying that there is

no non-trivial renormalization of the Amperean pairing operator or Amperean pairing instability

in the physical limit, as for α = 0, dim[χA(k, ω)] = 2(1− α) = 2. This continues to be the case at

T 6= 0: any transition temperature is suppressed to zero as ΛA →∞. Any occurrence of Amperean

pairing therefore requires consideration of physics beyond the low-energy theory discussed in our

work.

Appendix B: Large N theory with spatially random couplings

This appendix fills in some technical details of Sec. VIII.
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1. Thermal Mass

We determine ∆(T )2 = m2
b − Π(0) as a function of temperature. In fact Π(0) is temperature

independent because it diverges as
∑

ωn
1, and sum over a constant is the same as integration over

the same constant. Using the constraint (8.13), assuming at zero temperature ∆(T = 0) = ∆0:∫
dν

2π

∫
d2q

(2π)2

1

ν2 + ω2
q + ∆2

0 − Π̄(iν)
= T

∑
ν

∫
d2q

(2π)2

1

ν2 + ω2
q + ∆(T )2 − Π̄(iν)

=
1

γ
. (B1)

We first evaluate the q-integral using Pauli-Villars regularization:∫
d2q

(2π)2

1

ν2 + ω2
q + ∆2 − Π̄(iν)

→
∫

d2q

(2π)2

(
1

ν2 + ω2
q + ∆2 − Π̄(iν)

− 1

ν2 + Λ2
q + ω2

q − Π̄(iν)

)

=
1

4π
ln

(
ν2 − Π̄(iν) + Λ2

q

ν2 − Π̄(iν) + ∆2

)
.

(B2)

Eq. (B1) becomes ∫
dν

2π
ln

(
ν2 − Π̄(iν) + Λ2

q

ν2 − Π̄(iν) + ∆2
0

)
=

4π

γ
, (B3)

and

T
∑
ν

ln

(
ν2 − Π̄(iν) + Λ2

q

ν2 − Π̄(iν) + ∆(T )2

)
=

4π

γ
. (B4)

For notational simplicity we substitute Π̄(iν) = −a0|ν|, a0 = π(gΛk/(2π))2, and we can evaluate

the LHS of (B3)∫
dν

2π
ln

(
ν2 − Π̄(iν) + Λ2

q

ν2 − Π̄(iν) + ∆2
0

)
=

1

2π

[
2

(√
a2

0 − 4∆2
0 − a0

)
ln

(
Λq

∆0

)

−2
√
a2

0 − 4∆2
0 ln

(
2Λq

a0 +
√
a2

0 − 4∆2
0

)

+ π
√

4Λ2
q − a2

0 − 2
√

4Λ2
q − a2

0 tan−1

 a0√
4Λ2

q − a2
0

]
, (B5)

where, to satisfy the constraint (B3), a0 must be the same order as Λk and Λq, and we assume

2Λq > a0 > 2∆0. By properly choosing Λk/Λq to be an order one number, there is a solution for

a0 around ∆0 = 0.
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Next we evaluate (B4)

T
∑
ν

ln

(
ν2 − Π̄(iν) + Λ2

q

ν2 − Π̄(iν) + ∆(T )2

)
= −2T logΓ

a0 − i
√

4Λ2
q − a2

0

4πT
+ 1

− 2T logΓ

a0 + i
√

4Λ2
q − a2

0

4πT
+ 1


+ 2T logΓ

(
a0 −

√
a2

0 − 4∆(T )2

4πT
+ 1

)
+ 2T logΓ

(
a0 +

√
a2

0 − 4∆(T )2

4πT
+ 1

)
+ T log

(
Λ2
q

∆(T )2

)
.

(B6)

We can calculate ∆(T ) by equating (B5) and (B6).

0 =− 2T logΓ

a0 − i
√

4Λ2
q − a2

0

4πT
+ 1

− 2T logΓ

a0 + i
√

4Λ2
q − a2

0

4πT
+ 1

+ T ln

(
Λ2
q

a2
0

)

− 1

2

√
4Λ2

q − a2
0 +

1

π

√
4Λ2

q − a2
0 tan−1

 a0√
4Λ2

q − a2
0

+
a0

2π
ln

(
Λ2
q

a2
0

)

+ 2T logΓ

(
a0 −

√
a2

0 − 4∆(T )2

4πT
+ 1

)
+ 2T logΓ

(
a0 +

√
a2

0 − 4∆(T )2

4πT
+ 1

)
+ T ln

(
a2

0

∆(T )2

)

+
1

2π

[(
a0 −

√
a2

0 − 4∆2
0

)
ln

(
a2

0

∆2
0

)
+ 2
√
a2

0 − 4∆2
0 ln

(
2a0

a0 +
√
a2

0 − 4∆2
0

)]
.

