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Abstract

We describe the phase diagram of electrons on a fully connected lattice with random hopping, subject

to a random Heisenberg spin exchange interactions between any pair of sites and a constraint of no

double occupancy. A perturbative renormalization group analysis yields a critical point with fractionalized

excitations at a non-zero critical value pc of the hole doping p away from the half-filled insulator. We

compute the renormalization group to two loops, but some exponents are obtained to all loop order. We

argue that the critical point pc is flanked by confining phases: a disordered Fermi liquid with carrier

density 1 + p for p > pc, and a metallic spin glass with carrier density p for p < pc. Additional evidence

for the critical behavior is obtained from a large M analysis of a model which extends the SU(2) spin

symmetry to SU(M). We discuss the relationship of the vicinity of this deconfined quantum critical point

to key aspects of cuprate phenomenology.

1

ar
X

iv
:1

91
2.

08
82

2v
4 

 [c
on

d-
m

at
.st

r-
el

]  
18

 F
eb

 2
02

0

https://arxiv.org/abs/1912.08822


CONTENTS

I. Introduction 3

II. Large volume limit 7

A. Mapping to a quantum impurity problem 9

III. RG analysis 11

A. Fermion and boson self energy 12

B. Vertex correction 13

C. Beta functions and fixed points 13

D. Anomalous dimensions of fα and b 15

E. Anomalous dimensions of the electron and spin operators 16

IV. Moving away from the critical point 17

A. Overdoped region 18

B. Pseudogap region 19

C. Specific heat 19

V. Conclusions 20

Acknowledgements 22

A. Superalgebras 22

1. Larger symmetries 23

2. Operator expectation values 24

B. RG equations for general M , M ′ 25

1. Spin correlator 26

2. Electron correlator 29

3. RG flow 31

C. Large M limit 31

1. Green’s functions 33

2. Saddle point and self-consistency equations 34

3. Low frequency ansatzes 34

4. Luttinger constraints 36

5. Self-energies 36

6. Solution of the saddle point equations 37

a. ∆f > ε/4 38

2



b. ∆f = ε/4 39

D. RG details 40

1. Flow away from criticality 41

2. Particle density 42

3. Two-loop self energy 43

4. Two-loop vertex corrections 45

References 49

I. INTRODUCTION

Much evidence has now accumulated for a fundamental transformation in the ground state

of the cuprate superconductors near optimal hole doping p = pc [1–13]. The transformation is

primarily associated with a change in the mobile carrier density from to p to 1 + p as p increases

across pc. There are indications of various broken symmetries for p < pc, including charge and

bond density waves [3, 4], spin glass order [11–13], orbital currents [9] and nematic order [4].

However, it appears that the restoration of the broken symmetry cannot be the driving mechanism

for a quantum phase transition at p = pc: the broken symmetries are weak and differ among

the cuprates, and the transport [5], thermodynamic [6–8], electronic [2–4, 10], and spin dynamics

[11–13] signatures are strong.

This paper will study a model with all-to-all randomness (see (1.1) below) which exhibits a de-

confined quantum critical point [14] with many similarities to the mysterious cuprate phenomenol-

ogy. Our model has a quantum critical point at p = pc with fractionalized excitations, separating

metallic states with carriers densities of p and 1 + p (see Fig. 1). The overdoped state is a conven-

tional disordered Fermi liquid, the underdoped ‘pseudogap’ phase with carrier density p has spin

glass order, but the quantum critical point is described by fractionalized excitations. Our critical

theory is distinct from a Landau-Hertz-Millis-type theory [15, 16] of the quantum fluctuations of

the spin glass order in a metal; the latter theory has no fractionalization at criticality and does

not exhibit a change in carrier density across the transition. Moreover, our p = pc critical theory

is expected to maximally chaotic [17], similar to the Sachdev-Ye-Kitaev (SYK) [18, 19] models,

and unlike the Landau theories [20].

Our results provide a simple rationale for the existence of a quantum phase transition in cor-

related metals with ‘Mottness’. Broken symmetries are not essential, and only play a secondary

role. At low doping, we have fermionic ‘holons’ of density p, moving in a background of condensed

bosonic ‘spinons’ (see Fig. 1). At higher doping, we have condensed bosonic holons, so that the

fermionic spinons behave like a Fermi liquid of hole-like carrier density 1 + p. This statistical
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transmutation, and corresponding transformation in the many-body state, is accomplished by a

strongly coupled deconfined critical point which exhibits a boson-fermion duality. Note that, be-

cause of the presence of the Higgs-like condensates on both sides of the critical point, there is no

true fractionalization for either p > pc or p < pc.

There have been discussions [21] of deconfined critical points between a magnetic metal with

‘small’ Fermi surfaces, and a non-magnetic heavy Fermi liquid with a ‘large’ Fermi surface (a

review of related ideas is in Ref. 22). However, to date, no tractable realization of this scenario has

been found in non-random systems. Our results show that a similar scenario is naturally realized

in models with random couplings. We also note the study of Ref 23, which found an evolution

between small and large Fermi surface across optimal doping in a plaquette dynamical mean field

theory.

Our model is in the class of SYK models [18, 19] with random all-to-all couplings, which have

been extensively exploited recently for descriptions of strange metals and the quantum informa-

tion theory of black holes. Specifically, we generalize the insulating random Heisenberg magnet

originally studied in Ref. 18 to metallic states of a t−Jij model at non-zero doping, along the lines

of Ref. 24. We consider electrons, annihilated by ciα, spin α =↑, ↓ on sites i = 1 . . . N with double

occupancy prohibited
∑

α c
†
iαciα ≤ 1. The Hamiltonian is the familiar t-J model with

HtJ =
1√
N

N∑
i6=j=1

tijP c
†
iαcjαP +

1√
N

N∑
i<j=1

JijSi · Sj − µ
∑
i

c†iαciα (1.1)

where P is the projection on non-doubly occupied sites, µ is the chemical potential and Si =

(1/2)c†iασαβciβ is the spin operator on site i, with σ the Pauli matrices. The complex hoppings

tij = t∗ji and the real exchange interactions Jij are independent random numbers with zero mean

and mean-square values |tij|2 = t2 and J2
ij = J2. We will work at a variable hole density p, defined

by
1

N

∑
i

〈
c†iαciα

〉
= 1− p . (1.2)

The insulating p = 0 case of HtJ was studied in Ref. 18, and in Ref. 24 for non-zero p, after

generalizing the SU(2) spin symmetry to SU(M ) and taking the large M limit (see Appendix C). A

gapless critical ground state was found [18] at large M for p = 0. However, subsequent numerical

studies [25, 26] of the insulating SU(M = 2) case found a spin glass ground state, and such

insulating spin glass states had also been examined in the large M limit [27, 28]. At non-zero p,

the particular large M limit in Ref. 24 predicted a Fermi liquid ground state for all p > 0. We

argue here that for the physical SU(2) case, the Fermi liquid only appears above a critical doping

p > pc, and that there is a metallic critical state very similar to the critical state of Ref. 18 at

p = pc. Our study was motivated by the observation of such critical spin correlations in metals in
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SU(2|1) theory
<latexit sha1_base64="w9dUb6nQ8Lr+9a1+t+J8DfkPyNE=">AAAB+XicdVDLSgMxFM3UV62vUZdugq1QN0Nmah/LohuXFZ220A4lk6ZtaOZBkimUsX/ixoUibv0Td/6N6UNQ0QMXDufcy733+DFnUiH0YWTW1jc2t7LbuZ3dvf0D8/CoKaNEEOqSiEei7WNJOQupq5jitB0LigOf05Y/vpr7rQkVkkXhnZrG1AvwMGQDRrDSUs80b91iwbm3C+dQjWgkpj0zjyy7VildVCCyyjZC1ZImjoNqdhXaFlogD1Zo9Mz3bj8iSUBDRTiWsmOjWHkpFooRTme5biJpjMkYD2lH0xAHVHrp4vIZPNNKHw4ioStUcKF+n0hxIOU08HVngNVI/vbm4l9eJ1GDmpeyME4UDcly0SDhUEVwHgPsM0GJ4lNNMBFM3wrJCAtMlA4rp0P4+hT+T5qOZZes8o2Tr1+u4siCE3AKisAGVVAH16ABXEDABDyAJ/BspMaj8WK8LlszxmrmGPyA8fYJrKWSaw==</latexit>

Deconfined
quantum
critical
point

<latexit sha1_base64="LtCXtYlqv44ZOgqTFdHPwyX5Ryo="></latexit>

p
<latexit sha1_base64="J39LxafBIRl4FwURhR1mChfo8es=">AAAB9XicdZDLSsNAFIYnXmu9VV26GWwFFxKSpqm6K7pxWdFeoA1lMp20QyfJMDOplNBHcKsrd+LW53HhuzhNK6jogYGP/z+Hc+b3OaNSWda7sbS8srq2ntvIb25t7+wW9vabMk4EJg0cs1i0fSQJoxFpKKoYaXNBUOgz0vJHVzO/NSZC0ji6UxNOvBANIhpQjJSWbku81CsULdNyK06lAjU4VefC0uC6ZbtqQ9u0siqCRdV7hY9uP8ZJSCKFGZKyY1tceSkSimJGpvluIglHeIQGpKMxQiGRp/0x5TJDL82unsJjbfZhEAv9IgUz9ftwikIpJ6GvO0OkhvK3NxP/8jqJCs69lEY8USTC80VBwqCK4SwC2KeCYMUmGhAWVJ8N8RAJhJUOKq/z+Po0/B+aZdN2TPemXKxdLpLJgUNwBE6ADc5ADVyDOmgADAbgATyCJ+PeeDZejNd565KxmDkAP8p4+wS//ZI6</latexit>

pc
<latexit sha1_base64="a+lxdf3DN5Lw70bbZtTopOsRRNc=">AAAB93icdZDLSsNAFIYnXmu9VV26GWwFFxKSpqm6K7pxWcG0hTaUyWTSDp1cmJkUQugzuNWVO3Hr47jwXZymFVT0wMDH/5/DOfN7CaNCGsa7trK6tr6xWdoqb+/s7u1XDg47Ik45Jg6OWcx7HhKE0Yg4kkpGegknKPQY6XqTm7nfnRIuaBzdyywhbohGEQ0oRlJJTi0Z4tqwUjV0w25YjQZUYDWtK0OBbdfNpglN3SiqCpbVHlY+Bn6M05BEEjMkRN80EunmiEuKGZmVB6kgCcITNCJ9hREKiTj3pzQRBbp5cfcMnirTh0HM1YskLNTvwzkKhchCT3WGSI7Fb28u/uX1UxlcujmNklSSCC8WBSmDMobzEKBPOcGSZQoQ5lSdDfEYcYSliqqs8vj6NPwfOnXdtHT7rl5tXS+TKYFjcALOgAkuQAvcgjZwAAYUPIBH8KRl2rP2or0uWle05cwR+FHa2yc6qpMQ</latexit>

Disordered
Fermi liquid.

