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Abstract
We consider the thermal Hall effect of fermionic matter coupled to emergent gauge fields in 2+1 dimen-

sions. While the low temperature thermal Hall conductivity of bulk topological phases can be connected

to chiral edge states and a gravitational anomaly, there is no such interpretation at nonzero temperatures

above 2+1 dimensional quantum critical points. In the limit of a large number of matter flavors, the lead-

ing contribution to the thermal Hall conductivity is that from the fermionic matter. The next-to-leading

contribution is from the gauge fluctuations, and this has a sign which is opposite to that of the matter

contribution. We illustrate this by computations on a Dirac Chern-Simons theory of the quantum phase

transition in a square lattice antiferromagnet involving the onset of semion topological order. We find

similar results for a model of the pseudogap metal with Fermi pockets coupled to an emergent U(1) gauge

field. We note connections to recent observations on the hole-doped cuprates: our theory captures the

main trends, but the overall magnitude of the effect is smaller than that observed.

1

ar
X

iv
:2

00
2.

01
94

7v
2 

 [c
on

d-
m

at
.st

r-
el

]  
14

 F
eb

 2
02

0



CONTENTS

I. Introduction 3

A. Undoped insulator 3

B. Pseudogap at nonzero doping 5

II. Free Dirac fermion 6

A. Transport contribution from the Kubo formula 7

B. Internal magnetization 8

III. Maxwell-Chern-Simons Theory 10

A. Propagator 12

B. Stress-tensor vertex 12

C. Stress tensor-stress tensor correlation function 13

D. T = 0: Gravitational Chern-Simons term 13

E. Finite T : Thermal Hall Effect 14

IV. Dirac Chern-Simons theory 17

A. Gauge fluctuations in the Nf →∞ limit 18

B. Gauge fluctuations at next-to-leading order 19

V. Conclusion 22

Acknowledgements 23

A. Low-energy field theory 23

B. Derivation of heat hurrent and the associated Feynman rules 25

1. Equation-of-motion approach 25

2. Noether procedure 27

C. Gluon propagator 28

1. Limit of zero external momentum 31

D. Framing anomaly in the ‘wrong’ metric 32

References 34

2



I. INTRODUCTION

Recent experiments have shown that the thermal Hall effect, also known as the the Righi-
Leduc effect, is a powerful probe for the presence of unconventional excitations in correlated
electron systems. For instance, in the spin liquid candidate α-RuCl3, the temperature and field
dependence of the thermal Hall coefficient, κxy, has been suggested to indicate the presence of
neutral excitations with exotic statistics [1].

Grissonnanche et al. [2] measured the thermal Hall effect in the normal state of four different
copper-based superconductors. In the overdoped compounds, they observed a conventional κxy,
related to the electrical Hall conductivity, σxy, by the Wiedemann-Franz law. Interestingly, with
decreasing doping, they observed the onset of a negative contribution to κxy upon entering the
pseudogap phase, which is unrelated to σxy. This negative signal increases in magnitude with
lowering doping, and persists all the way into the insulator. Given that a much smaller response is
expected from conventional spin-wave theory [3, 4], Grissonnanche et al. argued that it indicated
the presence of exotic neutral excitations in the pseudogap phase. In the present work, we employ
a gauge theory for the pseudogap phase [5–9], and propose that the emergent gauge field is a
neutral excitation which could help produce the observed κxy.

In a previous study [10], we focused on the thermal Hall effect in the insulator, and illustrated
that the proximity to a quantum phase transition—between the Néel state and a state with co-
existing Néel and semion topological order—could explain the enhanced thermal Hall effect in the
insulator. This enhanced κxy was computed using the gauge theory for the critical point, which
had four different formulations, all dual to each other. As the gauge theory is strongly coupled,
the computation relied on an expansion in 1/Nf , where Nf is the number of flavors of matter
fields. The calculation of κxy at Nf = ∞ was described in Ref. 10, and we will present further
details here. We will also describe the structure of the leading 1/Nf corrections to κxy; we argue
that an important component of these corrections (resulting from the analog of the ‘Aslamazov-
Larkin’ diagrams) can be interpreted as the contribution of the collective mode associated with the
emergent gauge field to κxy. This interpretation will be useful to us when we turn to consideration
of the doped case in the latter part of this paper.

We now outline the models studied and the main results for the undoped and doped cases in
turn.

A. Undoped insulator

We focus our attention on one of the four duality-equivalent gauge theories describing the
vicinity of the onset of semion topological order in the Néel state [10]: the SU(2) gauge theory
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at Chern-Simons level k = −1/2, coupled to a single flavor (Nf = 1) of a two-component Dirac
fermion Ψ with mass m. We generalize the fermions to Ψ` with ` = 1 . . . Nf flavors, and consider
the Lagrangian

LΨ = Ψ̄`

[
iγµ
(
∂µ − iAµ

)]
Ψ` +mΨ̄`Ψ` + kCS [Aµ], (1.1)

where Aµ is the SU(2) gauge field, k is the Chern-Simons level, and Ψ = c, Ψ̄ = Ψ†γ0. For Nf = 1

and k = −1/2, the m > 0 phase of (1.1) is ‘trivial’ and describes the conventional Néel state, while
the m < 0 phase of (1.1) has semion topological order [10]. The derivation of this field theory
starting from a microscopic lattice model is sketched in Appendix A.

The thermal Hall conductivity of (1.1) is expected to obey

κxy =
k2
BT

~
K(m/T ) (1.2)

where K is a dimensionless universal function of m/T , with m the renormalized mass of the lowest
quasiparticle excitations and T the absolute temperature. In the limit |m|/T → ∞, the exact
values of κxy can be deduced from arguments based on gravitational anomalies as [10–12]

κxy =
πk2

BT

6~
sgn(k̂)

[
2|k̂| − 3|k̂|

|k̂|+ 2

]
;

|m|
T
→∞, (1.3)

where the integer k̂ is defined by

k̂ = k +
Nf

2
sgn(m), (1.4)

and the sign function vanishes for zero argument, i.e., sgn(0) = 0. We will obtain the large-Nf

limit of the result (1.3) below in a direct 1/Nf expansion, with k taken to be of order Nf . Note
that the first term in Eq. (1.3) is of order N1

f , while the second term is of order N0
f .

Our 1/Nf expansion also yields a simple interpretation of the two terms in (1.3). The leading
term of order Nf is the contribution of free Dirac fermions, where we assume that the Chern-
Simons term in Aµ was generated by integrating out massive Dirac fermions. The contribution to
the universal scaling function K by the free Dirac fermions is specified by (2.10) and plotted in
Fig. 2. The subleading term of order N0

f is the contribution of the fluctuations of Aµ. We will
exploit this interpretation when we consider the doped case.

We also consider the quantum critical limit, |m|/T → 0, when neither an exact computation of
κxy is possible, and nor is κxy(~/(πk2

B)) expected to be quantized at a rational value. In this case,
we obtain

κxy =
πk2

BT

6~
[
2k +O(N0

f )
]

,
|m|
T
→ 0 . (1.5)

The computation of the O(N0
f ) number requires a lengthy numerical computation which we will

outline, but not carry out to completion. We note that we do not expect κxy in the limit |m|/T → 0
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to be related to any gravitational anomaly or contact terms [13, 14]; the latter are evaluated at
T = 0, and not in the limit required for a quantum critical transport coefficient, with frequencies
much smaller than T [15, 16].

B. Pseudogap at nonzero doping

We will describe the pseudogap by essentially the same theory as that used in Ref. 6, which was
successfully compared with numerical studies of the Hubbard model [6, 7, 9] and photoemission
experiments on an electron-doped cuprate [17]. In the limit of the insulating state, and in the
vicinity of the onset of semion topological order in the presence of Néel order as discussed in
Section IA, this theory can be related [10] to one of the theories which are equivalent to (1.1)
after duality—a SU(2) gauge theory at Chern-Simons level 1, coupled to a complex scalar which
is a SU(2) fundamental. While the fermionic SU(2) theory at level −1/2 in (1.1) was useful in
describing κxy in the insulator [10], the complex scalar SU(2) theory is far more convenient in the
doped case. This is because the latter theory has fermionic charge carriers, and this allows easy
access to a metallic state at nonzero doping.

The pseudogap metal is described by transforming to a rotating reference frame in spin space
[5], which results in a SU(2) gauge theory. The fluctuating spin density wave order acts like a
Higgs field, which breaks the SU(2) invariance down to U(1). Coupled to the U(1) gauge field, aµ,
we have bosonic spinons and fermionic chargons fp with U(1) gauge charges p = ±1. We focus on
the fermionic chargons, as they form Fermi pockets with charged gapless excitations on the Fermi
surface. We write down a simple effective theory for these chargons [6, 7, 18]:

Lf =
∑

v=1,2

∑

p=±1

f †pv

(
∂

∂τ
− µ− ipaτ −

(∇− ipa− ieAem)2

2m∗

)
fpv + vdis(r)f †pvfpv (1.6)

Here, v is a valley index, m∗ is the effective mass of the fermions (we have ignored mass
anisotropies), µ is a chemical potential, aµ = (aτ ,~a) is the emergent U(1) gauge field, and Aem

is the fixed background electromagnetic gauge field associated with the applied magnetic field
B = ẑ · (∇ ×Aem). We have included a disorder potential vdis(r), because we will consider Hall
transport in the weak-field regime ωcτ � 1, where ωc is the cyclotron frequency and τ is the elastic
scattering time associated with the disorder.