(B7)

We can remove the cutoff by expanding in large Λq and obtain

a0

2πT

(
ln

(
∆(0)

2πT

)
− 1

)
+

√
a2 − 4∆(0)2

2πT
ln

(
a+

√
a2 − 4∆(0)2

2∆(0)

)

+ ln

(
∆(T )

T

)
− ln Γ

(
1 +

a−
√
a2 −∆(T )2

4πT

)
− ln Γ

(
1 +

a+
√
a2 −∆(T )2

4πT

)
= 0.

(B8)

At criticality ∆0 = 0, and the critical low temperature solution is given by [104]

∆(T )2 =
−πaTW0

(
− 1
π

ln
(

2πT
a0eγ

))
ln
(

2πT
a0eγ

) , (B9)

where W0 is the principle Lambert W-function and γ is Euler’s constant. The above result can be

obtained by writing ∆(T )2 = a0Tg(T ) and then expand (B8) in small T/a0, and solve g(T ) using

the leading order constraint.
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2. Free Energy

We compute the free energy of the theory. The free energy F is given by the value of saddle

point action

βF

N
= − ln det(∂τ + εk − µ+ Σ) +

1

2
ln det(−∂2

τ + ω2
q + iλ− Π)

−
∫

dτd2x

∫
dτ ′d2x′

(
Σ(τ ′, x′; τ, x)G(τ, x; τ ′, x′)− 1

2
Π(τ ′, x′; τ, x)D(τ, x; τ ′, x′)

)
+

∫
dτd2x

∫
dτ ′d2x′

g2

2
G(τ, x; τ ′, x′)G(τ ′, x′; τ, x)D(τ, x; τ ′, x′)δ(x− x′)

−
∫

dτd2x
iλ(τ, x)

2γ
,

(B10)

where the variables should be substituted by their saddle point values.

We integrating out CoM coordinates and expand the determinant in momentum space, and also

split Π(iω) = Π̄(iω) + Π(0), iλ = ∆(T )2 + Π(0), and use the constraint (8.13), to obtain

F

NV
= −T

∑
ωn

∫
d2k

(2π)2
ln (εk − µ− iωn + Σ(iωn))

+
1

2
T
∑
νn

∫
d2q

(2π)2
ln
(
ν2
n + ω2

q + ∆(T )2 − Π̄(iνn)
)

− T
∑
ωn

Ḡ(iωn)Σ(iωn) +
T

2

∑
νn

D̄(iνn)Π̄(iνn)

+
g2

2

∫
dτḠ(τ)Ḡ(−τ)D̄(τ)

− ∆(T )2

2γ

(B11)

The interaction term cancels the D̄Π̄ term, leaving a Π(0) term which is assumed to be temperature

independent. We try to evaluate the remaining terms.

a. Fermion determinant

We regulate the fermion determinant by the free fermion counterpart:(
F

NV

)
1

=− T
∑
ωn

∫
d2k

(2π)2
ln

(
εk − µ− iωn + Σ(iωn)

εk − µ− iωn

)
− T

∑
ωn

∫
d2k

(2π)2
ln (εk − µ− iωn)

− T
∑
ωn

Ḡ(iωn)Σ(iωn)

(B12)
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The second line is the standard free fermion result

− T
∫

d2k

(2π)2
ln
(
1 + e−β(εk−µ)

)
= −TΛk

∫
dkx
2π

ln(1 + e−βkx). (B13)

For the first line, we use the sliding symmetry to set

εk − µ→ kx,

∫
d2k

(2π)2
→ Λk

∫
dkx
2π

,

and then we perform the kx-integral in principal value, which yields(
F

NV

)
1

=− i

2
ΛkT

∑
ωn

sgn (ωn)Σ(iωn)

− TΛk

∫
dkx
2π

ln(1 + e−βkx)

− T
∑
ωn

Ḡ(iωn)Σ(iωn)

= −TΛk

∫
dkx
2π

ln(1 + e−βkx)

(B14)

Here the first line and the third line of (B14) cancelled, and we are left with a free fermion result.

This part yields a specific heat

C1 = NV γ1T, γ1 =
π

6
Λk . (B15)

b. Boson Determinant

We consider the boson determinant term(
F

NV

)
2

=
1

2
T
∑
νn

∫
d2q

(2π)2
ln
(
ν2
n + q2 − Π̄(iνn) + ∆(T )2

)
− ∆(T )2

2γ
(B16)

The difference from zero temperature can be written as(
F (T )

NV

)
2

−
(
F (0)

NV

)
2

= I1 + I2, (B17)

where

I1 =
1

2

∫
dν

2π

∫
d2q

(2π)2

[
ln

(
ν2 + q2 − Π̄(iν) + ∆(T )2

ν2 + q2 − Π̄(iν) + ∆(0)2

)
− ∆(T )2 −∆(0)2

ν2 − Π̄(iν) + q2 + ∆(0)2

]
, (B18)

I2 =
1

2

∫
d2q

(2π)2

[
T
∑
νn

ln(ν2
n + q2 − Π̄(iνn) + ∆(T )2)−

∫
dν

2π
ln(ν2 + q2 − Π̄(iν) + ∆(T )2)