Condense holon b,
f↵ carrier density 1 + p

<latexit sha1_base64="5aLWmLRLYLdIhssaRLfs5y6HB+k="></latexit>

SU(1|2) theory
<latexit sha1_base64="Lomd+aWe+buASEBCeb0kWxtJh8A=">AAAB+XicdVDLSgMxFM3UV62vUZdugq1QN0Nmah/LohuXFZ220A4lk6ZtaOZBkimUsX/ixoUibv0Td/6N6UNQ0QMXDufcy733+DFnUiH0YWTW1jc2t7LbuZ3dvf0D8/CoKaNEEOqSiEei7WNJOQupq5jitB0LigOf05Y/vpr7rQkVkkXhnZrG1AvwMGQDRrDSUs80b91iwb53CudQjWgkpj0zjyy7VildVCCyyjZC1ZImjoNqdhXaFlogD1Zo9Mz3bj8iSUBDRTiWsmOjWHkpFooRTme5biJpjMkYD2lH0xAHVHrp4vIZPNNKHw4ioStUcKF+n0hxIOU08HVngNVI/vbm4l9eJ1GDmpeyME4UDcly0SDhUEVwHgPsM0GJ4lNNMBFM3wrJCAtMlA4rp0P4+hT+T5qOZZes8o2Tr1+u4siCE3AKisAGVVAH16ABXEDABDyAJ/BspMaj8WK8LlszxmrmGPyA8fYJrKOSaw==</latexit>

Metallic
spin glass.

Condense spinon b↵,
f carrier density p

<latexit sha1_base64="CzT5Z39Mpv1MjBFqjUkD8N1K258="></latexit>

b†" |vi
<latexit sha1_base64="vECycCTteykywPj6SCPCLAB1c/I="></latexit>

b†# |vi
<latexit sha1_base64="z0Nnq6dMeHIMTMZku14Z0J1WJJU=">AAACKnicdVDLTttAFB1T2tL0QVqWbEZElbqoIps8WnYINiypRAApTqPr8bUzynhszVwHRSZ/wifwFWxhxQ6h7vohTEKQaNUeaaSjc+6dmXOiQklLvn/nrbxYffnq9dqb2tt37z+s1z9+OrZ5aQT2RK5ycxqBRSU19kiSwtPCIGSRwpNovD/3TyZorMz1EU0LHGSQaplIAeSkYb0bZkCjxMC4imY/wxjSFM0wjPMzDcbkZzxUmNA5n/DQyHREoQGdKhzWG37T77Rb7TZ3pNVt7fiOdDrbQTfgQdNfoMGWOBzWf7k7RZmhJqHA2n7gFzSowJAUCme1sLRYgBhDin1HNWRov8YTWdgFHVSLqDP+2ZkxT3Ljjia+UJ8vV5BZO80iNzkPZv/25uK/vH5JyfdBJXVREmrx+FBSKk45n/fGY2lQkJo6AsJI920uRmBAkGu35vp4Cs3/T463m0Gr2fnRbuzuLZtZY5tsi31hAfvGdtkBO2Q9JtgFu2LX7Ma79G69O+/+cXTFW+5ssD/g/X4ALBCpIQ==</latexit>

f† |vi
<latexit sha1_base64="lXgTRA1NHcDDRUeZon/rkMtKMn4=">AAACH3icdVDLattAFB2lzaPOy2mX3QwxhUCCkfxI2l1oN12mECcByzFXoyt58GgkZq4MRvVH9BP6Fd22q+5Ctln0Xzp2HGhCemDgcM693DknKpS05Pt33sqLl6tr6xuvaptb2zu79b3XFzYvjcCeyFVuriKwqKTGHklSeFUYhCxSeBmNP839ywkaK3N9TtMCBxmkWiZSADlpWD8MM6BRYmBcJbPrMIY0RcNDhQl95RMeGpmOKDSgU4XDesNv+t1Ou9PhjrSP2x98R7rdVnAc8KDpL9BgS5wN63/COBdlhpqEAmv7gV/QoAJDUiic1cLSYgFiDCn2HdWQoT2KJ7KwCzqoFvlm/J0zY57kxj1NfKH+u1xBZu00i9zkPI196s3F57x+Scn7QSV1URJqcX8oKRWnnM/L4rE0KEhNHQFhpPs2FyMwIMhVWnN9PITm/ycXrWbQbna/dBqnH5fNbLC3bJ8dsICdsFP2mZ2xHhPsG/vBfrJf3nfvt3fj3d6PrnjLnTfsEby7v4oupBk=</latexit>

f†
# |vi

<latexit sha1_base64="OQY0Crb3vVk3Q0FhD7GrMW4ZeDc="></latexit>

f†
" |vi

<latexit sha1_base64="rS5uiKvPY9Y9AOLENzHyw9ZXJ28="></latexit>

b† |vi
<latexit sha1_base64="rwqIoMCLSOObWpFSRoBlhpC2ASY="></latexit>

hSi(⌧) · Si(0)i ⇠ constant
<latexit sha1_base64="YjhSAT9ZUaGIAx9p+G93he1QIZY=">AAACZXicdZBNbxMxEIad5asECuFDXDhgESGVS7QLRKW3Ci4ci2jaSvEq8npnE6v+WNmzhcjaP8Y/4cYNwU/ghDddpIDglSy9emZGM36LWkmPafplkFy5eu36jZ2bw1u3d+/cHd27f+Jt4wTMhFXWnRXcg5IGZihRwVntgOtCwWlx/rarn16A89KaY1zXkGu+NLKSgmNEi9ExU1AhU9wsFVB2ASJ8aBeS7jHkzXPKRGlxG6eROblcIXP9iJeaMl3YT0FY45EbbBejcTpJN6Jb5mCaTfcPaNaTMel1tBj9ZKUVjQaDQnHv51laYx64QykUtEPWeKi5OOdLmEdruAafh83vW/oskpJW1sVnkG7o9kTg2vu1LmKn5rjyf9c6+K/avMHqdR6kqRsEIy4XVY2iaGkXJS2lA4FqHQ0XTsZbqVhxxwXGwIfMgYGPwmrNTRm6CNt5lgdWWFV251gVxlnbDmNYvxOh/zcnLybZy8n0/avx4Zs+th3ymDwleyQj++SQvCNHZEYE+Uy+ku/kx+Bbsps8TB5dtiaDfuYB+UPJk19AKbvg</latexit>

hSi(⌧) · Si(0)i ⇠
1

⌧2
<latexit sha1_base64="7zUAOd7yEGAtl19wdnflzejoucs="></latexit>

hSi(⌧) · Si(0)i ⇠
1

|⌧ |
<latexit sha1_base64="MbqXBU/VEEAy2YYdewqNAk4yN9w=">AAACZnicdZBNbxMxEIad5asEKAGEOHCxiJDKJdpt0pJjBReORZC2UhxFXu9sYtUfK3u2KHL3l/FLOHJD8A844U0XqSAYydKrZ+bVjN+8UtJjmn7pJTdu3rp9Z+du/979B7sPB48en3hbOwEzYZV1Zzn3oKSBGUpUcFY54DpXcJqfv237pxfgvLTmI24qWGi+MrKUgmNEy8GMKSiRKW5WCii7ABE+NEtJ9xjy+hVlorB4HaeROblaI3OdxUtNWem4CFkTLlvbZbMcDNPRQTqZHE5pOkq3FcVkOs7GhzTryJB0dbwc/GSFFbUGg0Jx7+dZWuEicIdSKGj6rPZQcXHOVzCP0nANfhG232/oy0gKWloXn0G6pdcdgWvvNzqPk5rj2v/da+G/evMay+kiSFPVCEZcLSprRdHSNktaSAcC1SYKLpyMt1Kx5jEKjIn3mQMDn4TVmpsitBk282wRWG5V0Z5jVRhmTdOPYf1OhP5fnOyPsvHo4P1kePSmi22HPCcvyB7JyGtyRN6RYzIjgnwmX8l38qP3LdlNnibPrkaTXud5Qv6ohP4CDeW8PQ==</latexit>

FIG. 1. Proposed phase diagram of HtJ in (1.1) as function of hole doping p. The three states on each

site are realized either by fermionic spinons (fα) and bosonic holons (b) with operators as in (1.3), or

by bosonic spinons (bα) and fermionic holons (f) with operators as in (1.5); |v〉 is the holon and spinon

vacuum. The three states are nearly degenerate at p = pc, which implies pc = 1/3 at zeroth order. The

critical theory can be described by both operator representations and exhibits an exact fermion-boson

duality. Away from the critical point, the lower energy state is chosen to be bosonic, and that boson

is condensed: so the spinons bα condense for p < pc, and the holons b condense for p > pc. The spin

correlations of SY [18], decaying as 1/|τ |, are realized at p = pc. In the impurity model Himp in (2.10),

increasing p corresponds to increasing s0.

numerical studies of multi-orbital Hubbard models [29, 30], and at the metal-insulator transition

of a disordered Hubbard model at half-filling (p = 0) [31].

It is convenient to describe the 3 states on each site of the t-J model by spinon and holon

operators. We can choose the spinons to be either fermions or bosons, and the holon to have the

opposite statistics: the final results should be the same for all physical observables. With fermionic

spinons fα and bosonic holons b, the 3 physical states are f †α |v〉 and b† |v〉 (where |v〉 is the spinon

and holon vacuum, and we drop site indices), see Fig. 1. Then the operators

cα = b†fα , S =
1

2
f †ασαβfβ , V = b†b +

1

2
f †αfα (1.3)
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are all physical observables which realize the superalgebra SU(1|2) [32] (see Appendix A). We are

interested in the 3-dimensional representation of physical states obeying

f †αfα + b†b = 1 ; (1.4)

Hence, the physical states are invariant under the U(1) gauge transformation fα → fαe
iφ, b→ beiφ,

while individual spinon and holon excitations carry U(1) gauge charges.

Alternatively we can use a representation with bosonic spinons bα and fermionic holons f. Now

the gauge-invariant operators are

cα = f†bα , S =
1

2
b†ασαβbβ , V = f†f +

1

2
b†αbα . (1.5)

This realizes the same superalgebra SU(2|1) ≡ SU(1|2) as (1.3), and the same 3-dimensional

representation is obtained by the constraint

b†αbα + f†f = 1 . (1.6)

Note that while we find it convenient to refer to the superalgebra, there will be no supersymmetry

in our results: HtJ does not commute with all SU(1|2) generators.

We can now describe the structure of our main results illustrated in Fig. 1. We find a deconfined

critical point p = pc at which the 3 spinon and holon states are nearly degenerate. Assuming all

three states are equally probable at criticality, we obtain a critical density pc = 1/3. Indeed,

pc = 1/3 is the zeroth order result of our renormalization group (RG) analysis, as we show in

Appendix D 2; however, there are non-universal higher order corrections to the value of pc. We

can formulate this critical theory using either of the representations in (1.3) and (1.5). This exact

fermion-boson duality is an elementary analog of the fermion-boson duality of 2+1 dimensional

field theories describing the deconfined critical point of the square lattice antiferromagnet [33, 34];

as in the 2+1 dimensional theories, we will find that a Wess-Zumino-Witten [32, 35–38] term (SB
in (2.4) and (2.6) below) plays a central role in the criticality.

Away from the critical point, there is a runaway RG flow to states in which either the spinon

or holon states are lower in energy. As illustrated in Fig. 1, we argue that this RG flow implies

that we should now choose between the representations in (1.3) and (1.5) so that the lower energy

state is a boson, and we should condense that boson. For p > pc, the holon states are lower in

energy; so we should choose (1.3) and condense b—this breaks the U(1) gauge symmetry, and we

obtain a disordered Fermi liquid in which the fα behave like electrons of density 1 − p (which is

the same as holes of density 1 + p for the underlying Hubbard model). Conversely, for p < pc, the

spinon states are lower in energy; so we should choose (1.5) and condense bα—this again breaks

the U(1) gauge symmetry, and we obtain a metallic spin glass in which the f behave like holes of

density p. Note that as p → 0, this metallic spin glass becomes the insulating spin glass found
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in earlier studies [25–28]. The large-M limit considered in Ref. 24 captures the disordered Fermi

liquid, but does not capture the metallic spin-glass phase and the deconfined critical point at a

non-zero p = pc.