First, let us ignore the internal gauge field aµ. Then, the f fermions form a conventional Fermi
liquid, and for ωcτ � 1, the electrical and thermal Hall responses are given by familiar expressions
involving the Wiedemann-Franz relation

ρxy =
B

nec
, σxy '

ρxy
ρ2
xx

, κ0
xy =

π2T

3

(
kB
e

)2

σxy , (1.7)
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where n is the total density of the f fermions. Now, let us consider the contribution of aµ to the
thermal Hall response. We will compute this by a simple Maxwell-Chern-Simons action for aµ

La =
K1

2
(∇× a)2 +

K2

2
(∇aτ − ∂τa)2 − iσxy

2e2
εµνλaµ∂νaλ (1.8)

We assume that the predominant contribution to the Maxwell terms arises from integrating out the
gapped spinons. Integrating out the fermionic chargons introduces the Chern-Simons term in (1.8),
proportional to the Hall conductivity of the fermions in (1.7); such a term is also permitted under
the symmetry constraints on this gauge theory of doped antiferromagnets [19, 20]. In general,
because of the presence of disorder, the couplings K1,2 will also be functions of spatial position; we
replace them by their spatial average, and do not expect fluctuations to significantly modify the
results presented here. The fermions also introduce singular terms in the transverse gauge field
propagator arising from Landau damping [21], so that a more complete effective action is

Sa =

∫
d2x dτ La +

∫
d2k dω

8π3
γk|ω| [aT (k, ω)]2 , (1.9)

where γk ∼ 1/k for kvF τ � 1, and γk ∼ constant for kvF τ � 1. Although the term in (1.9) could
make a significant contribution to the thermal Hall effect, we leave an analysis of its effects to
future work.

We compute the thermal Hall response of the Maxwell-Chern-Simons theory La in Section III,
we find that it yields a correction κ1

xy, which has the opposite sign from κ0
xy in (1.7). This sign

change is similar to that in (1.3) between the O(Nf ) term (from the fermions) and the O(N0
f ) term

(from the gauge field). The universal function K in (1.2) for the Maxwell-Chern-Simons theory is
specified in (3.29) as a function of the ‘topological mass’ mt = σxy/(e

2K2), and is plotted in Fig. 4.
Note that the universal function for Dirac fermions in Fig. 2 does not reduce to the gauge field
function in (2.10) and Fig. 4 by a rescaling of axes: this is evidence that the T > 0 thermal Hall
conductivity is a bulk property, and is not specified by any topological field theory or gravitational
anomaly.

We begin our analysis by describing the thermal Hall response of two free theories: a free
Dirac fermion in Section II, and free Maxwell-Chern-Simons theory in Section III. The results of
the Maxwell-Chern-Simons theory apply directly to the effective theory for the doped pseudogap
phase in Eq. (1.8). We will combine Sections II and III to obtain results for the Dirac Chern-Simons
theory (1.1) in the 1/Nf expansion in Section IV.

II. FREE DIRAC FERMION

In order to obtain a finite thermal Hall effect, time-reversal symmetry must be broken: this
can be achieved by either an external magnetic field or intrinsic magnetic ordering [22]. However,
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initial attempts to calculate this response based on direct application of the Kubo formula were
found to suffer from unphysical divergences at zero temperature [23, 24]. This is because in a sys-
tem breaking time-reversal symmetry, a temperature gradient drives not only the transport (heat)
current, but also an experimentally unobservable circulating current [25, 26]. Both contributions
are present in the microscopic current density calculated by the standard linear response theory,
necessitating a proper subtraction of the circulating component. Ref. 27 showed that the elec-
tromagnetic and gravitomagnetic energy magnetizations [28, 29] naturally emerge as corrections
to the thermal transport coefficients, removing the aforementioned divergences in the process. A
subtlety pointed out in Ref. 30 is that the energy magnetization and the thermal Hall coefficient
are relative: Only the difference between two systems are physically meaningful. We choose to
normalize κxy such that the κxy/T → 0 as m/T → 0, i.e. the vacuum has zero thermal Hall
coefficient.

We now present details of the computation of the thermal Hall coefficient of a free Dirac fermion
with a mass m which can be scanned through zero at T > 0. This is the theory (1.1) without the
gauge field Aµ. While we consider a single two-component Dirac fermion, note that, because of the
SU(2) gauge index, the theory (1.1) has 2Nf such fermions. In the following, we determine both
the Kubo part and the magnetization separately, identifying precisely what the transport currents
and the magnetizations are, and illustrating how they can be evaluated for a general continuum
theory.

A. Transport contribution from the Kubo formula

The leading contribution to κxy is given by a single fermion polarization bubble shown in Fig. 1.
Summing over the internal momentum k and Matsubara frequency iωn, this diagram evaluates to

Πq
xy(q, iεn) =

1

β V

∑

k,iωn

Tr
(
Vq
y (−q,−iεn)G(k − q/2, iωn)Vq

x (q, iεn)G(k + q/2, iωn + iεn)
)
, (2.1)

where GΨ(k, iωn) = 1/(−i ωn +σ ·k+mσz) is the free fermion Green’s function, and Vq
a (q, iεn) =

σa (iωn + iεn/2) is the heat/energy-current vertex, derived in Appendix B. The response function
is defined as

Lxy =
1

εn
Πq
xy(q, iεn) =

T

εn V

∑

k,iωn

−(εn + 2ωn)2 (2kxky +mεn)

2
(
k2
x + k2

y +m2 + ω2
n

) (
k2
x + k2

y +m2 + (εn + ωn)2
) as q → 0,

specializing to the case of zero external momentum. The numerator of the polarization tensor Πq
µν

consists of a part proportional to kµkν and a term ∼ δµν ; we can drop the former because it is odd
in kx and ky and hence, vanishes upon integration over all momenta. Performing the Matsubara
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summation and converting the momentum sum to an integral, we get

Lxy = − 1

εn

∫
d2k

(2π)2

mεn
2 ξk

tanh

(
βξk
2

)
; ξk =

√
k2
x + k2

y +m2. (2.2)

where ξk =
√
k2
x + k2

y +m2. Finally, introducing the shorthand u = β ξk, we have

Lxy =

∫ ∞

β|m|

du

4π β
m tanh

(u
2

)
= − m

2π β
ln
[
cosh

(u
2

)] ∣∣∣∣
∞

β|m|
.

A few comments are in order about this result. First, we have regulated the integral by introducing
a UV cutoff Λ but, as we shall see, this drops out eventually. Further, to obtain the DC response,
we need to analytically continue to real frequencies iωn → ω+ iε+, and then take the limit ω → 0

after q → 0. The thermal Hall coefficient is then [27, 31]

κKubo
xy ≡ Lxy

T
=
m

2π

{
ln

[
cosh

(
β |m|

2

)]
− ln

[
cosh

(
β Λ

2

)]}
. (2.3)

B. Internal magnetization

The second contribution to the conductivity comes from the circulating heat current. The
zero-field heat magnetization can be calculated from the differential equation [27]

2MQ − T
∂MQ

∂T
=

1

2i
∇q ×

〈
K̂−q; ĴQq

〉
0

∣∣∣∣
q→0

, (2.4)

where K̂q is the Fourier transform of K̂(r) = h(r) − µ n̂(r), h and n̂ being the local energy and
number densities, respectively. We also point out to readers that Eq. (2.4) cited from Ref. 27 only

1

q, iεn

k − q/2, iωn

k + q/2, iωn + iεn

q, iεn q, iεn

k − q/2, iωn

k + q/2, iωn + iεn

q, iεn

FIG. 1. The fermion polarization bubbles that give the mean-field Kubo (left) and internal magnetization
(right) contributions to the thermal Hall conductivity; the crossed circles represent thermal current vertices.
Figures drawn using [? ].

(a) (b)

FIG. 1. The fermion polarization bubbles that give the mean-field Kubo (left) and internal magnetization

(right) contributions to the thermal Hall conductivity; the crossed circles represent thermal current vertices.
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applies to systems whose energy current depends on gravitational field in a particular way, while
the general formalism is discussed in Ref. 30.

Equipped with the structure of this modified vertex from Appendix B, we now evaluate Eq. (2.4)
piece by piece. Consider the first term in the curl; retaining only the terms even in the internal
momentum [32], we get

∂qx

〈
K̂−q; ĴQy,q

〉
= ∂qx

(
1

βV

∑

k,iωn

2im qx(εn + 2ωn)2

4 (|k − q/2|2 +m2 + ω2
n) (|k + q/2|2 +m2 + (εn + ωn)2)

)

= i

∫
d2k

(2π)2

m (β ξk + sinh (β ξk)) sech2 (β ξk/2)

4 ξk

= i

∫ ∞

β|m|

du

8π β
mu (u+ sinh(u)) sech2 (u/2) =

imu

4π β
tanh

(u
2

) ∣∣∣∣
∞

β|m|
. (2.5)

Similarly, as expected by symmetry,

∂qy

〈
K̂−q; ĴQx,q

〉
= − imu

4π β
tanh

(u
2

) ∣∣∣∣
∞

β|m|
. (2.6)

Plugging Eqs. (2.5) and (2.6) back into Eq. (2.4), we have

2MQ − T
∂MQ

∂T
=
m

4π

[
Λ tanh

(
β Λ

2

)
− |m| tanh

(
β|m|

2

)]
, (2.7)

which can be solved for MQ to obtain

MQ = c1T
2 − mT

4π

[
2Li2

(
−e−Λ/T

)

Λ/T
− 2Li2

(
−e−|m|/T

)

|m|/T +
|m| − Λ

2T
+ 2 ln

(
e−|m|/T + 1

e−Λ/T + 1

)]
, (2.8)

where c1 is an arbitrary constant. Now, κtr
xy = κKubo

xy + 2M z
Q/T . Collecting the terms proportional

to Λ, we get

lim
Λ→∞

m

4π

[
−2 ln

(
cosh

(
βΛ

2

))
+ βΛ− 4Li2

(
−e−β Λ

)

β Λ
+ 4 ln

(
e−β Λ + 1

)
]

=
m

2π
ln 2, (2.9)

the first two terms cancel out the UV divergences and all dependencies on the cutoff Λ drop out.
Thus, the physical thermal Hall conductivity is given by

κtr
xy = 2c1T +

m

2π

[
2Li2

(
−e−|m|/T

)

|m|/T − ln
(
e−|m|/T + 1

)
]
, (2.10)

where the first part comes from the magnetization and the last piece is the Kubo contribution.