]
(B19)

57



Since I1 is sufficiently convergent, we expect we can exchange the order of integrals. We perform

the momentum integral for I1 first (we remind that a0 = π
(
gΛk
2π

)2
):

I1 =
1

8π2

∫ ∞
0

dν

[
(∆(T )2 −∆(0)2)− (∆(T )2 + ν2 + a0ν) ln

ν2 + a0ν + ∆(T )2

ν2 + a0ν + ∆(0)2

]
=

1

96π2

[
−2a0(∆(T )2 −∆(0)2) + 2a0(6∆(T )2 − a2

0) ln

(
∆(T )

∆(0)

)
+ (a2

0 − 4∆(T )2)3/2 ln

(
a0 −

√
a2

0 − 4∆(T )2

a0 +
√
a2

0 + 4∆(T )2

)

+
√
a2

0 − 4∆(0)2(6∆(T )2 − a2
0 − 2∆(0)2) ln

(
a0 −

√
a2

0 − 4∆(0)2

a0 +
√
a2

0 − 4∆(0)2

)]
.

(B20)

This expression agrees with numerics. The I2 can be brought into an integral form

I2 = −
∫

d2q

(2π)2

∫ ∞
0

dz

π
nB(z) tan−1

(
a0z

q2 + ∆(T )2 − z2

)
, (B21)

and the tan−1 function should vary continuously from 0 to π. We rewrite the I2 integral as

I2 =

∫
d2q

(2π)2

∫ √q2+∆(T )2

∞
ηdη

∫ ∞
0

dz

πi

nB(z)√
4η2 − a2

0

(
2z

z2 + u2
+

− 2z

z2 + u2
−

)
, (B22)

where

u± =
a0 ∓ i

√
4η2 − a2

0

2
. (B23)

Using the formula

h(a0) ≡
∫ ∞

0

dznB(z)
2z

z2 + a2
0

= ln
a0

2πT
− πT

a0

− ψ
( a0

2πT

)
, Rea0 > 0, (B24)

we can evaluate the z integral as

I2 =

∫
d2q

(2π)2
g(
√
q2 + ∆(T )2), (B25)

and

g(η) = − 1

4π

[
i
√

4η2 − a2
0

(
log

(
a0 − i

√
4η2 − a2

0

)
− log

(
a0 + i

√
4η2 − a2

0

))
+4πT

(
logΓ

(
a0 − i

√
4η2 − a2

0

4πT

)
+ logΓ

(
a0 + i

√
4η2 − a2

0

4πT

))
+ 2a0 log

(
πT

η

)
+a0(2 + log(4))− 4πT log

(
T

η

)
− 8πT log(2π)

] (B26)

The remaining momentum integral is log-divergent because

g(η) = −a0πT
2

6η2
+O(1/η3), (B27)
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which yields a term −a0T 2

12
ln Λq

∆(T )
in the self-energy. The total contribution of I2 is

I2 = −a0T
2

12
ln

Λq

∆(T )
+

∫ ∞
∆(T )

ηdη

2π

(
g(η) +

a0πT
2

6η2

)

= −a0T
2

12
ln

Λq

∆(T )
+

a2
0

√
a2

0 − 4∆(T )2 coth−1

(
a0√

a2
0−4∆(T )2

)
48π2

−
∆(T )2

√
a2

0 − 4∆(T )2 coth−1

(
a0√

a2
0−4∆(T )2

)
12π2

+ 2πT 3ψ(−3)

(
a0 −

√
a2

0 − 4∆(T )2

4πT

)
+ 2πT 3ψ(−3)

(
a0 +

√
a2

0 − 4∆(T )2

4πT

)

+
1

2
T 2
√
a2

0 − 4∆(T )2ψ(−2)

(
a0 −

√
a2

0 − 4∆(T )2

4πT

)

− 1

2
T 2
√
a2

0 − 4∆(T )2ψ(−2)

(
a0 +

√
a2

0 − 4∆(T )2

4πT

)

−
a3

0 log
(

2πT
∆(T )

)
48π2

− a2
0T

16π
− 5a3

0

288π2
− a0T

2 log(A) +
7a0∆(T )2

48π2
+

1

12
a0T

2 log

(
2πT

∆(T )

)

+
a0T

2

12
+
a0∆(T )2 log

(
2πT
∆(T )

)
8π2

− T 3ζ(3)

2π
− ∆(T )2T

8π
−

∆(T )2T log
(

4π2T
∆(T )

)
4π

,

(B28)

where A is Glaisher’s constant logA = 1/12−ζ ′(−1). If we assume ∆(0) 6= 0, the low temperature

asymptotics is

I2 = −a0T
2

12
ln

Λq

∆(T )
+
a0π

2(a2
0 − 6∆(T )2)T 4

360∆(T )4
, (B29)

and for the critical case ∆(0) = 0 there is no simplification. The boson free energy is the sum of

I1 and I2.
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