We will describe the nature of the infinite volume (N → ∞) limit of HtJ in Section II, and

map possible critical states of the large N limit to quantum impurity models in Section II A. The

RG analysis of the impurity model appears in Section III, where we obtain critical exponents

of the deconfined critical point to two-loop order; the anomlaous dimensions of the electron and

spin operators are obtained to all-loop order. We turn to the phases flanking the critical point

in Section IV, and summarize our results in Section V. The appendices contain various technical

details; in particular, the RG equations for a generalized model with SU(M ) spin symmetry appear

in Appendix B, and the large M analysis appears in Appendix C.

II. LARGE VOLUME LIMIT

The limit of large volume (N →∞) of HtJ is obtained by the methods described in Refs. [18,

27, 28] for the insulating model at p = 0. We introduce field replicas in the path integral, and

average over tij and Jij. At the N =∞ saddle point, the problem reduces to a single site problem,

with the fields carrying replica indices. The replica structure is important in the spin glass phase

[27, 28], which we will explore in subsequent work. In the interests of simplicity, we drop the

replica indices here as they play no significant role in the critical theory and the RG equations.

Within the imaginary time path integral formalism (with τ ∈ [0, 1/T ], with T the temperature),

the solution of the model involves a local single-site effective action which reads:

Z =

∫
Dcα(τ)e−S−S∞

S =

∫
dτ

[
c†α(τ)

(
∂

∂τ
− µ

)
cα(τ)

]
+ t2

∫
dτdτ ′R(τ − τ ′)c†α(τ)cα(τ ′)

− J2

2

∫
dτdτ ′Q(τ − τ ′)S(τ) · S(τ ′) , (2.1)

In this expression, µ is the chemical potential determined to satisfy (1.2) and S∞ is the action

associated with the constraint of no double occupancy (U = ∞). Decoupling the path integral

introduces fields analogous to R and Q which are initially off-diagonal in the spin SU(2) indices.

We have assumed above that the large-volume limit is dominated by the saddle point in which

spin rotation symmetry is preserved on the average, and so R and Q were taken to diagonal in

spin indices. The path integral Z is a functional of the fields R(τ) and Q(τ), and we define its
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correlators

R(τ − τ ′) = −
〈
cα(τ)c†α(τ ′)

〉
Z

Q(τ − τ ′) =
1

3
〈S(τ) · S(τ ′)〉Z (2.2)

In the thermodynamic (N →∞) limit, the solution of the model is obtained by imposing the two

self-consistency conditions:

R(τ) = R(τ) , Q(τ) = Q(τ). (2.3)

These equations and the mapping to a local effective action are part of the extended dynamical

mean-field theory framework (EDMFT), which becomes exact for random models on fully con-

nected lattices [16]. They can also be viewed as an EDMFT approximation to the non-random t-J

model [23, 39–41]. To make contact with notations often used in the (E)DMFT literature, we note

that t2R(τ − τ ′) is the self-consistent ‘hybridization function’ (dynamical mean-field) ∆(τ − τ ′).
This path-integral representation can be formulated in the SU(1|2) representation (1.3) as:

Z =

∫
Dfα(τ)Db(τ)Dλ(τ)e−SB−StJ

SB =

∫
dτ

[
f †α(τ)

∂

∂τ
fα(τ) + b†(τ)

∂

∂τ
b(τ) + iλ(τ)

(
f †α(τ)fα(τ) + b†(τ)b(τ)− 1

)]
StJ =

∫
dτ s0 f

†
α(τ)fα(τ) + t2

∫
dτdτ ′R(τ − τ ′)f †α(τ)b(τ)b†(τ ′)fα(τ ′)

− J2

2

∫
dτdτ ′Q(τ − τ ′)S(τ) · S(τ ′) , (2.4)

where S(τ) is to be represented by (1.3). Here SB is the kinematic Berry phase (i.e. the Wess-

Zumino-Witten term [35]) of the SU(1|2) superspin at each site [32], StJ is the action containing

the terms arising from HtJ , λ is the Lagrange multiplier imposing Eq. (1.4) and the chemical

potential s0 is determined to satisfy (1.2), which now becomes〈
b†b
〉
Z = p . (2.5)

Note that Z is a U(1) gauge theory, and under the U(1) gauge transformation λ→ λ− ∂τφ.

Let us also present the exactly equivalent formulation of the large N saddle point in terms of

the SU(2|1) superspin. Now the Berry phase SB in (2.4) is replaced by

SB =

∫
dτ

[
b†α(τ)

∂

∂τ
bα(τ) + f†(τ)

∂

∂τ
f(τ) + iλ(τ)

(
b†α(τ)bα(τ) + f†(τ)f(τ)− 1

)]
, (2.6)

while StJ has the same form, apart from representing cα(τ) and S(τ) by (1.5), and replacing the

s0 term by s0b
†
α(τ)bα(τ). The density constraint determining s0 in (2.5) is replaced by〈

f†f
〉
Z = p . (2.7)
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Appendix C analyzes the path integral (2.4) using a large M expansion in an approach which

generalizes the SU(2) spin symmetry to SU(M); a similar large M method has been used previously

for a Hubbard model [42–44] and other phases of a disordered t-J model [45].

The body of the paper will focus on an RG analysis of Z. This is performed by expressing it

in terms of an auxiliary quantum impurity problem, which we will now set up.

A. Mapping to a quantum impurity problem

In our RG analysis, we find it useful to consider the path integral as a functional of the fields

R(τ) and Q(τ) with an arbitrary time dependence, and to defer imposition of the self-consistency

conditions in (2.3). As we are looking for critical states, we assume that these fields have a

power-law decay in time with

Q(τ) ∼ 1

|τ |d−1
, R(τ) ∼ sgn(τ)

|τ |r+1
. (2.8)

where, for now, d and r are arbitrary numbers determining exponents, which will only be deter-

mined after imposing (2.3). Our analysis exploits the freedom to choose d and r: we will show

that a systematic RG analysis of the path integral Z is possible to all orders in ε and r̄, where

ε = 3− d , r̄ =
1− r

2
; Q(τ) ∼ 1

|τ |2−ε , R(τ) ∼ sgn(τ)

|τ |2−2r̄
. (2.9)

The analysis assumes ε and r̄ are of the same order, and expands order-by-order in homogeneous

polynomials in ε and r̄. Such RG analyses were carried out in Refs. [46–48] for an insulating spin

model in which t = 0, and by Fritz and Vojta [49–51] for a pseudogap Anderson impurity model

in which J = 0 (see also Refs. [52, 53]); we note that the r̄ expansion of Refs. [49–51] was in good

agreement with numerical studies [54]. We will combine these analyses here, and our notations

here for ε and r̄ follow these earlier works.

We proceed by decoupling the last two terms in S by introducing fermionic (ψα) and bosonic

(φa, a = x, y, z) fields respectively, and then the path integral Z reduces to a quantum impurity

problem. The ‘impurity’ is a SU(1|2) superspin realizing the 3 states on each site of the t-J model,

and this is coupled to a ‘superbath’ of the ψα and φa excitations. The quantum impurity problem

is specified by the Hamiltonian

Himp= (s0 + λ)f †αfα + λ b†b+ g0

(
f †αb ψα(0) + H.c.

)
+ γ0f

†
α

σaαβ
2
fβ φa(0)

+

∫
|k|rdk k ψ†kαψkα +

1

2

∫
ddx

[
π2
a + (∂xφa)

2
]
. (2.10)
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For completeness let us also explicitly present the Hamiltonian using a SU(2|1) impurity of bosonic

spinons and fermionic holons

Himp= (s0 + λ)b†αbα + λ f†f + g0

(
b†αfψα(0) + H.c.

)
+ γ0b

†
α

σaαβ
2

bβ φa(0)

+

∫
|k|rdk k ψ†kαψkα +

1

2

∫
ddx

[
π2
a + (∂xφa)

2
]
. (2.11)

We note several features of Himp, which apply equally to (2.10) and (2.11):

• The bosonic bath is realized by a free massless scalar field in d spatial dimensions, as in

Refs. [46–48]. The field πa is canonically conjugate to the field φa. The impurity spin S

couples to the value of φa at the spatial origin, φa(0) ≡ φa(x = 0, τ). It is easy to verify that

upon integrating out φa from Himp, we obtain the J term in StJ , with Q(τ) obeying (2.8).

• The fermionic bath is realized by free fermions ψkα with energy k and a ‘pseudogap’ density

of states ∼ |k|r. The impurity electron operator cα is coupled to ψα(0) ≡
∫
|k|rdk ψkα.

Integrating out ψkα from Himp yields the t term in StJ , with R(τ) obeying (2.8).

• We have replaced the path integral over the Lagrange multiplier iλ in SB by a constant real

λ. The constraint (1.4) can be conveniently and exactly imposed by the Abrikosov method

of sending λ → ∞ [48–51], as we will see in Section III. So the consequences of SB will be

accounted for exactly, and that is also the case for the alternative analysis in Appendix B,

where SB is accounted for by the exact implementation of the superalgebras.

• The two formulations of Himp in (2.10) and (2.11) are equivalent, and lead to identical

RG equations. This is because, ultimately, the quantum dynamics depends only upon the

superspin algebra and the representation of the superspin on each site, and these are the

same for SU(2|1) formulation by (1.3,1.4) and SU(1|2) formulation by (1.5,1.6). An explicit

derivation of the one-loop RG equations using only the superspin algebra and representation

appears in Appendix B.

• The model is now characterized by 3 couplings constants, s0, γ0, and g0, we will derive

the RG equations for these couplings in Section III. The coupling of the superspin to the

fermionic bath is g0, and to the bosonic bath is γ0: we will see that the RG flow of these

couplings is marginal for small ε and r̄, and they are attracted to a deconfined critical point.

• The coupling s0 acts like a ‘Zeeman field’ on the superspin, which breaks the degeneracy

between the spinon and holon states. The flow of s0 is strongly relevant at the deconfined

critical point, and this drives the system into one of the two phases in Fig. 1.
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We note that impurity models with both fermionic and bosonic baths have been considered ear-

lier by Sengupta [55], and by Si and collaborators [56–58], but not for the ‘superspin’ case with

significant particle-hole asymmetric charge fluctuations on the impurity site. Specifically, we fully

project out doubly occupied states, while keeping holon states low energy, and these features are

crucial to the structure of our critical theory, as in Refs. [49–51]. Also, the effect of a Zeeman field

in an impurity spin model with a bosonic environment was studied in Refs. [59–61] in the context

of the superfluid-insulator transition.

III. RG ANALYSIS

This section will present the RG analysis of the impurity model defined by (2.10). The RG

analysis will initially not account for the self-consistency conditions (2.3). We will apply them

later in Section III E.

We will employ the SU(1|2) superspin formulation, although essentially the same analysis can be

applied to the SU(2|1) superspin, with exactly the same results. A key feature of the computation

is that we impose the local constraint (1.4) exactly. This implemented by the Abrikosov method

of taking the λ→∞ limit, as described in earlier analyses [48–51].

An alternative approach to obtain the RG equations generalizes the method of Refs. [46, 47]

for SU(2) spins to superspins in either SU(2|1) or SU(1|2). This method utilizes only gauge-

invariant information contained in the superspin algebra and its representation, and is presented

in Appendix B. The RG equations are identical to those obtained in this section.

At the tree-level, we can identify the scaling dimensions from (2.10):

dim[f ] = dim[b] = 0 , dim[ψkα] = −1 + r

2
= −dim[ψα(0)] ,

dim[g0] =
1− r

2
≡ r̄ , dim[γ0] =

3− d
2
≡ ε

2
, dim[φa] =

d− 1

2
. (3.1)

This establishes r = 1 and d = 3 as upper critical dimensions.