At this point, the constant c1 arising from the solution of the differential equation can be
determined as follows. We have seen above that κxy/T is a function of the dimensionless variable

9
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-0.2

-0.1

0.0

0.1

0.2

FIG. 2. The thermal Hall conductivity of a free Dirac fermion of mass m. The values as T → 0 are ±π/12.

|m|/T alone. Therefore, taking the limit m→ 0 or equivalently, T →∞ (where we know a priori
that κxy/T should go to zero), Eq. (2.10) reduces to

κtr
xy = 2c1T +

sign(m)

2π

(
−2 · π

2

12

)
T ≡ 0 (2.11)

and the last condition implies that c1 = sign(m) π/24. As a result, when T → 0 keeping m 6= 0

and fixed, we obtain κtr
xy/T = sign(m) π/12. The dependence of κtr

xy on temperature and mass is
shown in Fig. 2.

III. MAXWELL-CHERN-SIMONS THEORY

In this section, we consider the framing anomaly and thermal Hall response of the U(1) Maxwell-
Chern-Simons theory (1.8). Our discussion will be restricted to the level of an effective theory and
we do not attempt to extract the microscopic values of K1, K2. As we will see, the effective theory
already provides a satisfactory interpolation between the two topological phases.

The Maxwell-Chern-Simons theory has a speed of ‘light’ c0 =
√
K1/K2. Since there is no other

velocity scale in the theory, we can set c0 = 1 (see also Appendix D). The MCS theory (1.8) takes
the following relativistic form in real time:

L =
k

4π
εµρνaµ∂ρaν −

1

4g
fµνf

µν , (3.1)

where fµν = ∂µaν − ∂νaµ. Here, the coupling g = 1/K2 has dimensions of energy in 2+1D, and
k = 2πσxy/e

2 is the Chern-Simons Level. The large-Nf limit of fermion flavor implies k = O(Nf )
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and g = O(1/Nf ). If we are interested in the thermal Hall effect of the gapped phases, we should
take g to be the largest energy scale and send g →∞.

Chern-Simons theory has a gravitational anomaly called the framing anomaly. It is well known
that Chern-Simons theory is topological and does not couple to spacetime geometry on the classical
level. Witten [33] pointed out that at the quantum level, the theory inevitably couples to a metric
because of the gauge-fixing procedure. However, this is not adequate for writing down a sensible
stress tensor, because any vertex function due to the gauge-fixing procedure is longitudinal and
thus, vanishes when contracted with the physical transverse propagator. Here, we will try an
alternative method, by considering the Maxwell-Chern-Simons theory. The Maxwell term serves
as a UV regulator and it enables us to write down a stress-tensor vertex. According to Witten
[33], the gravitational anomaly appears as a gravitational Chern-Simons term

CSg[gµν ] =
c

96π

∫
tr

(
Γ ∧ dΓ +

2

3
Γ ∧ Γ ∧ Γ

)
, (3.2)

where Γ is the Christoffel symbol associated with the metric gµν . The prefactor c is the (chiral)
central charge

c = − dim(G) k

(|k|+ c2(G))
, (3.3)

where c2(G) is the dual Coxeter number of the gauge group G.

In what follows, we perturbatively compute the gravitational anomaly and thermal Hall effect
of the above MCS theory in the large-k (k ∝ Nf ) limit. Following [34], we calculate the stress
tensor-stress tensor correlation function Πµν;ρλ(x, t) = −i〈T µν(x, t)T ρλ(0, 0)〉 of the MCS theory.
We can interpret Πµν;ρλ as the effective action (up to a minus sign) Seff[gµν ] of metric gµν in a
weakly curved background gµν = ηµν + hµν , |hµν | � |ηµν |. We will show that at zero temperature
Πµν;ρλ agrees with the gravitational Chern-Simons term (3.2).

This gravitational anomaly is proportional to the thermal Hall coefficient at the next leading
large-Nf order via the relation

κxy =
π

6
c T. (3.4)

It is argued in Ref. 35 that a gravitational Chern-Simons term cannot give rise to a thermal
Hall effect from the Kubo formula because it contains three derivatives rather than one. In our
calculation, we find that the thermal Hall effect actually arises from the finite-temperature part of
Πµν;ρλ, which comes from the same diagrams as the gravitational anomaly and contains only one
derivative.

At the next-leading large-Nf order, our approach works both for Abelian and non-Abelian
theories because c = dim(G) + O(1/Nf ), and we simply include dim(G) copies of gauge fields,
which are noninteracting at this order.
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µν

α

β

p+ q

q

FIG. 3. Left: Vertex diagram of the stress tensor. Right: Diagram of the stress tensor-stress tensor

correlation function.

A. Propagator

We add a gauge fixing term Lgf = (∂µa
µ)2/(2ξg) and work out the propagator. Some algebra

leads to

S =

∫
d3p

(2π)3
aµ(−p) 1

2g

(
pµpν − ηµνp2 +

pµpν

ξ
+
kg

2π
εµνρipρ

)
aν(p).

The propagator is thus

Dµν(p) =
−g

p2 −m2
t

[
P µν(p) +

mt

p2
εµνρipρ

]
+

ξ

(p2)2
pµpν , (3.5)

where the topological mass mt = kg/(2π), and P µν(p) = ηµν − pµpν/p2.

B. Stress-tensor vertex

In this section, we work out the stress-tensor vertex as shown in Fig. 3. The stress tensor is
given by the Maxwell term, which is

T µν =
−1

g

[
fµρf νρ −

1

4
ηµνfαβf

αβ

]
. (3.6)

It is worth noticing that the stress tensor above can be derived solely from translation symmetry
and gauge invariance, without reference to Lorentz symmetry (see Appendix. B).

We write the vertex function of Fig. 3 as

− Γµν;αβ(p+ q, q)/g, (3.7)

where

Γµν;αβ(p+ q, q) = [(p+ q)µqν + (p+ q)νqµ − ηµν(p+ q) · q] ηαβ + (p+ q) · q
(
ηµαηνβ + ηµβηνα

)

−
[
qα
(
ηβµ(p+ q)ν + ηβν(p+ q)µ

)
+ (p+ q)β (ηαµqν + ηανqµ)− ηµνqα(p+ q)β

]
.

(3.8)
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C. Stress tensor-stress tensor correlation function

We compute the following stress tensor-stress tensor polarization function:

Πµν;ρλ(x, t) = −i〈T µν(x, t)T ρλ(0, 0)〉. (3.9)

In general, the full polarization function should also contain contact terms such as 〈δT µν(x, t)/δhρλ(0, 0)〉,
but those terms are symmetric in µρ and independent of external momentum, so they do not con-
tribute to either the gravitational anomaly or the thermal Hall effect. We only need to consider
the single bubble diagram in Fig. 3, which yields

Πµν;ρλ(p) =

∫
d3q

(2π)3

−i
2g2

Γρλ;αβ(p+ q, q)iDα′α(p+ q)× Γµν;β′α′
(q, p+ q)iDββ′(q). (3.10)

Here, we have included a symmetry factor of 1/2.

We want to extract the part which is antisymmetric in µρ and symmetric in νλ, which should
ultimately lead to a gravitational Chern-Simons term and thermal Hall effect:

Πµν;ρλ
AS =

1

4

(
Πµν;ρλ − Πρν;µλ + Πµλ;ρν − Πρλ;µν

)
. (3.11)

D. T = 0: Gravitational Chern-Simons term

At zero temperature, the integrand has Lorentz symmetry, and we can evaluate ΠAS using
Feynman parameters:

1

q2(p+ q)2(q2 −m2
t )((p+ q)2 −m2

t )
= 6

∫ 1

0

dx1dx2dx3dx4 δ
(∑

x− 1
) 1

(l2 −∆)4
, (3.12)

where

l = q + (x1 + x3)p, (3.13)

∆ = (x1 + x2)m2
t − (x1 + x3)(1− x1 − x3)p2. (3.14)

After some algebra with Mathematica, we have

Πµν;ρλ
AS (p) = −εµρσpσ(ηνλp2 − pνpλ)6

∫ 1

0

dx1dx2dx3dx4 δ
(∑

x− 1
)

×
(−mt

15

)∫
d3l

(2π)3

l4[10− 63(x1 + x3)(1− x1 − x3)] +O(l2)

(l2 −∆)4
.