We define the following renormalized fields and couplings,

fα =
√
ZffRα , b =

√
ZbbR , g0 =

µr̄Zg√
ZfZb

g , γ0 =
µε/2Zγ

Zf

√
ZφS̃d+1

γ , φa =
√
ZφφRa , (3.2)

where S̃d = Γ(d/2 − 1)/(4πd/2). The renormalization factors are to be obtained from self-energy

and vertex corrections, as we will show below. We will work with s0 = 0 and subsequently derive

the flow away from it. Also, we work at zero temperature, i.e., β →∞.
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(a) (b) (c) (d)

FIG. 2. One-loop diagrams for self energy and vertex corrections. Fermion self-energy diagrams are

shown in (a) and (b), boson self energy is shown in (c), and γ0 vertex correction is shown in (d). In these

diagrams, solid line is for f propagator, dashed line is for ψ propagator, wavy is for b propagator, and

spiral is for φ propagator.

A. Fermion and boson self energy

Interaction terms in our action lead to self-energy corrections to the fermion and boson propa-

gator. The corresponding Feynman diagrams at one-loop level are shown in Fig. 2 (a)-(c), while

Feynman diagrams for self-energy to two-loop order are shown in Figs. 10 and 11. Here we

show explicit result for one-loop diagrams and refer to Appendix D for details regarding two-loop

calculations.

We first calculate the fermionic self energy at one-loop level. At this level there are no dia-

grams which mixes the vertices corresponding to the bosonic bath coupling and the fermionic bath

coupling. Here we have two relevant diagrams and we quote the self-energy below:

Σf
2(a) = −g2

0

1

β

∑
iωn

∫ ∞
−∞

dk
|k|r

iωn − k
1

iν − iωn − λ
= g2

0

∫ ∞
−∞

dk
|k|rθ(k)

iν − λ− k (Recall λ→∞)

= g2
0π csc(πr)(λ− iν)r = Aµ(iν − λ)g2

[
− 1

2r̄
+ iπ

]
, (3.3)

Σf
2(b) = γ2

0

3

4

1

β

∑
iωn

∫
ddk

(2π)d
1

ω2
n + k2

1

iν + iωn − λ
= γ2

0

3

4

Sd
2

∫ ∞
0

dk
kd−2

iν − λ− k

= γ2
0

3

4

Sd
2
π csc(π(d− 2))(λ− iν)−2+d = Bµ

3

4
γ2(iν − λ)

[
−1

ε
+

1

2
(ℵ+ 2iπ)

]
, (3.4)

where we wrote
∫
ddk/(2π)d = Sd

∫
dkkd−1, Sd = 2/(Γ(d/2)(4π)d/2),

Aµ = µ2r̄(iν − λ)−2r̄
Z2
g

ZfZb
, (3.5)

Bµ = µε(iν − λ)−ε
Z2
γ

Z2
fZφ

, (3.6)

ℵ = 2(γE − 1) = −0.845569 . . . , (3.7)

with γE being the Euler’s constant.
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For the bosonic self energy there is only one diagram (Fig. 2(c)) at the one-loop level. The self

energy is evaluated as follows:

Σb
2(c) = 2g2

0

1

β

∑
iωn

∫ ∞
−∞

dk
|k|r

iωn − k
1

iν + iωn − λ
= g2

0

∫ ∞
−∞

dk
|k|rθ(k)

iν − λ− k (Recall λ→∞)

= 2g2
0π csc(πr)(λ− iν)r = Aµ(iν − λ)2g2

[
− 1

2r̄
+ iπ

]
. (3.8)

A factor of 2 is due to the spin index of internal f and ψ-line.

The expressions for Σf
2(a) and Σf

2(c) agree with those in Refs. [49–51], while that for Σf
2(b) agrees

with that in Ref. 48. Similarly, the self-energy diagrams at two-loop level are evaluated in a

straightforward manner, as shown in Appendix D.

B. Vertex correction

There is no one-loop vertex correction to the fermionic bath coupling g0. However, it does

acquire corrections at two-loop level and the corresponding diagrams are shown in Fig. 12. The

bosonic bath coupling γ0 has vertex corrections both at the one-loop and two-loop level. The

one-loop diagram is shown in Fig. 2(d), while the two-loop diagrams are shown in Fig. 13. Here

we explicitly evaluated the one-loop vertex correction to γ0,

Γγ2(d) = (−1

4
)γ3

0

1

β

∑
iω1n

∫
ddk1

(2π)d
1

ω2
1n + k2

1

1

iΩ1n + iω1n − λ
1

iΩ2n + iω1n − λ

= (−1

4
)γ3

0

∫
ddk1

(2π)d
1

2k1

1

iΩ1n − k1 − λ
1

iΩ2n − k1 − λ

= −γ0Bµγ
2 1

4

[
1

ε
− 1 +

1

2
(−ℵ − 2iπ)

]
. (3.9)

This expression agrees with that in Ref. 48. We can similarly evaluate the two-loop level corrections

and these are quoted in the Appendix D.

C. Beta functions and fixed points

We now demand the cancellation of poles in the expression for the renormalized vertex and the

f/b Green’s functions at the external frequency, iν−λ = µ. This leads to the following expressions

of the renormalization factors. Note that Zφ = 1 exactly, owing to the absence of bulk interaction
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terms such as φ4. For the rest we have,

Zf = 1− g2

2r̄
− 3γ2

4ε
− 15γ4

32ε2
+

3γ4

8ε
− g4

4r̄2
+
g4

2r̄
− 3g2γ2

8εr̄
+

3g2γ2

8r̄(ε+ 2r̄)
+

3g2γ2(2 + ℵ)

8(ε+ 2r̄)
, (3.10)

Zb = 1− g2

r̄
− g4

4r̄2
+
g4

2r̄
− 3g2γ2

4εr̄
+

3g2γ2

2ε(ε+ 2r̄)
+

3(2− ℵ)g2γ2

4(ε+ 2r̄)
, (3.11)

Zg = 1 +
g4

4r̄
, (3.12)

Zγ = 1 +
γ2

4ε
+

9γ4

32ε2
− γ4

8ε
+
g2γ2

4εr̄
− g2γ2

4r̄(ε+ 2r̄)
− g2γ2ℵ

4(ε+ 2r̄)
. (3.13)

Using Eqns. (D3) and (D4), we obtain the beta functions as follows:

β(g) = −r̄g +
3

2
g3 +

3

8
gγ2 − g5 +

3

16
g3γ2ℵ − 9

8
g3γ2 − 3

8
gγ4 (3.14)

β(γ) = − ε
2
γ + γ3 + g2γ − γ5 − 5

8
g2γ3ℵ − 3

4
g2γ3 − 2g4γ (3.15)

We can find the fixed points to two-loop order by setting the beta functions to zero. This gives

us four fixed points (g∗2, γ∗2):

FP1 = (0, 0) , (3.16)

FP2 =

(
0,
ε

2
+
ε2

4

)
, (3.17)

FP3 =

(
2r̄

3
+

8

27
r̄2, 0

)
, (3.18)

FP4 =

(
− ε

6
+

8r̄

9
+ ε2

[
− 25

324
+
ℵ
24

]
+ r̄2

[
−304

729
+

8ℵ
27

]
+ εr̄

[
119

243
− 5ℵ

18

]
,

2ε

3
− 8r̄

9
+ ε2

[
40

81
− ℵ

9

]
+ r̄2

[
1600

729
− 64ℵ

81

]
+ εr̄

[
−416

243
+

20ℵ
27

])
. (3.19)

The stability of the fixed points can be analyzed by looking at the eigenvalues of the stability

matrix. We find that the Gaussian fixed point is always unstable. Importantly, we find that the

non-trivial fixed point, FP4, with g∗ 6= 0 and γ∗ 6= 0 is stable for a range of values in the parameter

space of ε and r̄. In Fig. 3 we plot the RG flow in the g − γ plane at one-loop level and show the

different fixed points.

These fixed points corresponds to the underlying t-J model at a non-zero doping density p.

However, the precise value of p depends upon high energy details, and cannot be deduced from

the fixed point couplings, as we discuss in Appendix D 2.
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FIG. 3. One loop RG flow in the g − γ plane plotted for ε = 1 and r̄ = 0.5. The red point is the stable

fixed point (FP4), green points are the saddle (FP2 and FP3) and blue point is the unstable Gaussian

fixed point (FP1). Note that the flow in the s direction is always relevant (not shown).

D. Anomalous dimensions of fα and b

With the beta function at hand, it is straight forward to calculate the anomalous dimension of

the fermion and boson propagators, defined as follows:

ηf = µ
d lnZf
dµ

∣∣∣∣
FP

, ηb = µ
d lnZb
dµ

∣∣∣∣
FP

. (3.20)

Note that these anomalous dimensions are gauge-dependent, and not physically observable. We

have defined them in the gauge λ = constant. In terms of the coupling constants,

ηf = g2 +
3

4
γ2 − 2g4 − 3

4
γ4 − 3

4
g2γ2

(
1 +
ℵ
2

)
, (3.21)

ηb = 2g2 − 2g4 − 3

4
g2γ2(2− ℵ) . (3.22)

At the fixed points, we obtain the following expressions for the anomalous dimension,

FP1 : ηf = 0 , ηb = 0 , (3.23)

FP2 : ηf =
3

8
ε , ηb = 0 ηf does not recieve correction at two loop , (3.24)

FP3 : ηf =
2

3
r̄ − 16

27
r̄2 , ηb =

4

3
r̄ − 8

27
r̄2 , (3.25)

FP4 : ηf =
1

3
ε+

2

9
r̄ − ε2

81
− 256

729
r̄2 +

32

243
εr̄ , ηb = −1

3
ε+

16

9
r̄ − 7

162
ε2 − 896

729
r̄2 +

112

243
εr̄ .

(3.26)
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E. Anomalous dimensions of the electron and spin operators

We now calculate the anomalous dimensions ηc and ηS of the physical and gauge-invariant

composite operators, the electron cα and the spin S specified in (1.3), defined such that

R(τ) ∼ sgn(τ)

|τ |ηc , Q(τ) ∼ 1

|τ |ηS , (3.27)

at large τ . We will show that it is possible to determine these anomalous dimensions to all orders

in the ε and r̄ expansions, as was also the case in previous analyses [46–51].

To compute these scaling dimensions, we add source terms to the action

Sc =
1

β

∑
iωn

(
ΛSf

†
α

σaαβ
2
fβ + Λc[f

†
αb+H.c.]

)
. (3.28)

Within the field-theoretic RG scheme, we have

ΛS =
ZffΛS,R

Zf
, Λc =

ZfbΛc,R√
ZfZb

. (3.29)

The composite operators Ŝ = f †α(σaαβ/2)fβ and c†α = f †αb are renormalized as follows:

Ŝ =
√
ZSŜR , c =

√
ZccR . (3.30)

It turns out that the diagrams contributing to the vertex corrections to ΛS and Λc are exactly

those we encountered while evaluating Zγ and Zg respectively. Thus we have,

ZS =

(
Zf
Zγ

)2

, Zc =
ZfZb
Z2
g

. (3.31)

It is these identities which enable use to compute the anomalous dimensions exactly. We evaluate

the required anomalous dimensions as,

ηS =
d lnZS
d lnµ

, ηc =
d lnZc
d lnµ

. (3.32)

We can now make an exact statement for ηS for fixed points with γ 6= 0. From Eqns. (3.32) and

(3.31) we obtain,

ηS =
2

ZfZγ

[(
Zγ
∂Zf
∂g
− Zf

∂Zγ
∂g

)
β(g) +

(
Zγ
∂Zf
∂γ
− Zf

∂Zγ
∂γ

)
β(γ)

]
. (3.33)

Substituting the above equation in Eqn. (D4), we obtain,

ε

2
γZγZf − γηS

ZfZγ
2

+ β(γ)ZfZγ = 0 , (3.34)
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which leads to

γηS = γε+ 2β(γ) . (3.35)

The first term on the r.h.s. of (3.35) arises from the tree-level scaling dimension, while the second

term contains potential corrections higher order in ε. However, at the fixed point where γ = γ∗ 6= 0,

we have β(γ∗) = 0 and therefore,

ηS = ε , to all orders in ε and r̄. (3.36)

The same value of ηS is also obtained in the large M expansion in (C44) and (C47).

Similarly, using Eqns. (3.32) and (3.31) in combination with Eqn. (D3) we obtain the following

relation:

gηc = 2r̄g + 2β(g) . (3.37)

Thus at the fixed point, β(g∗) = 0, such that g∗ 6= 0, we obtain

ηc = 2r̄ , to all orders in ε and r̄. (3.38)

The same value of ηc is also obtained in the large M expansion in (C34) and (C36).

We can now state the main result of this subsection: at the non-trivial fixed point FP4 (g∗ 6=
0, γ∗ 6= 0) we have ηS = ε and ηc = 2r̄ to all orders in ε and r̄.

Finally, we can impose the self-consistency condition, Eq. (2.3). This implies equating the

exponents in Eq. (2.8) to the anomalous dimensions found above, i.e., ηS = d− 1 and ηc = r + 1.

Solving these equations requires using values of ε and r̄ which are of order unity, but because

Eqs. (3.36) and (3.38) are valid to all orders, we can use such values with confidence. Solving these

self-consistency conditions we obtain our exact results for ηc and ηS

ηS = 1 , ηc = 1 , (3.39)

at the self-consistent values ε = 1 and r̄ = 1/2. These anomalous dimensions imply the critical

correlators at FP4

〈S(τ) · S(0)〉 ∼ 1

|τ | ,
〈
cα(τ)c†α(0)

〉
∼ sgn(τ)

|τ | , (3.40)

as indicated in Fig. 1. We note that the fixed point FP4 in (3.19) is stable when evaluated at ε = 1

and r̄ = 1/2, although formally we cannot trust our expansion for the stability exponent at such

large values of ε and r̄.

IV. MOVING AWAY FROM THE CRITICAL POINT

The RG flow equations presented in Section III C have a fixed point FP4 which realizes the

deconfined critical point of Fig. 1. This fixed point has one relevant direction, corresponding to
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the on-site energy s which distinguishes the local energy of the spinon and holon states. As s flows

to +∞, the holon state is lower in energy, corresponding to the p > pc region of the phase diagram

in Fig. 1. Conversely, as s flows to −∞, the spinon states are lower in energy, corresponding to

the p < pc region of the phase diagram.

We can now exploit the choice of superspin representations between SU(1|2) and SU(2|1) to

understand the fate of the RG flow. The energy of the ground state is minimized if we maximize

the occupation of the lower energy state, and this is achieved if we choose the representation in

which this lower energy state is bosonic. This implies that we should choose SU(1|2) for p > pc

and SU(2|1) for p < pc, as indicated in Fig. 1. We now describe the structure of these theories in

turn

A. Overdoped region

In the SU(1|2) theory for p > pc, we condense the boson b. With 〈b〉 6= 0, we have from (1.3),

cα ∼ fα, and the hopping term tij in HtJ in (1.1) reduces to a renormalized hopping term for the

fα spinons. Indeed, the resulting theory for the fα fermions is similar to that studied by Parcollet

and Georges [24], and more recently in SYK-like extensions [62–66].

A description of this phase, far from the p = pc critical point, can be obtained from HtJ in (1.1)

by taking the large M limit of Ref. 24: we consider spinons fα with α = 1 . . .M , the bosons b

do not acquire any additional index (so we are considering a SU(1|M) superspin), and we rescale

t2 → t2/M2 and J2 → J2/M . (Note that this large M limit is distinct from that described in

our Appendix C, where the bosons do acquire an additional index, and we rescale t2 → t2/M and

J2 → J2/M .)

In the large M limit of Ref. 24, the b bosons can be replaced by their condensate 〈b〉 = b0

√
M .

The fα fermions have an effective hopping of strength t b2
0. As shown in Ref. 24, the theory behaves

a like a disordered Fermi liquid below a coherence scale

Ec =
(tb2

0)2

J
. (4.1)

Note that this disordered Fermi liquid has a hole carrier density of 1+p. This follows from cα ∼ fα,

and the density of fα fermions obtained from (1.4) and (2.5).

As we approach the critical point, with p↘ pc, we expect Ec and 〈b〉 to both vanish algebraically.

However, we do not expect the large M theory of Ref. 24 to properly describe the approach to

the critical point: in this large M theory, we obtain an insulating state as 〈b〉 vanishes, whereas

our p = pc critical point is metallic. Indeed, as b is gauge-charged field, the value of 〈b〉 is not a

gauge-invariant quantity which can be directly compared between different approaches. However,

the crossover scale Ec is better defined, and we can deduce the behavior of Ec near p = pc by the
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RG analysis of Section III. We expect

Ec ∼ |p− pc|1/λs (4.2)

where λs is the relevant RG eigenvalue with which s flows away from the FP4 fixed point, specified

in (D13).

B. Pseudogap region

For p < pc, we use the SU(2|1) theory, and condense the bα spinons to obtain spin glass order,

as described in Refs. [27, 28]. The presence of the mobile f fermions will make this a metallic spin

glass with carrier density p, as determined by (2.7).

We need to extend the insulating spin glass theory of Refs. [27, 28] to the metallic spin glass,

and this will be studied in greater detail in future work. Here we note that a systematic description

appears possible in the large M limit of a SU(M |M ′) formulation noted in Appendix A 1, where

the f fermions acquire an additional ‘orbital’ label ` = 1 . . .M ′, and we keep k = M ′/M fixed in

the large M limit. This should be contrasted from the SU(M ′|M) theory described in Appendix C,

in which the b` bosons are assumed to not condense.

C. Specific heat

This section discusses qualitative features of the specific across the phase transition at p = pc.

Right at p = pc, the critical theory is expected [28] to have a non-vanishing extensive entropy

S0 as T → 0. This follows from the similarity of the random insulating magnet [18], and many

other models in the SYK class.

Away from p = pc, we expect that the entropy follows the behavior of the critical point at

temperatures above the coherence scale Ec, before vanishing lineary with T at temperatures below

Ec, as shown in Fig. 4. We can therefore estimate that the linear-in-T coefficient of the specific

heat C is

γ = lim
T→0

C

T
= lim

T→0

dS

dT
∼ S0

Ec
(4.3)

So we expect γ to diverge as |p − pc|−1/λs in the infinite range model HtJ . It is notable that this

behavior resembles experimental observations [8].
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FIG. 4. Schematic plot of the temperature dependence of the entropy S of HtJ . At p = pc, there is a

non-vanishing extensive entropy at zero temperature S0. The linear-in-T coefficient of the specific heat

γ = limT→0C/T = limT→0 dS/dT diverges as we approach pc.

V. CONCLUSIONS

We have presented a RG analysis (in Section III) of the phase diagram of the t-J model in

(1.1) with random and all-to-all hopping and spin exchange. The predictions of this analysis are

presented in Fig. 1: a deconfined critical point which separates two phases without fractionaliza-

tion: a ‘pseudogap’ metallic spin glass phase with carrier density p, from a disordered Fermi liquid

with carrier density 1 + p. The change in the carrier density across the critical point, and the

behavior of the specific heat across the critical point implied by the entropy in Fig. 4 are in good

qualitative accord with experimental observations [5–8]. The SYK-like structure of the deconfined

critical point connects naturally with a class of theories with linear-in-T resistivity in the strange

metal [24, 62–66]; a linear-in-T resistivity was also found in numerical studies [40, 41] of lattice

models without disorder described by equations closely related to those of the large M limit of

Appendix C. And we note that there is a recent report of spin glass correlations in the pseudogap

phase [13], extending earlier impurity-induced observations [11, 12].

It is useful to compare the structure of HtJ in (1.1) with that of SYK lattice models [62–65].

The SYK models have a random 4-fermion interaction term, and a random 2-fermion hopping

term of strength t, but no on-site fermion constraint. At the lowest energies, the 2-fermion term

is always relevant and drives the system away from SYK criticality to a Fermi liquid state. In

the present t-J model analysis, the presence of the local constraint (1.4) or (1.6) is crucial; in
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terms of the fractionalized particles in (1.3) or (1.5), both the t and J terms are 4-particle terms.

Consequently, they can balance each other, and allow for a critical SYK-like state to exist at a

critical p = pc all the way down to T = 0. At p = pc, the 3 states of the t-J model obeying the

constraint (1.4) or (1.6) are nearly degenerate in our perturbative renormalization group analysis.

Consequently, we find pc = 1/3 at zeroth order (see Fig. 1).

Appendix C presents a low energy analysis of the large M saddle point of HtJ obtained by

generalizing the SU(2) symmetry to SU(M ). The main difference from the RG analysis is that a

critical phase appears in the low energy and large M theory, rather than a critical point. However,

the exponents of the gauge-invariant spin and electron operators in the appropriate large M phase

are the same as those obtained by the renormalization group analysis of the deconfined critical

point to all orders in ε and r̄: compare (C44,C47) and (C34,C36) with (3.36) and (3.38). We also

note that the similarity between Appendix C and the SYK equations indicates that our critical

theory obeys maximal chaos [17].

A useful perspective on our renormalization group analysis provided by viewing the 3 states on

each site as different orientations of a SU(1|2) or SU(2|1) superspin [32]. In the large N limit of a

N -site t-J model with random and all-to-all interactions, we obtain an impurity model in which the

superspin is coupled to both fermionic and bosonic baths self-consistently. In addition, there is a

‘Zeeman field’ acting on the superspin which breaks the degeneracy between the spinon and holon

states; this field is a strongly relevant perturbation at the deconfined critical point, and drives the

system into the two phases flanking the critical point. (See Refs. [59–61] for analogous RG studies

of a relevant “Zeeman field” at an impurity site (represented by a SU(2) spin) in a Bose-Hubbard

model at the superfluid-insulator transition, which are in good agreement with numerics.) In the

overdoped phase, the holon state has a lower energy (see Fig. 1): so we use the SU(1|2) superspin

in which the holon is a boson, and condense it to obtain a disordered Fermi liquid, analogously to

Ref. 24. Conversely, in the underdoped phase, the spinon states have a lower energy, so we use the

SU(2|1) superspin in which the spinons are bosons, and condense them to obtain a metallic spin

glass.

Despite our use of the superspin terminology, the model studied and the renormalization group

equations are not supersymmetric: the fermionic cα generators in (1.3) and (1.5) do not commute

with the Hamiltonian. We can extend HtJ by including off-site interations with the generator V in

(1.3) and (1.5), and this will include density-density interactions. With this extension, we have the

possibility of charge glass order in the pseudogap, and critical density fluctuations (likely similar

to those observed in Refs. 67 and 68) at possibly supersymmetric fixed points. (Supersymmetric

t-J models have been studied in one dimension without disorder [69–73].)