(3.15)

13



To obtain the gravitational Chern-Simons term, we isolate the topological contributions by taking
the limit mt →∞. Note that only the l4 term written above can survive the mt →∞ limit. The
integral can be evaluated using dimensional regularization. The result is

Πµν;ρλ
AS (p) =

−i
48π

sgn (mt)ε
µρσpσ(ηνλp2 − pνpλ), (3.16)

employing the integral formula
∫

ddlE
(2π)d

(l2E)a

(l2E +D)b
=

Γ(b− a− d
2
)Γ(a+ d

2
)

(4π)d/2Γ(b)Γ(d
2
)

1

Db−a− d
2

. (3.17)

We can compare the above result to the gravitational Chern-Simons term (3.2), which, to quadratic
order in h, reduces to

CSg[h] = − c

192π

∫
d3p

(2π)3
hµν(−p)εµρσ(ipσ)(p2ηνλ − pνpλ)hρλ(p). (3.18)

The correlation function is related to CSg by

Πµν;ρλ
AS (p) = −i〈T µν(p)T ρλ(−p)〉AS = − δ2CSg[h]

δhµν(−p) δhρλ(p)
+ (symmetrization). (3.19)

When evaluating the variation, we get a trivial factor of 2 because CSg is quadratic in h. There is
another hidden factor of 2, because when considering variations, we have to include all permutations
of µ ↔ ν, ρ ↔ λ, which results in four terms. One term is symmetric in µρ and can be dropped.
Another term has an apparent εµρσipσ factor. The other two terms are not totally antisymmetric
in µρ, but after antisymmetrization they give another εµρσipσ factor. Therefore, we get a prefactor
of c/(48π).

Matching Eq. (3.16) with Eqs. (3.18) and (3.19), we see that the MCS theory has central charge
c = −sgn (mt) = −sgn (k).

E. Finite T : Thermal Hall Effect

We now evaluate Eq. (3.11) at nonzero T . Since we are interested in the thermal Hall effect,
we will restrict ourselves to the energy-current sector ν = λ = 0.

Following some algebra using Mathematica, we find that the (p+q)2 and q2 factor in the denom-
inator of ΠAS cancels out (we only write down the (µ0; ρ0) component here, but the cancellation
happens for all components):

Πµ0;ρ0
AS (p) =

∫
d3q

(2π)3

−mt ε
µρσuσ(p, q)

(q2 −m2
t )((p+ q)2 −m2

t )
, (3.20)
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where uσ(p, q) are three polynomials in p, q (superscripts denote component, not square):

u0 =
1

2

[(
p1
)2
q0 + p1q1

(
p0 + 2q0

)
+ p2

(
p2q0 + q2

(
p0 + 2q0

))]
, (3.21)

u1 =
1

2

[(
p0
)2 (−q1

)
+ p0q0

(
p1 − 2q1

)
+ 2

(
p1
)2
q1 + p2q1

(
p2 + 2q2

)
+ p1

(
p2q2 + 2

(
q0
)2

+ 2
(
q1
)2
)]
,

u2 =
1

2

[(
p0
)2 (−q2

)
+ p0q0

(
p2 − 2q2

)
+ 2

(
p2
)2
q2 + p1q2

(
p1 + 2q1

)
+ p2

(
p1q1 + 2

(
q0
)2

+ 2
(
q2
)2
)]
.

To proceed, we note that Πµν;ρλ
AS satisfies Ward identity from both sides, so we have the ansatz

Πµ0;ρ0
AS (p) = mt ε

µρσpσA(p), (3.22)

and
A(p) =

1

p2

∫
d3q

(2π)3

−p · u
(q2 −m2

t )((p+ q)2 −m2
t )
. (3.23)

We then evaluate the finite temperature part of A(p), by replacing the frequency integral with
a Matsubara summation ∫

dq0

2π
→ iT

∑

q0=2πiTn

.

The summation can be performed by standard contour methods; the finite-temperature part is

Aβ(p) =
i

p2

∫
d2q

(2π)2

1

(Ep+q − Eq − p0) (Ep+q + Eq − p0) (Ep+q − Eq + p0) (Ep+q + Eq + p0)

×
{
nB(Ep+q)

Ep+q

[
−p2E4

p+q + E2
p+q

(
E2

qp
2 +

(
p0
)2

(3p · q + 2p2)− p · q(p · q + p2)
)

+(p · q + p2)
(
E2

q − (p0)2
) ((

p0
)2

+ p · q
)]

− nB(Eq)

Eq

[(
p2
(
E2

q + p · q
)

+ (p · q)2) (−E2
p+q + E2

q +
(
p0
)2
)

+ p · q
(
p0
)2
(
E2

p+q + 3E2
q −

(
p0
)2
)]}

, (3.24)

where we have dropped the zero-temperature contribution.

To get the thermal Hall conductivity, we need to compute the Kubo conductivity κKubo
xy and the

heat magnetization MQ. As discussed earlier, because the gravitational Chern-Simons term has
three derivatives, it does not contribute to κKubo

xy or MQ, so we only need to consider the finite-
temperature contributions. By inspecting (3.24), we see that Aβ(p0,p = 0) = 0, and therefore,
κKubo
xy = 0.

Sending p0,p→ 0 in the static limit, we get

A(p0 = 0,p→ 0) =
−i
4π

[
|mt|nB(|mt|)− T ln(1− e−|mt|/T )

]
. (3.25)
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FIG. 4. The thermal Hall conductivity due to the gauge fields, from Eq. (3.29). mt is the topological

mass.

The heat magnetization can be obtained from the differential equation

2MQ − T
∂MQ

∂T
= − 1

2i
∇p × Πi0;00

AS (p0 = 0,p→ 0) = −imtA(p0 = 0,p→ 0), (3.26)

where the different prefactor compared to Eq. (2.4) comes from the definition of Πµν;ρλ. Integrating
the above differential equation brings us to

MQ

T 2
= C(mt)−

1

4π
f(mt/T ), (3.27)

where
f(x) = x ln(1− e−|x|)− 2 sgn (x)Li2(e−|x|), (3.28)

and the integration constant C(mt) is arbitrary function of mt. This results in the thermal Hall
conductivity

κxy
T

=
2MQ

T 2
= 2C(mt)−

1

2π
f(mt/T ), (3.29)

which is plotted in Fig. 4.

We choose C(mt) = − π
12

sgn (mt) such that κxy/T vanishes continuously at mt = k= 0. The
physical motivations for this choice are the following. First, at k = 0, we have the usual Maxwell
theory, which should have no thermal Hall effect at any temperature. Secondly, in the high-
temperature limit T � mt, the system should be insensitive to the ground-state energy gap
(∼ mt) and the related topological distinctions, so the thermal Hall coefficient should also vanish.
Therefore, κxy/T should vanish continuously at mt = k = 0 and hence, we fix C(mt) accordingly.

In the mt →∞ limit, we obtain

κxy/T = −π
6

sgn (mt) = −π
6

sgn (k), (3.30)

which, again, yields central charge c = −sgn (mt) = −sgn (k).
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IV. DIRAC CHERN-SIMONS THEORY

This section turns to a discussion of the thermal Hall response of the SU(2) Dirac Chern-Simons
theory in Eq. (1.1) in the 1/Nf expansion. In order to sidestep subtle issues with gravitational
anomalies, we will view Eq. (1.1) as an effective theory, in which the Chern-Simons term is obtained
by integrating out spectator heavy Dirac fermions. To obtain a SU(2) Chern-Simons term at level
k, we need 2|k| flavors of heavy Dirac fermions with mass M obeying sgn(M) = sgn(k). We will
always assume |M | � T , while the ratio of the light Dirac fermion to temperature, m/T , can be
arbitrary.

At leading order for large Nf , we ignore gauge fluctuations, and simply add the contributions
of the light and heavy Dirac fermions, using the results in Section II. Owing to the SU(2) gauge
index carried by the Ψ fermions in Eq. (1.1), we need to multiply the contribution by an additional
factor of 2 for each flavor. In this manner, we obtain the thermal Hall conductivity

κxy = 2Nf κxy,D(m) + 4|k|κxy,D(M) (4.1)

where κxy,D(m) is the Dirac fermion contribution in Eq. (2.10). We show a plot of Eq. (4.1) in
Fig. 5 for Nf = 2|k|= 1. In the limit |M |/T →∞ and |m|/T →∞, Eq. (4.1) yields the first term
in the square brackets in Eq. (1.3).

Upon examining the effect of gauge fluctuations in the 1/Nf expansion, we find that there are

0.0 0.2 0.4 0. 0.8 1.0

-1.0

-0.8

-0. 

-0.4

-0.2

0.0

FIG. 5. The thermal hall conductivity computed from Eq. (4.1) upon including both light and heavy

fermions of massesm andM = −10, respectively for Nf = 2|k| = 1. The quantized value in the topological

phase at zero temperature is π/3, as expected from mean-field theory. The temperature dependence of

κxy/T calculated in this continuum field theory is in excellent agreement with the results on the lattice

model in Ref. 10
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Feynman graphs which potentially contribute to the thermal Hall conductivity even at Nf = ∞.
However, evaluation of these graphs shows that they vanish, as we will illustrate in Section IVA; so
no corrections are needed to Eq. (4.1) as this order. We then discuss the leading 1/Nf corrections
in Section IVB.

A. Gauge fluctuations in the Nf →∞ limit

Explicitly expanding out the non-Abelian gauge field, the appropriate modification of the La-
grangian (1.1), for a particular fermion species, reads as

LNf ,SU(2) =

Nf∑

v=1

∑

b,s,t

iΨ̄vsγ
µ

(
∂µ −

i√
Nf

abµτ
b
st

)
Ψvt +mΨ̄vsΨvs, (4.2)

where τa are the generators of SU(2), Aµ = abµτ
b, and the coupling constant has been scaled

by 1/
√
Nf for normalization. The fermionic field is labeled simultaneously by the flavor index

v = 1, . . . , Nf as well as the color index i = 1, 2, 3; the γ (or σ) and τ Pauli matrices operate in
Dirac and color spaces, respectively. The fermion-gluon vertex corresponds to

1

t

s

µ; a ≡ − 1√
Nf

τast σ
µ.

(4.3)

Every fermion loop now bears an extra factor of Nf owing to the summation over flavors, while
each interaction vertex carries a factor of 1/Nf . The diagram in Fig. 1 is, therefore, of O(Nf ). In
the limit of large Nf →∞, the only diagram that contributes at the same order is shown in Fig. 6.

One might naively think that there are additional diagrams beyond Fig. 6 because each new fermion
bubble within the gluon propagator is of O(1) in this expansion. Typically, these contributions
can be subsumed in a renormalized propagator, denoted by a cross, by summing up the chain of
bubble diagrams in a geometric series as

1

≡ + + + · · · .

(4.4)
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1

q, iεn

k − q/2, iωn

k + q/2, iωn + iεn

q, iεn

FIG. 1. The sole Feynman diagram contributing at leading order to gauge-field corrections in the limit
N → ∞. The dressed gluon propagator, indicated by a cross, is obtained by perturbatively integrating out
the fermions from the action S.

FIG. 6. The sole Feynman diagram contributing at leading order to gauge-field corrections in the limit

Nf → ∞. The dressed gluon propagator, indicated by a cross, is obtained by perturbatively integrating

out the fermions from the action S.

However, as a consequence of working in the large Nf limit, there is no explicit (F a
µν)

2 kinetic term
in the action S, which describes a static gauge field, and therefore, the bare propagator is zero. To
derive the gluon propagator, we instead build upon the results of Ref. 36 for the photon propagator
at nonzero temperatures in 2+1D U(1) gauge theories with fermionic and bosonic matter. The
full expression for the gluon propagator is detailed in Appendix C.

It is now easy to observe the absence of gauge-field corrections at leading order. Figure 6
is composed of two fermion bubbles, each of which, following the Feynman rules listed earlier,
translate to

T

V

∑

k,iωn,s t

(
−τast√
Nf

)
δst (iωn + iεn/2) Tr [G(k + q/2, iωn + iεn) σν G(k − q/2, iωn) σµ] , (4.5)

where the factor of δst comes from the fact that the thermal vertex conserves color. Resultantly,
Eq. (4.5) is just proportional to Tr (τa) and hence, is identically zero. By the same reasoning, the
diagram for the magnetization contribution in Fig. 7 also vanishes. Therefore, we conclude that
upon taking Nf → ∞, there are no corrections to the thermal Hall conductivity due to SU(2)
gauge-field fluctuations.

B. Gauge fluctuations at next-to-leading order

We are now positioned to consider the contributions to κxy of the theory (1.1) at order N0
f .

The Feynman diagrams which contribute to this order are shown in Fig. 8 and Fig. 9. Given the
complexity of the gluon propagator in Appendix C, and the differential equation that has to be
solved for the magnetization subtraction, we do not attempt a full numerical evaluation of these
graphs for general m/T . Instead, we will be satisfied by examining them in the limit |m|/T →∞
(recall that we always take the limit |M |/T → ∞). In this limit, we expect that a description in
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1

q, iεn

k − q/2, iωn

k + q/2, iωn + iεn

q, iεn

FIG. 1. The magnetization diagram at the same order in 1/N as Fig. ??. One of the two thermal vertices
in Fig. ?? is replaced by an energy-density vertex here.FIG. 7. The magnetization diagram at the same order in 1/Nf as Fig. 6. One of the two thermal vertices

in Fig. 6 is replaced by an energy-density vertex here.

terms of the effective Maxwell-Chern-Simons theory in Section III applies, and we can therefore
deduce the contribution to κxy from results therein. The MCS theory gives the second term in the
bracket of Eq. (1.3). 1

(a) (b) (c)

FIG. 8. The (a–b) density of states (DOS) and (c) Maki-Thompson [37, 38] diagrams, which contribute

to κxy for the theory (1.1) at O(N0
f ). Additionally, the magnetization subtraction requires evaluation of

the analogous graphs given by replacing a thermal vertex with an energy-density vertex, like in Fig. 7.

The diagrams listed in Fig. 8 renormalize fermion mass and fermion charge at O(1/Nf ), which
can be neglected in the |m|/T → ∞ limit. Therefore, the important Feynman diagram in this
limit is the ‘Aslamazov-Larkin’ diagram [39] drawn in Fig. 9. The triangular vertices in Fig. 9 each
reduce to the stress-energy vertex used in Section III, as we now show.

Following the discussions of Appendix B, the gauge-invariant stress tensor of the theory (4.2)

FIG. 9. The ‘Aslamazov-Larkin’ diagram responsible for the thermal Hall response at order N0
f . The

red triangles denote the effective stress tensor-gauge field-gauge field vertex obtained from integrating out

fermionic loops in Fig. 10.
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pαa

qβb

k
µν

pαa

qβb
µν

FIG. 10. The two types of diagrams for the triangular vertex.

is
T µν =

i

2
Ψ̄γµ(

−→
∂ ν −←−∂ ν)Ψ +

aνb√
Nf

Ψ̄γµτ bΨ− ηµνLNf ,SU(2). (4.6)

For shorter notation, we have suppressed flavor and color indices on the fermions.

Based on the above stress tensor, there are two types of vertices contributing to the triangular
vertex, as shown in Fig. 10.

The first type is a fermion triangle; the corresponding effective vertex function is

Γµναβ1 (p, q)
δab

2
=

∫
d3k

(2π)3
(−1)Tr

{[
γµ

(2k + q − p)ν
2

− ηµν(2/k + /q − /p
2

+m)

]

× i

/k − /p+m
iγατa

i

/k +m
iγβτ b

i

/k + /q +m

}
+ (pαa↔ qβb) .

(4.7)

The second type is a fermion bubble, and the associated effective vertex is

Γµναβ2 (p, q)
δab

2
=

∫
d3k

(2π)3
(−1)Tr

{
τ b(γµηνβ − γβηµν) i

/k +m
iγατa

i

/k + /p+m

}

+ (pαa↔ qβb) .

(4.8)

In the equations above, we have factored out the color indices on the LHS. Since we are looking at
the |m|/T →∞ limit, we will only evaluate the above integrals at zero temperature. The integrals
can be performed with the standard Feynman parameter tricks. While it is possible to obtain
closed-form results for arbitrary momenta and mass, the resultant expressions are too long and
not very enlightening. We expand the result to second order in momenta, and obtain

Γµναβ1 (p, q) + Γµναβ2 (p, q) =
1

12π|m|Γ
µναβ(p, q), (4.9)

where Γµναβ(p, q) is the stress-tensor vertex function defined in (3.8).

Given the identity of the stress tensor above, we can now use the results of Section III on the
Maxwell-Chern-Simons theory to deduce the 1/Nf correction to the Dirac Chern-Simons theory in
the limit |m|/T → ∞. Each U(1) gauge field yields the contribution in (3.30); for a SU(2) gauge
field, we have 3 U(1) gauge fields (which can be treated as independent at this order in 1/Nf ), and
so we obtain the second term in (1.3) in the limit of large |k̂|.
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V. CONCLUSION

We have examined the thermal Hall conductivity in square lattice insulators near the quantum
phase transition between the Néel state and a state with coexisting Néel and semion topological
order. This transition is described by the Dirac Chern-Simons field theory in (1.1) for Nf = 1 and
k = −1/2. The thermal Hall conductivity is expected to obey the universal scaling form in (1.2).
In the limit of low T away from the critical point, |m|/T → ∞, we have the exact result in (1.3)
obtained via a sophisticated mapping to conformal field theories on the boundary of the sample.
We obtained the leading and next-to-leading order results of (1.3) in a direct 1/Nf expansion (with
k taken of order Nf ). These computations can also be applied to other values of m/T , and results
to leading order are in (2.10) and Fig. 5; however, the next-to-leading order computations are
numerically demanding.

One of the lessons of this computation is that the leading contribution can be viewed as that
of fermionic matter, while the next-to-leading order terms arises from the quantum fluctuations
of the gauge fields (here we are viewing the Chern-Simons term in the field theory as arising from
integrating out a massive fermionic matter field).

We applied this lesson to a model of the doped antiferromagnet described by (1.6). This
theory contains fermionic matter forming pocket Fermi surfaces: the thermal Hall contribution
of these pockets is assumed to obey the Wiedemann-Franz law. The contribution of the gauge
field was deduced from the Maxwell-Chern-Simons effective action in (1.8), which has the thermal
Hall contribution specified by (3.29). Importantly, this contribution has the opposite sign from
the Wiedemann-Franz contribution, consistent with the experimental trends [2]. We note that
Dirac fermion thermal Hall conductivity in (2.10) and the Maxwell-Chern-Simons thermal Hall
conductivity in (3.29) correspond to distinct universal scaling functions, a consequence of the
non-topological nature of the thermal Hall effect in the quantum-critical crossover regime.