Finally, we comment on the extent to which a model with all-to-all randomness can be mapped

to the cuprates. Randomness is present in the experimental systems, and also serves important
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simplifying purposes in our theoretical analysis. Moreover, certain approximations to models

without randomness lead to closely related saddle point equations [23, 39–41]. Several of the broken

symmetries do not exist in the random model, and subtle questions [74] about the structure of the

Fermi surface in momentum space can be avoided. However, the central issues of carrier density,

fractionalization, emergent gauge charges, and associated quantum phase transitions remain well

defined even in the presence of randomness. Given the recent spin glass observations [13], and as

we noted in Section IV B, it will be useful to study the metallic pseudogap state, and the interplay

between the spin glass order and charge transport. A possible approach is the extend the large M

theory of Refs. [27, 28] to include fermionic holons, as well as numerical studies for M = 2.
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Appendix A: Superalgebras

The operators in (1.3) obey the commutation and anti-commutation relations

[Sa, Sb] = iεabcS
c , {cα, cβ} = 0 , {cα, c†β} = δαβV + σaαβS

a

[Sa, cα] = −1

2
σaαβcβ , [Sa, c†α] =

1

2
σaβαc

†
β , [Sa, V ] = 0

[V, cα] =
1

2
cα , [V, c†α] = −1

2
c†α . (A1)

The constraint (1.4) commutes with all operators of the superalgebra. Imposing this constraint

yields the fundamental representation of SU(1|2).

Alternatively, we can use the operators in (1.5). These realize the SU(2|1) algebra, and it can

be verified that these operators also obeys the superalgebra in Eq. (A1). The constraint projecting

to the fundamental representation is now (1.6).
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1. Larger symmetries

We consider the model for general M and M ′, with the electron operator

c`α = b†`fα , (A2)

acquiring both spin (α = 1 . . .M) and ‘orbital’ (` = 1 . . .M ′) indices. We define the SU(M) spin

operator

Sa = f †αT
a
αβfβ (A3)

where the matrices T a obey

tr(T aT b) =
1

2
δab, T aT a =

M2 − 1

2M
· 1 , T aαβT

a
γδ =

1

2

(
δαδδβγ −

1

M
δαβδγδ

)
. (A4)

The operators c`α, Sa, the operator

V =
1

M
f †αfα +

1

M ′ b
†
`b` , (A5)

and the operators b†`T
a
``′b`′ are the (M +M ′)2 − 1 generators of the superalgebra SU(M ′|M).

A general constraint fixing the representation is

f †αfα + b†`b` = P , (A6)

with P a positive integer, and our interest in the case P = M/2 which realizes the representation

in which the SU(M) subalgebra is self-conjugate. Note that the fundamental representation of the

superalgebra is P = 1, but this does not lead to a convenient large M limit.

We can also consider a bosonic spinon and fermionic holon decomposition for general M , M ′

c`α = f†`bα (A7)

The analogous steps will lead to a realization of the SU(M |M ′) superalgebra, which is identical to

the SU(M ′|M) superalgebra. However, the constraint

b†αbα + f†`f` = P (A8)

now leads to a different representation of the superalgebra from (A6) for P 6= 1 [75]. So the

models defined by (A2) and (A7) are in general different, although they are the same for the

M = 2, M ′ = 1 case of interest to us. Note also that in all cases the Hamiltonian contains an

exchange interaction involving the SU(M ) generators only, and not the SU(M ′) generators.
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2. Operator expectation values

We will compute the only RG equations for the SU(M ′|M) theory in Appendix B following the

method in Appendix C of Ref. 47. After using the identity (A4), the computations in Appendix B

can be reduced to the following operator traces.

First, let us compute the dimension, D(M,M ′, P ), of the superspin Hilbert space. To compute

this, it is useful to compute the grand-canonical partition function, while ignoring the constraint

(A6).

Z(z) = Tr zf
†
αfα+b†`b` =

(1 + z)M

(1− z)M ′ (A9)

where z is the common fugacity. Then we can impose the constraint (A6), and the dimension of

the Hilbert space is given by the coefficient of zP in the series expansion of Z(z), or equivalently

D(M,M ′, P ) =

∮
|z|=c<1

dz

2πi

1

zP+1
Z(z) (A10)

Some sample values from Mathematica are

D(2, 1, 1) = 3 , D(6, 6, 3) = 292 , D(20, 14, 10) = 553844224 , . . . (A11)

Now we can compute the general expectation value

Im,m′ ≡
〈(
f †αfα

)m (
b†`b`

)m′〉
(A12)

=
1

D(M,M ′, P )

∮
|z|=c<1

dz

2πi

1

zP+1

[(
z
d

dz

)m
(1 + z)M

] [(
z
d

dz

)m′
1

(1− z)M ′

]
.

Note I0,0 = 1.

The values for M = 2, P = 1, and M ′ = 1 case of interest to us are simple:

Im,0 =
2

3
, m ≥ 1; I0,m′ =

1

3
, m′ ≥ 1; Im,m′ = 0, m ≥ 1 and m′ ≥ 1 . (A13)

This simplicity is the reason Section III was able to compute the RG equations using Feynman

diagrams and the Abrikosov method.

Some other random values

I2,3 =
342

73
, I7,4 =

3384

73
, for M = 6, M ′ = 6, P = 3;

I7,4 =
238531161015

6698
, I3,9 =

3197447102115

6698
, for M = 20, M ′ = 14, P = 10. (A14)

24



Appendix B: RG equations for general M , M ′

This appendix generalizes the method of Refs. [46, 47] for SU(2) spins to superspins in

SU(M ′|M). This method utilizes only gauge-invariant information contained in the superspin

algebra and its representation; thus the Berry phase SB (see (2.4) and (2.6)) of the supergroup [32]

is exactly accounted for by the commutation and anti-commutation relations. The RG equations

obtained here reduce to those of Section III at M = 2, P = 1, M ′ = 1.

We consider here the Hamiltonian

Himp= g0

(
c†`α ψα`(0) + H.c.

)
+ γ0S

a φa(0)

+

∫
|k|rdk k ψ†kα`ψkα` +

1

2

∫
ddx

[
π2
a + (∂xφa)

2
]
, (B1)

where c`α and Sa are defined in (A2) and (A3), and we impose exactly the constraint (A6). Recall,

the indices α, β = 1 . . .M , ` = 1 . . .M ′, and a = 1 . . .M2 − 1.

The setup of the renormalization factors in the present perturbation theory is somewhat different

from (3.2). We now write, using the operators defined in (A2) and (A3),

Sa =
√
ZSS

a
R , c`α =

√
ZccR,`α , γ0 =

µε/2Z̃γ√
ZSS̃d+1

γ , g0 =
µr̄Z̃g√

ZcΓ(r + 1)
g . (B2)

The renormalization constants ZS and Zc are the same as those defined in (3.30), but we will now

compute them in a different manner. The notation of our renormalization constants also differs

from that in Ref. 48, and we provide a translation in Table I. Unlike Ref. 48, we do not have bulk

Ref. 48 Present paper

Zh Zf

Z̃γ Zγ

Z Zφ = 1

Z ′ ZS

Zγ Z̃γ = 1

TABLE I. Correspondence between the notations of Ref. 48 and the present paper.

interactions of the bosonic bath field φ, and hence we have Zφ = 1, as we noted in Section III C.

For the same reasons, it was argued in Refs. [46–48] that (in our notation) Z̃γ = 1 in the absence

of bulk interactions. The reasoning extends also to the fermionic bath, and so we have Z̃γ = 1 and

Z̃g = 1 exactly. These identities can also be understood from the statement below (3.30) that the

vertex corrections ΛS,c arise from the same diagrams as Zγ,g. We will now compute ZS and Zc by

renormalizing the two-point correlators of Sa and c`α, and this will sufficient to obtain the needed

beta functions.
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(a) (b) (c) (d)

FIG. 5. Diagrams contributing to the denominator, D (Eq. (B3)), of 〈O1〉 = 〈Sa(τ)Sa(0)〉. The oriented

line denotes the trajectory of the SU(M ′|M) superspin in imaginary time, a filled circle is a γ0 vertex, and

a filled square is a g0 vertex. The spiral curve denotes the φ propagator, and the dashed curve represents

the ψ propagator.

1. Spin correlator

This subsection evaluates the spin correlator, 〈O1〉 ≡ 〈Sa(τ)Sa(0)〉, and its renormalization

will yield ZS. We follow the strategy of Ref. 47: use time-ordered perturbation theory to expand

the correlator in powers of g0 and γ0, insert the two-point correlators of the bulk fields, and then

explicitly evaluate the traces over the Sa and c`α operators using the superspin algebra described

in Appendix A. This effectively exactly evaluates the path integral over the Berry phase SB in

(2.4).

We write the correlator as 〈O1〉 = N1/D, and the perturbative expansions of the numerator

and denominator are represented by the diagrams shown in Figs. 5 and 6. Note that these are not

Feynman diagrams, and there is no Wick’s theorem. The oriented line represents the worldline

of the superspin, and the diagrams indicate the ordering of the operators whose traces are to

be evaluated. The numerator and denominator have to be evaluated separately, and there is no

automatic cancellation of disconnected contributions. The diagrams in Figs. 5 and 6 yield

D = 1 + γ2
0L0 (D1φ +D2φ +D3φ) + g2

0L
′
0

(
D′1ψ +D′2ψ +D′3ψ

)
+ g2

0L
′′
0

(
D′′1ψ +D′′2ψ +D′′3ψ

)
, (B3)

N1 = L0 + γ2
0 (L1D1φ + L2D2φ + L3D3φ) + g2

0

(
L′1D

′
1ψ + L′2D

′
2ψ + L′3D

′
3ψ

)
+ g2

0

(
L′′1D

′′
1ψ + L′′2D

′′
2ψ + L′′3D

′′
3ψ

)
, (B4)

where the average over the supergroup representation 〈O〉 ≡ (TrO) / (Tr1), Tr1 = D(M,M ′, P ),

is carried out by the expressions

L0 = 〈SaSa〉 =
M + 1

2M
(MI1,0 − I2,0) , (B5)

L′0 =
〈
c`αc

†
`α

〉
= −I1,1 +MI0,1 , (B6)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIG. 6. Diagrams contributing to the numerator, N1 (Eq. (B4)), of 〈O1〉 = 〈Sa(τ)Sa(0)〉. Conventions

as in Fig. 5, and an open circle denotes the external Sa operator.