The gauge field contribution has the correct sign to account for the additional negative con-
tribution to κxy/T in the pseudogap regime, as observed in Ref. 2. However, its magnitude is
bounded by π/6 (see (3.29)) for the case a single U(1) gauge field. The observed magnitude is
larger by, at least, a factor of 2; the coupling constants in (1.8) only appear in the crossover energy
scale mt = σxy/(e

2K2), and not in the overall magnitude of κxy. It is possible that other models of
the pseudogap with additional gauge fields could account for the discrepancy. Alternatively, the
phonon contribution [40] needs to be combined with the emergent gauge field to understand the
observations, and a phonon-emergent photon coupling could provide the needed chirality in the
phonon transport.
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Appendix A: Low-energy field theory

The form of the resulting field theory is clear: upon inspection of the spectrum of the lattice
model in Ref. 10 close to the phase transition, we observe two Dirac cones (of complex fermions)
that result from the two sublattices of our ansatz. Therefore, the (2× 2) Dirac matrices, γµ, will
act in sublattice space. From the lattice theory, with spinon operators fiσ, σ =↑, ↓, we know that
there will be an SU(2) gauge field. The lattice gauge transformations act locally in the lattice
model,

SU(2)g :

(
f †i↓
fi↑

)
−→ Ug(i)

(
f †i↓
fi↑

)
, Ug(i) ∈ SU(2); (A1)

as such, they cannot mix different sublattices in the continuum model. It will therefore have the
Lagrangian

LD = iΨ̄γµ (∂µ − iAµ) Ψ +mΨ̄Ψ− 1

2
CS [Aµ], (A2)

with Ψ̄ = Ψ†γ0. As usual, the Dirac matrices satisfy the Clifford algebra, {γµ, γν} = 2ηµν with
η = diag(+,−,−). The Chern-Simons term is an obvious consequence of the additional massive
fermions and will be omitted in the following. To set up the notation, let us write Eq. (A2) more
explicitly,

LD = iΨ†sα(γ0γµ)ss′ [∂µ − i(Aµ)αα′ ] Ψs′α′ +mΨ†sα(γ0)ss′Ψs′α, (A3)

with sublattice and gauge index s and α, respectively. Here, the gauge transformations act as

SU(2)g : Ψsα −→ (Ug)αα′Ψsα′ ; Aµ → UgAµU
†
g − i(∂µUg )U †g . (A4)

In the remainder of this section, we will derive Eq. (A3) from the lattice model and, thereby,
relate Ψ explicitly to the lattice fermions.

For simplicity, let us focus on the case without a Zeeman field, BZ = 0, and use the same gauge
as in Ref. 10. We define the Fourier transform as

fiσ =
1√
N

∑

k

eikxifkσs(i), xi = (ix, iy), s(i) =




A, ix + iy even,

B, ix + iy odd.
(A5)
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The spectrum of the lattice model has minima at Q and −Q, where Q = (π/2, 0)T , with spin
polarization ↑ and ↓, respectively. Let us expand around these minima by defining new “slow”,
low-energy fields

cq,s,v=+ := fQ+q,↑,s, cq,s,v=− := f−Q+q,↓,s, |q| � 1/a, (A6)

for each of the two “valleys” v = ± and sublattices s = A,B. Equivalently, this corresponds to

fi↑ ∼ eiQxics(i)+(xi), fi↓ ∼ e−iQxics(i)−(xi) (A7)

in real space, i.e., cs,v(r) := N−1/2
∑Λ

q e
iqrcq,s,v with some cutoff Λ� 1/a. With these definitions,

the mean-field Hamiltonian can be written as

HMF ∼ −ivF
∫

dr c†s,v [v(τx)ss′∂x + (τy)ss′∂y] cs′,v +m

∫
dr c†s,vv(τz)ss′cs′,v (A8)

at low-energies. Here vF = 2t1 (which we will set to 1 in the following) and m = −(4t2 + Nz/2),
where, as in Ref. 10, t1, t2, and Nz are the nearest-, next-nearest-neighbor hopping, and the Néel
order parameter, respectively; furthermore, τj denote Pauli matrices in sublattice space.

As follows from comparison of Eqs. (A1) and (A7), gauge transformation act as

SU(2)g : Cs(r) −→ U (s)
g (r)Cs(r), Cs(r) :=

(
c†s,−(r)

cs,+(r)

)
(A9)

in the low-energy theory. Naively, one might think that the gauge transformations in the two
sublattices are independent as they were in the lattice model. However, this is would enhance the
gauge symmetry to SU(2) × SU(2) in the continuum model which is not the case; the reason is
that not all gauge transformations allowed on the lattice act entirely in the low-energy field theory.
In fact, we will see that UA

g (r) and UB
g (r) are related by a similarity transformation within the

continuum field theory,
UA
g (r) = V †UB

g (r)V, V ∈ SU(2). (A10)

This means that there is a gauge, reached by performing a gauge transformation with Ug(i) = V †

for ix + iy even and Ug(i) = 1 for ix + iy odd, where the gauge transformation is independent of s
in the continuum model. To see this, just note that the new field after the gauge transformation,

C̃s = VsCs, V A = V †, V B = 1, (A11)

transforms as C̃s(r) → V †s U
(s)
g (r)VsC̃s(r); with the above choice for Vs, it holds V †s U

(s)
g (r)Vs =

UB
g (r), independent of s.

To add gauge-field fluctuations to the mean-field Hamiltonian (A8), we rewrite the latter in
terms of the Nambu field Cs. Denoting Pauli matrices in Nambu/valley space by ηj, we get

HMF ∼ i

∫
drC†s [(τx)ss′∂x + (τy)ss′∂y] ηzCs′ +m

∫
drC†s(τz)ss′η0Cs′ . (A12)
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To bring the theory to the form of Eq. (A3), we have to transform ηz into η0 in the first term.
This can be done by introduction of a new field C̃s as defined in Eq. (A11) with V = −iη3; we get

HMF ∼ i

∫
dr C̃†s [(τy)ss′∂x − (τx)ss′∂y] η0C̃s′ +m

∫
dr C̃†s(τz)ss′η0C̃s′ . (A13)

In this form, it becomes apparent that only gauge transformations, C̃s(r)→ Ũ
(s)
g (r)C̃s(r), that are

independent of s, Ũ (s)
g (r) = Ũg(r), can appear in the low-energy theory. Based on our discussion

above, we see that this indeed corresponds to Eq. (A10) with V = −iη3.

To match the common conventions for the Dirac matrices,

(γ0, γx, γy) = (τy, iτz, iτx), (A14)

we perform yet another unitary transformation in sublattice space only (which, thus, does not
affect the gauge transformation properties),

Ψs(r) =
(
ei
π
4
τxei

π
4
τz
)
ss′
C̃s′(r), (A15)

leading to

HMF ∼ i

∫
drΨ†s [(τx)ss′∂x − (τz)ss′∂y] Ψs′ +m

∫
drΨ†s(τy)ss′Ψs′ . (A16)

As Ψsα(r) → (Ug(r))αα′Ψsα′(r) under gauge transformations, adding gauge fluctuations to
Eq. (A16) in the action formalism leads precisely to Eq. (A3). We now know the relation between
the field Ψ and the lattice degrees of freedom.

Appendix B: Derivation of heat hurrent and the associated Feynman rules

Since our eventual interest lies in the (thermal) current-current correlation functions, our first
step is to compute the associated heat current vertex. There are two approaches as described
below.

1. Equation-of-motion approach

To develop the formalism, we begin with a generalized Hubbard-like model on a lattice described
by the Hamiltonian

H =
∑

ijµν

tµνij ψ
†
iµψjν ≡

∑

i

hi ; hi =
1

2

∑

jµν

(
tµνij ψ

†
iµψjν + tνµji ψ

†
jνψiµ

)
, (B1)

for which we shall evaluate the thermal current using the equation-of-motion technique [41]. We
emphasize that H and the ψ fermions need not have to be the same as those of the lattice model
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in Ref. 10; in practice, we extract H solely from the effective theories such as Eq. (B9) below. In
the equation above, hi stands for the local energy density; i, j are the lattice sites whereas µ, ν
connote any other degrees of freedom. It readily follows [42] that

ḣi =
1

2

∑

jµν

[
tµνij

(
ψ†iµψ̇jν − ψ̇†iµψjν

)
+ tνµij

(
ψ̇†jνψiµ − ψ†jνψ̇iµ

)]
, (B2)

where Ȯ = i[H,O]. From the continuity equation for the energy current [26, 30, 43], ḣi+∇·Je
i = 0,

we find

Je
q =

1√
V

∑

i

e−iq·riJe
i =

i

2
√
V

∑

kµν

∂hµνk
∂k

(
ψ†k−q/2,µ ψ̇k+q/2,ν − ψ̇

†
k−q/2,µ ψk+q/2,ν

)
, (B3)

where hµνk is the second-quantized Hamiltonian and we have used the approximation hk+q/2 −
hk−q/2 ' (∂hk/∂k) · q, concentrating on the small q limit. Using the Heisenberg equation of
motion, this simplifies to

Je
q = − 1

2
√
V

∑

k,µνρ

(
∂hµρk
∂k

hρνk+q/2 + hµρk−q/2
∂hρνk
∂k

)
ψ†k−q/2,µ ψk+q/2,ν . (B4)

In this notation, it is clear that the indices µ, ν keep track of the component of the Dirac fermion
under consideration. The heat current (Jq) is related to the energy current by Jq = Je − µJ .
Switching to frequency domain from Eq. (B3), at µ = 0, we obtain,

Jq(q, iεn) =
1

β
√
V

∑

k,iωn

(
∂kh

µν
k

)
(iωn + iεn/2)ψ†k−q/2,µ(iωn)ψk+q/2,ν(iωn + iεn), (B5)

where ωn and εn are fermionic and bosonic Matsubara frequencies, respectively. This defines the
heat/energy-current vertex

1

Ψ

Ψ

ηa ≡ Vq
a (q, iεn) = σa (iωn + iεn/2),

(B6)

supplemented with a factor of 1/(βV ) for each internal three-momentum. Likewise, recognizing
that

h(q) =
1√
V
e−iq.rihi =

1

2
√
V

∑

k,µν

(
hµνk+qψ

†
k,µψk+q,ν + hνµk ψ

†
k,νψk+q,µ

)
, (B7)
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we have, for K̂q as defined in Eq. (2.4), the second vertex :

1

µ

ν

ηa ≡ Ka(q, iεn) =
1

2

(
hµνk+q/2 + hµνk−q/2

)
. (0.1)

(B8)

On top, for each independent momentum, a factor 1/(β V ) remains from the corresponding Fourier
transform.

Lastly, since there is no specific advantage in using the conventional relativistically invariant
notation of Eq. (1.1) at T 6= 0, in some convenient situation, we use the following equivalent form
of the fermion action

S =

∫
d2r dτ Ψ†α

(
∂τ − iAτ − iσx(∂x − iAx)− iσy(∂y − iAy)

)
Ψα +mΨ†α σ

z Ψα. (B9)

Then, it is not difficult to see that propagator for the fermions is simply

≡ GΨ(k, iωn) =
1

−i ωn + σ · k +mσz
. (B10)

The action and propagator for the light and heavy fermions are exactly analogous, up to an
appropriate substitution of m` or M for m in Eq. (B10).

2. Noether procedure

Since most of the time we are dealing with continuum field theory, it is also beneficial to directly
write down the energy current or stress tensor of the field theory. In this section, we will use the
Noether procedure to derive the stress tensor.

First, we shall point out that our situation is different from the standard relativistic field theory
because the spacetime is not Lorentzian. For example, the Dirac-Chern-Simons theory (1.1) comes
from the underlying lattice model in Appendix. A, and the gamma matrices in (1.1) acts on band
index instead of physical spin index. Therefore under space-time rotation the fermions transform
as spinless fields, and we have explicitly broken spin-statistics relation. The consequence of non-
Lorentzian spacetime is that it’s not always possible to covariantly couple the theory to conventional
Riemannian metric and the stress tensor does not have to be symmetric. While it’s possible to
couple the theory to Newton-Cartan or Bargmann spacetime [44], we shall derive the stress-tensor
in a simpler approach by using the Noether procedure.
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Next we review the conventional Noether procedure for stress tensor. We first apply a gauged
spacetime translation xµ → xµ + εµ(x) to the system. Because the system is translation invariant,
the leading order response to ε should be ∂ε, and the coefficient is defined to be the stress tensor:

δS = −
∫

d3xT µν∂µε
ν . (B11)

If we assume all fields transform as φa(x)→ φ′a(x) = φa(x)− εµ∂µφa(x), we get

(T µν)incor. =
∂L

∂(∂µφa)
∂νφa − δµνL. (B12)

Here φa denotes all the field contents of the theory.

The above formalism needs further improvement, because it does not respect gauge invariance,
as can be seen by applying (B12) to a Maxwell theory. The conventional Belinfante improvement
(see e.g. [45]) is not applicable because it requires Lorentz symmetry. The spacetime-independent
improvement is pointed out in [46], by requiring the gauge field to transform correctly as an
one-form:

δaaµ = −εν∂νaaµ − ∂µενaaν . (B13)

The additional term only depends on ∂ε, so it does not modify the global symmetry.

The improved stress tensor is therefore

T µν = (T µν)incor. +

(
∂L
∂aaµ
− ∂α

∂L
∂(∂αaaµ)

)
aaν . (B14)

Applying the above formalism to the Dirac-Chern-Simons theoy (1.1), we get

T µν =
1

2
Ψ̄liγ

µ(
−→
∂ ν −

←−
∂ ν)Ψl + Ψ̄lγ

µaνΨ̄l − δµνLΨ. (B15)

For the Maxwell-Chern-Simons theory (1.8), with K1 and K2 being constant, we get

T µν = −f̄µρf νρ +
1

4
ηµν f̄αβf

αβ, (B16)

where f̄0i = −f̄i0 = K2f0i and f̄ij = −f̄ji = K1fij. For the special case K1 = K2 = 1/g, we get
back to the standard result

T µν =
−1

g

[
fµρf νρ −

1

4
ηµνfαβf

αβ

]
. (B17)

Appendix C: Gluon propagator

The first component required to stitch together the diagram 6 is the gauge boson propagator.
In this subsection we extend the calculations of Ref. 36 to the case of massive fermions interacting
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with a SU(2) gauge field. The general structure of the gluon’s effective action at large-N follows
from the Ward identity and is given by

SA =
T

2

∑

εn

∫
d2q

4π2

[(
qiAτ − εnAi

)2 D1(q, εn)

q2
+ AiAj

(
δij −

qi qj
q2

)
D2(q, εn)

]
, (C1)

where D1 and D2 are functions that can be evaluated at large-N by perturbatively integrating out
both the fermions starting from the action S in Eq. (B9). In Coulomb gauge qiAi = 0, this yields
the nonzero elements of the propagator to be

Dab
00(q, εn) =

4 δab

D1(q, εn)
,

Dab
ij (q, εn) =

(
δij −

qiqj
q2

)
4 δab

D2(q, εn) + (ε2n/q
2)D1(q, εn)

, (C2)

where i, j run over the spatial indices only. The matrix structure in color space comes from
inverting the product of Pauli matrices associated with the fermion loops in the functions D1,2

as
∑

st τ
a
stτ

b
ts = Tr (τaτ b) = δab/4. No fermions remain in the action SA and all their effects are

encapsulated in Eq. (C1) through these two functions alone.

Let us begin by calculating D1, which is defined as:

D1(q, εn) = −N
∫

k,ωn

Tr [G(k, ωn)G(q + k, ωn + εn)]

= 2N

∫

k,ωn

ωn(ωn + εn)−m2 − k · (k + q)

(ω2
n + k2 +m2)((ωn + εn)2 + (k + q)2 +m2)

, (C3)

where we use the shorthand
∫
k,ωn

= T
∑

ωn

∫
d2k/(4π2) to signify a summation on the inter-

nal frequencies and momenta. Using the Passarino-Veltman reduction formula [47], this can be
manipulated into

D1(q, εn) = N

∫

k,ωn

[ −2

ω2
n + k2 +m2

+
(2ωn + εn)2 + q2

(ω2
n + k2 +m2)((ωn + εn)2 + (k + q)2 +m2)

]
. (C4)

For the first of the two integrals here, the UV divergence is linear, so it is most convenient to use
ζ-function regularization [48] in which

∫ ∞

0

dx = 0,

∫ ∞

1

1

x
dx = arbitrary. (C5)

Then, within this scheme,

N

∫

k,ωn

−2

ω2
n + k2 +m2

= −N
∫

d2k

4π2

tanh
(

1
2
β
√
k2 +m2

)

√
k2 +m2

=
N

2π

∫
dk

(
1− k tanh

(
1
2
β
√
k2 +m2

)
√
k2 +m2

)
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=
N T

π

[
ln 2 + ln

(
cosh

(
β |m|

2

))]
. (C6)

The second integral in Eq. (C4) can be evaluated by introducing Feynman parameters and shifting
the loop momentum k→ k − uq:

N

∫ 1

0

du

∫

k,ωn

(2ωn + εn)2 + q2

[u (ωn + εn)2 + (1− u)ω2
n + (k + uq)2 + u(1− u) q2 +m2]2

(C7)

=
N T

4π

∑

ωn

[
(2ωn + εn)2 + q2

]
I(0)
n ; with I(0)

n =

∫ 1

0

du
1

u (ωn + εn)2 + (1− u)ω2
n + u(1− u) q2 +m2

=
N T

4π

∑

ωn

{(
(2ωn + εn)2 + q2

) 1

An
ln

(
2m2 + q2 + 2ω2

n + ε2n + 2ωnεn +An
2m2 + q2 + 2ω2

n + ε2n + 2ωnεn −An

)}
, (C8)

where An ≡
√

4m2q2 + (q2 + ε2n) (q2 + (2ωn + εn)2). We shall encounter the integral I(0)
n in mul-

tiple contexts later so it is handy to define it separately. The summation over the fermionic
Matsubara frequencies can only be performed numerically, and in this regard, it is useful to estab-
lish the large-ωn behavior of the terms since ωn is not bounded above. After symmetrizing over
positive and negative frequencies and subtracting the divergent piece using a ζ regulator, the 1/ωn

expansion for the terms within the curly braces in Eq. (C8) stands as

−12m2 + q2 + ε2n
3ω2

n

+
120m4 + 10m2 (q2 − 15ε2n)− q4 + 8q2ε2n + 9ε4n

30ω4
n

(C9)

+
1

ω6
n

[
1

210

(
q2 + ε2n

) (
q4 − 19q2ε2n + 50ε4n

)
− 4m6 −m4

(
q2 − 15ε2n

)
− 1

15
m2
(
q4 − 14q2ε2n + 105ε4n

)]

followed by terms of O(1/ω8
n). Note that Eq. (C9) reduces correctly to the expressions documented

in Ref. [36] in the limit m → 0. This asymptotic behavior can then be summed by using the
identities

∞∑

n=M+1

1

(2n− 1)2
=

1

4M
− 1

48M3
+

7

960M 5
+ . . . ,

∞∑

n=M+1

1

(2n− 1)4
=

1

48M3
− 1

96M5
+ . . . ,

∞∑

n=M+1

1

(2n− 1)6
=

1

320M 5
+ . . . , (C10)

while retaining the exact functional dependence of Eq. (C8) for small ωn up to 2π (±M + 1/2)T .