L′′0 =
〈
c†`αc`α

〉
= M ′I1,0 + I1,1 , (B7)

L1 =
〈
SaSbSbSa

〉
=

(M + 1)2

4M2
(M2I2,0 + I4,0 − 2MI3,0) , (B8)

L2 =
〈
SaSaSbSb

〉
=

(M + 1)2

4M2
(M2I2,0 + I4,0 − 2MI3,0) , (B9)

L3 =
〈
SaSbSaSb

〉
=
M + 1

4M2
(−M 3I1,0 +M2(M + 2)I2,0 − 2M(M + 1)I3,0

+ (M + 1)I4,0) , (B10)

L′1 =
〈
Sac`αc

†
`αS

a
〉

= −M + 1

2M
(2MI2,1 −M2I1,1 − I3,1) , (B11)

L′2 =
〈
SaSac`αc

†
`α

〉
= −M + 1

2M
(2MI2,1 −M2I1,1 − I3,1) , (B12)

L′3 =
〈
Sac`αS

ac†`α

〉
= −M + 1

2M
((2M − 1)I2,1 −M(M − 1)2I1,1 − I3,1) , (B13)

L′′1 =
〈
Sac†`αc`αS

a
〉

=
M + 1

2M
(MM ′I2,0 −M ′I3,0 +MI2,1 − I3,1) , (B14)

L′′2 =
〈
SaSac†`αc`α

〉
=
M + 1

2M
(MM ′I2,0 −M ′I3,0 +MI2,1 − I3,1) , (B15)

L′′3 =
〈
Sac†`αS

ac`α

〉
=
M + 1

2M
(M ′(M + 1)I2,0 −MM ′I1,0 −M ′I3,0 + (M + 1)I2,1

−MI1,1 − I3,1) . (B16)

Also,

‘D1φ =

∫ τ

0

dτ1

∫ τ

τ1

dτ2Gφ(τ1 − τ2) = − S̃d+1τ
ε

ε(1− ε) , (B17)
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D2φ =

∫ β

τ

dτ1

∫ β

τ1

dτ2Gφ(τ1 − τ2) = − S̃d+1τ
ε

ε(1− ε) , (B18)

D3φ =

∫ τ

0

dτ1

∫ β

τ

dτ2Gφ(τ1 − τ2) =
2S̃d+1τ

ε

ε(1− ε) , (B19)

D′1ψ =

∫ τ

0

dτ1

∫ τ

τ1

dτ2Gψ(τ2 − τ1) = −Γ(r + 1)τ 2r̄

2r̄(1− 2r̄)
, (B20)

D′2ψ =

∫ β

τ

dτ1

∫ β

τ1

dτ2Gψ(τ2 − τ1) = −Γ(r + 1)τ 2r̄

2r̄(1− 2r̄)
, (B21)

D′3ψ =

∫ τ

0

dτ1

∫ β

τ

dτ2Gψ(τ2 − τ1) =
2Γ(r + 1)τ 2r̄

2r̄(1− 2r̄)
, (B22)

D′′1ψ = −
∫ τ

0

dτ1

∫ τ

τ1

dτ2Gψ(τ1 − τ2) = −Γ(r + 1)τ 2r̄

2r̄(1− 2r̄)
, (B23)

D′′2ψ = −
∫ β

τ

dτ1

∫ β

τ1

dτ2Gψ(τ1 − τ2) = −Γ(r + 1)τ 2r̄

2r̄(1− 2r̄)
, (B24)

D′′3ψ = −
∫ τ

0

dτ1

∫ β

τ

dτ2Gψ(τ1 − τ2) = −2Γ(r + 1)τ 2r̄

2r̄(1− 2r̄)
. (B25)

Note we evaluate the above integrals at T = 0, by extending the integrals appropriately as explained

in Ref. 47. Here,

Gφ(τ) =

∫
ddk

(2π)d
dω

2π

e−iωτ

k2 + ω2
=

S̃d+1

|τ |d−1
. (B26)

Similarly,

Gψ(τ) =

∫
dk|k|r

∫
dω

2π

e−iωτ

iω − k
=

∫
dk|k|r

[
−e−kτ (θ(k)θ(τ)− θ(−k)θ(−τ))

]
=

Γ(1 + r)

|τ |1+r
[θ(−τ)− θ(τ)] . (B27)

From (B3) and (B4) we obtain,

〈O1〉 =
N1

D
=
L0

M

{
1 + γ2

0

[(
L1

L0

− L0

M

)
D1φ +

(
L2

L0

− L0

M

)
D2φ +

(
L3

L0

− L0

M

)
D3φ

]
+ g2

0

[(
L′1
L0

− L′0
M

)
D′1ψ +

(
L′2
L0

− L′0
M

)
D′2ψ +

(
L′3
L0

− L′0
M

)
D′3ψ

]
+ g2

0

[(
L′′1
L0

− L′′0
M

)
D′′1ψ +

(
L′′2
L0

− L′′0
M

)
D′′2ψ +

(
L′′3
L0

− L′′0
M

)
D′′3ψ

]}
. (B28)

It is then straightforward to write,

ZS = 1− γ2

ε
Lγ −

g2

2r̄
Lg , (B29)
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FIG. 7. Diagrams contributing to the numerator, N2 (Eq. (B32)), of 〈O2〉 = 〈c(τ)c†(0)〉. Here conven-

tionas are as in Fig. 5, and open square denotes the external c/c† operator.

where ,

Lγ =
L1 + L2 − 2L3

L0

, (B30)

Lg =
L′1 + L′′1 + L′2 + L′′2 − 2L′3 − 2L′′3

L0

. (B31)

Note that for M = 2 ,M ′ = 1, we obtain Lγ = Lg = 2 which agrees with the result that can be

obtained from (3.31) and the results in Section III.

2. Electron correlator

Next we evaluate the electron correlation, 〈O2〉 ≡ 〈c(τ)c†(0)〉 = N2/D. The diagrams contribut-

ing to the numerator are shown in Fig. 7, while those contributing to the denominator have been

already evaluated in (B3). Thus we obtain,

N2 = P0 + γ2
0 (P1D1φ + P2D2φ + P3D3φ) + g2

0

(
P ′1D

′
1ψ + P ′2D

′
2ψ + P ′3D

′
3ψ

)
+ g2

0

(
P ′′1D

′′
1ψ + P ′′2D

′′
2ψ + P ′′3D

′′
3ψ

)
, (B32)

where,

P0 =
〈
c†`αc`α

〉
= M ′I1,0 + I1,1 , (B33)

P1 =
〈
c†`αS

aSac`α

〉
=
M + 1

2M
(M ′(M + 2)I2,0 −M ′(M + 1)I1,0 −M ′I3,0 + (M + 2)I2,1

− (M + 1)I1,1 − I3,1) , (B34)
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P2 =
〈
c†`αc`αS

aSa
〉

=
M + 1

2M
(MM ′I2,0 −M ′I3,0 +MI2,1 − I3,1) , (B35)

P3 =
〈
c†`αS

ac`αS
a
〉

=
M + 1

2M
(M ′(M + 1)I2,0 −MM ′I1,0 −M ′I3,0 + (M + 1)I2,1

−MI1,1 − I3,1) , (B36)

P ′1 =
〈
c†`αc`′βc

†
`′βc`α

〉
= (M + 1)M ′I1,0 −M ′I2,0 + (M + 1)(M ′ + 1)I1,1

+ (M + 1)I1,2 − (M ′ + 1)I2,1 − I2,2 , (B37)

P ′2 =
〈
c†`αc`αc`′βc

†
`′β

〉
= MM ′I1,1 +MI1,2 −M ′I2,1 − I2,2 , (B38)

P ′3 =
〈
c†`αc`′βc`αc

†
`′β

〉
= −MM ′I1,1 −MI1,2 +M ′I2,1 + I2,2 , (B39)

P ′′1 =
〈
c†`αc

†
`′βc`′βc`α

〉
= M ′(M ′ + 1)(I2,0 − I1,0) + (2M ′ + 1)(I2,1 − I1,1)− I1,2 + I2,2 , (B40)

P ′′2 =
〈
c†`αc`αc

†
`′βc`′β

〉
= M ′2I2,0 + 2M ′I2,1 + I2,2 , (B41)

P ′′3 =
〈
c†`αc

†
`′βc`αc`′β

〉
= M ′(M ′ + 1)(I1,0 − I2,0) + (2M ′ + 1)(I1,1 − I2,1) + I1,2 − I2,2 . (B42)

Thus we have,

〈O2〉 =
N2

D
=
P0

M

{
1 + γ2

0

[(
P1

P0

− L0

M

)
D1φ +

(
P2

P0

− L0

M

)
D2φ +

(
P3

P0

− L0

M

)
D3φ

]
+ g2

0

[(
P ′1
P0

− L′0
M

)
D′1ψ +

(
P ′2
P0

− L′0
M

)
D′2ψ +

(
P ′3
P0

− L′0
M

)
D′3ψ

]
+ g2

0

[(
P ′′1
P0

− L′′0
M

)
D′′1ψ +

(
P ′′2
P0

− L′′0
M

)
D′′2ψ +

(
P ′′3
P0

− L′′0
M

)
D′′3ψ

]}
. (B43)

Similarly, it is the straightforward to write,

Zc = 1− γ2

ε
Pγ −

g2

2r̄
Pg , (B44)

where

Pγ =
P1 + P2 − 2P3

P0

, (B45)

Pg =
P ′1 + P ′2 − 2P ′3 + P ′′1 + P ′′2 − 2P ′′3

P0

. (B46)

Note that for M = 2 ,M ′ = 1, we obtain Pg = 3 and Pγ = 3/4 which agrees with the result

that can be obtained from (3.31) and the results in Section III.
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3. RG flow

We are now in a position to write the beta functions for the coupling constants. Using (B2) we

find two equations,

ε

2
γZS +

[
ZS −

γ

2

∂ZS
∂γ

]
β(γ)− γ

2

∂ZS
∂g

β(g) = 0 , (B47)

r̄gZc +

[
Zc −

g

2

∂Zc
∂g

]
β(g)− g

2

∂Zc
∂γ

β(γ) = 0 . (B48)

We have used the exact relations Z̃g = Z̃γ = 1 in obtaining these equations. Solving these two

equations and using the expressions for the renormalization factors found above we obtain the

following one-loop beta functions,

β(g) = −r̄g +
Pg
2
g3 +

Pγ
2
gγ2 , (B49)

β(γ) = − ε
2
γ +

Lγ
2
γ3 +

Lg
2
γg2 . (B50)

Recall that at M = 2,M ′ = 1, we have Pg = 3, Pγ = 3/4, Lg = 2, and Lγ = 2. With this the

above expressions match the one-loop beta functions derived earlier in Sec. III.

We can also calculate the anomalous dimension for the spin and electron operators, defined in

(3.32). From (B47) and (B48) we obtain exactly the same equations derived before, i.e., (3.35)

and (3.37). Thus at the non-trivial fixed point where γ∗ 6= 0, g∗ 6= 0 we obtain ηS = ε and ηc = 2r̄

to all orders in ε and r̄.

Appendix C: Large M limit

In this appendix we consider the large M limit examined originally in the insulating spin model

in Ref. 18. To extend the large M limit to the t-J model, we also need to endow the electron with

an additional orbital index ` = 1 . . .M ′ as in (A2), and take the large M limit at fixed

k ≡ M ′

M
(C1)

using SU(M ′|M) superspin formulation of Appendix A 1 while imposing the constraint (A6) at

P = M/2. Similar large M limits were taken in particle-hole symmetric models in Refs. [42–45]

and for a non-random t-J model in Refs. [40, 41].

A sketch of our proposed large M phase diagram is shown in Fig. 8. This applies to the theory

obtained by taking the large M limit of the path integral Z in (2.4) by inserting the SU(M ′|M)

superspin operators in (A2) and (A3), and rescaling t2 → t2/M and J2 → J2/M . See Ref. 45
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FIG. 8. Schematic phase diagram in the large M limit, with the phases displaying more rapidly decaying

spin correlations as we move to the right. This appendix describes only the two intermediate critical

phases in the SU(M ′|M) theory with bosonic holons and fermionic spinons. We propose in the present

paper that for the case M = 2, M ′ = 1, these two critical phases reduce to a critical point with the

characteristics of the ε = 1 phase, as shown in Fig. 1 . A description of the spin glass phase in the

large M limit requires fermionic holons and bosonic spinons in the SU(M |M ′) theory, which we do not

examine here. We also note that for M ′ > 1, the disordered Fermi liquid phase also has glassy correlations

associated with the ‘orbital’ index ` = 1 . . .M ′.

for details of a similar computation with particle-hole symmetry. In our case, both the boson and

fermion Green’s functions will have to be particle-hole asymmetric, as in Refs. [18, 27, 28, 76].

We will perform an analytic low energy analysis of the large M equations, and find a critical

solution which is in close correspondence with the RG fixed point FP4 in Section III. However, the

large M solution appears to be present for a range of dopings, and not at a critical doping as in

the RG analysis. We expect that either constraints from the higher energy structure of the large

M theory, or corrections higher order in 1/M , will convert the critical phase to a critical point.