We can employ a similar procedure for the second function in Eq. (C2):

D2(q, εn) = − q2

qx qy
N

∫

k,ωn

Tr [σx G(k, ωn) σy G(q + k, ωn + εn)] (C11)
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= − 2 q2

qx qy
N

∫

k,ωn

2kxky + kxqy + kyqx +mεn

(ω2
n + k2 +m2)((ωn + εn)2 + (k + q)2 +m2)

=
N T

2π

q2

qx qy

∑

ωn

∫ 1

0

du
2 qx qy u (1− u)−mεn

u (ωn + εn)2 + (1− u)ω2
n + u(1− u) q2 +m2

=
N T

2π

q2

qx qy

∑

ωn

[
2 qx qy I

(2)
n −mεnI

(0)
n

]
, (C12)

where I(0)
n has already been calculated earlier and I(2)

n is defined as the integral

I(2)
n =

∫ 1

0

du
u (1− u)

u (ωn + εn)2 + (1− u)ω2
n + u(1− u) q2 +m2

, (C13)

=

[ (
2q2

(
m2 + ω2

n

)
+ εn(2ωn + εn)

(
q2 + 2εnωn + ε2n

))
ln

(
(Cn − q2)2 − (ε2n + 2ωnεn)2

(Cn + q2)2 − (ε2n + 2ωnεn)2

)

+ Cn
(
εn(2ωn + εn) ln

(
m2 + (ωn + εn)2

m2 + ω2
n

)
+ 2q2

)]
1

2 Cnq4
(C14)

with Cn ≡
√

4q2 (m2 + ω2
n) + (q2 + εn(2ωn + εn))2. The full expression for Eq. (C12) is forbid-

dingly complex and is also not particularly insightful. Instead, akin to Eq. (C9), we can symmetrize
over the frequencies and write out D2 for large ωn in a series expansion as

D2(q, εn) =
N T q2

2π

∑

ωn

[
qxqy − 3mεn

3 qx qy ω2
n

+
5mεn (6m2 + q2)− 2qxqy (5m2 + q2)− 25mε3n + 7qxqyε

2
n

30 qx qy ω4
n

+
1

210 qx qy ω6
n

{(
210m5εn − 70m4qxqy + 70m3εn

(
q2 − 9ε2n

)
− 14m2qxqy

(
2q2 − 13ε2n

)

+ 7mεn
(
−13ε2nq

2 + q4 + 16ε4n
)

+ qxqy
(
34ε2nq

2 − 3q4 − 13ε4n
) )}

+O
(

1

ω8
n

)]
, (C15)

which is convergent at large ωn. Once again, when m = 0, this correctly reproduces the results of
Kaul and Sachdev [36].

1. Limit of zero external momentum

While the propagator derived above holds for all momenta, the q = 0 limit, in particular,
involves some subtleties and must be dealt with care. In the limit where the external momentum
is zero, D1 is finite, and according to Eq. (C8), goes to

N T

4π

∑

ωn

|2ωn + εn|
|εn|

ln

(
2m2 + ω2

n + (εn + ωn)2 + |εn||2ωn + εn|
2m2 + ω2

n + (εn + ωn)2 − |εn||2ωn + εn|

)
, (C16)

so the temporal component of the gluon propagator, Dab
00, is nonzero. The more nontrivial part is

the spatial component

Dij(q, εn) =
q2δij − qi qj

q2 D2(q, εn) + ε2nD1(q, εn)
, (C17)
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and specifically, the behavior of D2(q, εn) as q → 0:

lim
q→0

q2 D2(q, εn) =
N T

2π

∑

ωn

[
εn(2ωn + εn) ln

(
m2 + (ωn + εn)2

m2 + ω2
n

)
(C18)

− 2m q4εn
qxqy|εn||2ωn + εn|

{
tanh−1

(
ε2n + 2ωnεn
|εn||2ωn + εn|

)
+ tanh−1

(
ε2n − 2ωnεn
|εn||2ωn + εn|

)}]
.

Rewriting this in polar coordinates, and assuming cos, sin θ 6= 0, we find

Dij(q, θ, εn) ∼ q2δij − q2(cos4−i−j θ sini+j−2 θ)

q4

q2 cos θ sin θ
χ0(εn) + χ1(εn)

=
q4
(
δij − cos4−i−j θ sini+j−2 θ

)
cos θ sin θ

q4 χ0(εn) + q2 cos θ sin θ χ1(εn)
= 0,

where the χ are functions of εn alone, independent of q. Thus, the spatial components of the gluon
propagator are zero when the external momentum is zero. The same result can be proved even
when the assumption above is relaxed by successively taking the limits qx → 0, qy → 0.

Appendix D: Framing anomaly in the ‘wrong’ metric

In the main text, we have calculated the framing anomaly using a metric compatible with the
speed of ‘light’ c0 =

√
K1/K2. It would also be interesting to put the theory in an incompatible

metric whose speed of ‘light’ is different from c0 and redo the computation. We expect the result
to be essentially the same as the one obtained from a compatible metric.

Let us assume we are in a spacetime with metric ηµν = (1,−1,−1), and the MCS theory (1.8)
has a speed of ‘light’ c0 =

√
K1/K2 6= 1.

In momentum space, the MCS theory has the following form (we have included a gauge-fixing
term)

S =

∫
d3p

(2π)3
aµ(−p)K2

2

(
c2

0P
µν
1 (p) + P µν

2 (p) +
pµpν

ξ
+mtε

µνρipρ

)
aν(p). (D1)

Here P1, P2 are the transverse projectors corresponding to B2, E2 respectively:

P µν
1 =

(
0 0

0 pipj − δijp2

)
, (D2)

P µν
2 =

(
p2 p0pj

p0pi (p0)2δij

)
. (D3)

Inverting the matrix in the parenthesis of Eq. (D1), we get the gauge field propagator (in ξ = 0

gauge)
Dµν(p) = A1P

µν
1 + A2P

µν
2 + A3ε

µνρipρ, (D4)
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where

A1 =
1

K2p2(p̃2 −m2
t )

(2− c2
0)(p0)2 − p2

p2
, (D5)

A2 =
1

K2p2(p̃2 −m2
t )

p̃2

p2
, (D6)

A3 =
−mt

K2p2(p̃2 −m2
t )
, (D7)

and p̃2 = (p0)2 − c2
0 p

2.

Next, we discuss the stress tensor T µν . Since K1 6= K2, there is no natural way to couple the
system to a background metric, so we have to use Noether’s theorem to derive T µν . To ensure
gauge invariance, we use a modified Noether procedure which is described in Appendix. B. Using
the transformation law (B13), we can write down the stress tensor

T µν = −f̄µρf νρ +
1

4
ηµν f̄αβf

αβ, (D8)

where f̄0i = −f̄i0 = K2f0i and f̄ij = −f̄ji = K1fij. This result agrees with the energy-momentum
tensor of classical electrodynamics in a medium.

The computation of the gravitational Chern-Simons term and the thermal Hall effect can now
be carried out in the same way as in the maintext. In this calculation, the cancellation of the
p2 factors seen in (3.20) also happens. Therefore, the denominator of the integrand is now (p̃2 −
m2
t )((p̃ + q̃)2 − m2

t ).At zero temperature, the momentum integral can be performed in standard
ways after rescaling the zeroth component, yielding the following gravitational Chern Simons term:

CSg[h] = − c

192π

∫
d3p

(2π)3
hµν(−p)εµρσ(ipσ)P̃ νλ

T hρλ(p), (D9)

where P̃T is a transverse projector in the compatible metric:

η̃µν = (c2
0,−1,−1),

P̃Tµν = η̃µν
p̃2

c2
0

− pµpν .
(D10)

A subtlety here is that all indices are raised and lowered with the incompatible metric ηµν =

(1,−1,−1).

As for the thermal hall effect, we compute the antisymmetrized polarization analogous to (3.20),
which now becomes

Πµ0;ρ0
AS =

∫
d3q

(2π)3

−mtε
µρσũσ

(q̃2 −m2
t )((p̃+ q̃)2 −m2

t )
, (D11)

and the ũσ’s are related to the uσ’s in the main text by simple scaling:

ũ0(p0, q0,p, q) = c2
0u

0(p0, q0, c0p, c0q) (D12)
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ũi(p0, q0,p, q) = c0u
i(p0, q0, c0p, c0q). (D13)

Carrying out the integration, we found that (3.25) is not altered, and therefore the thermal Hall
coefficient remains to be

κxy =
π

6
c T. (D14)
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