It appears that the numerical studies of Haule et al. [40, 41] examined the finite temperature

behavior about the critical phase described here as their model of the pseudogap. This contrasts

with our model of the pseudogap in Fig. 1 as a metallic spin glass flanking a critical point. We also

note that the present large M limit, with fermionic spinons, cannot obtain a metallic spin glass;

instead we have to use the bosonic spinon approach outlined in Section IV B.
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1. Green’s functions

We follow the condensed matter notation for Green’s functions in which

Gf (τ) = −〈Tτ (f(τ)f †(0))〉,
(C2)

Gb(τ) = −〈Tτ (b(τ)b†(0))〉. (C3)

We drop indices α, `, and all Green’s functions are diagonal in these indices. It is useful to make

ansatzes for the retarded Green’s functions in the complex frequency plane, because then the

constraints from the positivity of the spectral weight are clear. At the Matsubara frequencies, the

Green’s function is defined by

G(iωn) =

∫ 1/T

0

dτeiωnτG(τ). (C4)

So the bare Green’s functions are

Gf0(iωn) =
1

iωn − µf
(C5)

Gb0(iωn) =
1

iωn − µb
. (C6)

The Green’s functions are continued to all complex frequencies z via the spectral representation

G(z) =

∫ ∞
−∞

dΩ

π

ρ(Ω)

z − Ω
. (C7)

For fermions, the spectral density obeys

ρf (Ω) > 0, (C8)

for all real Ω and T , and for bosons the constraint is

Ω ρb(Ω) > 0. (C9)

The retarded Green’s function is GR(ω) = G(ω + iη) with η a positive infinitesimal, while the

advanced Green’s function is GA(ω) = G(ω − iη). It is also useful to tabulate the inverse Fourier

transforms at T = 0

G(τ) =


−
∫ ∞

0

dΩ

π
ρ(Ω)e−Ωτ , for τ > 0 and T = 0∫ ∞

0

dΩ

π
ρ(−Ω)eΩτ , for τ < 0 and T = 0

. (C10)
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2. Saddle point and self-consistency equations

The saddle-point equations of the SU(M ′|M) form of (2.4), after rescaling t2 → t2/M and

J2 → J2/M , for the boson and fermion Green’s functions are

Gb(iωn) =
1

iωn + µb − Σb(iωn)
, Σb(τ) = t2Gf (τ)R(−τ) (C11)

Gf (iωn) =
1

iωn + µf − Σf (iωn)
, Σf (τ) = J2Gf (τ)Q(τ)− k t2R(τ)Gb(τ) , (C12)

while the self-consistency equations in (2.3) are

R(τ) = −Gf (τ)Gb(−τ) , Q(τ) = −Gf (τ)Gf (−τ) (C13)

Here µf and µb are chemical potentials, determined by ε0 and the saddle point value of λ, and

chosen to satisfy 〈
f †f
〉

=
1

2
− kp ,

〈
b†b
〉

= p . (C14)

Eqs. (C12,C13,C14) are identical to the ones considered in Refs [40, 41] as an EDMFT approx-

imation to the non-random t-J model. We will look for gapless critical solutions of the above

equations. We expect that such solutions exist only for p < pc, and that for p > pc the boson

condenses, leading to a Fermi liquid solution.

3. Low frequency ansatzes

For the fermion Green’s function, we write at a complex frequency |z| � J

Gf (z) = Cf
e−i(π∆f+θf )

z1−2∆f
, Im(z) > 0, (C15)

which is expressed in terms of three real parameters, Cf , ∆f and θf . Then the constraint (C8)

becomes

sin(π∆f + θf ) > 0 , sin(π∆f − θf ) > 0. (C16)

The particle-hole symmetric value is θf = 0. Using (C10) we obtain in τ space for |τ | � 1/J

Gf (τ) =


−CfΓ(2∆f ) sin(π∆f + θf )

π|τ |2∆f
, for τ > 0 and T = 0

CfΓ(2∆f ) sin(π∆f − θf )
π|τ |2∆f

, for τ < 0 and T = 0

. (C17)

We can also write corresponding ansatz for the fermionic correlator R(τ), which we will only

need as a function of τ for |τ | � 1/J

R(τ) =


− C+R

|τ |2(1−r̄) , for τ > 0 and T = 0

C−R
|τ |2(1−r̄) , for τ < 0 and T = 0

. (C18)
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where C+R > 0 and C−R > 0, but they need not be equal. This corresponds to the ansatz in (2.8)

which has C+R = C−R. We can allow these amplitudes to be distinct in the large M limit. We also

examined generalization of the RG analysis in Section III to the case C+R 6= C−R; we found that

the perturbative RG then gave inconsistent renormalizations of the coupling g, and so C+R = C−R

in the context of the ε and r̄ expansion.

For the boson Green’s function, we write at a complex frequency |z| � J

Gb(z) = Cb
e−i(π∆b+θb)

z1−2∆b
, Im(z) > 0, (C19)

expressed in terms of the three real parameters, Cb, ∆b and θb. The constraint (C9) becomes

sin(π∆b + θb) > 0 , sin(π∆b − θb) < 0. (C20)

Using (C10) we obtain in τ space for |τ | � 1/J

Gb(τ) =


−CbΓ(2∆b) sin(π∆b + θb)

π|τ |2∆b
, for τ > 0 and T = 0

CbΓ(2∆b) sin(π∆b − θb)
π|τ |2∆b

, for τ < 0 and T = 0

. (C21)

Finally, we can write expressions similar to (C18) for Q(τ) for |τ | � 1/J

Q(τ) =


CQ
|τ |2−ε , for τ > 0 and T = 0

CQ
|τ |2−ε , for τ < 0 and T = 0

. (C22)

where CQ > 0. This corresponds to the ansatz for Q(τ) in (2.8)

We can relate the parameters in the ansatzes for the bosonic bath Q(τ) and the fermionic bath

R(τ) to the parameters in the ansatzes for the Green’s functions Gf and Gb, by using the self-

consistency conditions (C13). This yields expressions for r̄, ε, C±R, and CQ in terms of ∆f,b, θf,b,

and Cf,b:

r̄ = 1−∆f −∆b

ε = 2(1− 2∆f )

C+R = −CfCbΓ(2∆f )Γ(2∆b) sin(π∆f + θf ) sin(π∆b − θb)
π2

C−R =
CfCbΓ(2∆f )Γ(2∆b) sin(π∆f − θf ) sin(π∆b + θb)

π2

CQ =
[CfΓ(2∆f )]

2 sin(π∆f + θf ) sin(π∆f − θf )
π2

. (C23)

However, in keeping with RG computation, we will defer application of the relations in (C23).
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4. Luttinger constraints

The Luttinger constraints on the spectral asymmetries of the Green’s functions are very similar

to those in Refs. [28, 77], and can be obtained by the method of Ref. 78:

θf
π

+

(
1

2
−∆f

)
sin(2θf )

sin(2π∆f )
= kp

θb
π

+

(
1

2
−∆b

)
sin(2θb)

sin(2π∆b)
=

1

2
+ p .

These constraints imply −π∆f < θf < π∆f and π∆b < θb < π/2. The determine the spectral

asymmetry angles θf,b in terms of the density p and the scaling dimensions ∆f,b.

5. Self-energies

We can now collect the corresponding expressions for the fermionic and bosonic self energies at

|τ | � 1/J and T = 0:

Σf (τ) = −kt2
[
CbC+RΓ(2∆b)

π

]
sin(π∆b + θb)

|τ |2∆b+2(1−r̄)

− J2

[
CfCQΓ(2∆f )

π

]
sin(π∆f + θf )

|τ |2∆f+2−ε , τ > 0 (C24)

Σf (τ) = −kt2
[
CbC−RΓ(2∆b))

π

]
sin(π∆b − θb)
|τ |2∆b+2(1−r̄)

+ J2

[
CfCQΓ(2∆f )

π

]
sin(π∆f − θf )
|τ |2∆f+2−ε , τ < 0 (C25)

Σb(τ) = −t2
[
CfC−RΓ(2∆f )

π

]
sin(π∆f + θf )

|τ |2∆f+2(1−r̄) , τ > 0

(C26)

Σb(τ) = −t2
[

(CfC+RΓ(2∆f )

π

]
sin(π∆f − θf )
|τ |2∆f+2(1−r̄) , τ < 0

(C27)

We also use the spectral representations for the self energies

Σ(z) =

∫ ∞
−∞

dΩ

π

σ(Ω)

z − Ω
. (C28)
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Performing the inverse of the Laplace transforms in (C10) we obtain at T = 0 and |Ω| � J

σf (Ω) =
πkt2

Γ(2∆b + 2(1− r̄))

[
CbC+RΓ(2∆b)

π

]
sin(π∆b + θb)

|Ω|1−2∆b−2(1−r̄)

+
πJ2

Γ(2∆f + 2− ε)

[
CfCQΓ(2∆f )

π

]
sin(π∆f + θf )

|Ω|−1−2∆f+ε
, Ω > 0 (C29)

σf (Ω) = − πkt2

Γ(2∆b + 2(1− r̄))

[
CbC−RΓ(2∆b)

π

]
sin(π∆b − θb)
|Ω|1−2∆b−2(1−r̄)

+
πJ2

Γ(2∆f + 2− ε)

[
CfCQΓ(2∆f )

π

]
sin(π∆f − θf )
|Ω|−1−2∆f+ε

, Ω < 0 (C30)

σb(Ω) =
πt2

Γ(2∆f + 2(1− r̄))

[
CfC−RΓ(2∆f )

π

]
sin(π∆f + θf )

|Ω|1−2∆f−2(1−r̄) , Ω > 0

(C31)

σb(Ω) = − πt2

Γ(2∆f + 2(1− r̄))

[
CfC+RΓ(2∆f )Cb

π

]
sin(π∆f − θf )
|Ω|1−2∆f−2(1−r̄) , Ω < 0

(C32)

6. Solution of the saddle point equations

We will now determine the constraints placed by the saddle point equations (C11) and (C12)

on the parameters of the low frequency ansatzes presented in Section C 3. As in the body of the

text, we will defer application of the self-consistency conditions (C13), which led to the relations

(C23). This will allow us to make a more complete comparison of the results of the large M theory

with that in Section III.

From (C19) we have

Σb(z) = − 1

Cb
ei(π∆b+θb)z(1−2∆b). (C33)

Comparing (C31), (C32) and (C33) we have the exponent identity

∆f + ∆b = r̄ . (C34)

In the present large M limit, the electron Green’s function is given by

Gc(τ) = −Gf (τ)Gb(−τ) , (C35)

and so the anomalous dimension of the electron operator is

ηc = 2(∆f + ∆b) . (C36)
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Now we see that the large M result (C34) is precisely the result (3.38) for the electron anomalous

dimension obtained to all orders in the ε and r̄ expansions.

Comparing the amplitudes of (C31), (C32) and (C33) we obtain

πt2

Γ(2∆f + 2(1− r̄))

[
CfC−RΓ(2∆f )

π

]
sin(π∆f + θf ) =

sin(π∆b + θb)

Cb
(C37)

πt2

Γ(2∆f + 2(1− r̄))

[
CfC+RΓ(2∆f )

π

]
sin(π∆f − θf ) = −sin(π∆b − θb)

Cb
(C38)

From (C15) we have

Σf (z) = − 1

Cf
ei(π∆f+θf )z(1−2∆f ). (C39)

The comparison of this with (C29), (C30) leads to two possible solutions, appearing as the two

intermediate critical phases in Fig. 8.

a. ∆f > ε/4

The second J2 terms in (C29) and (C30) are much smaller than the t2 terms when ∆f − ε/2 >
∆b− r̄; using (C34), we obtain the condition ∆f > ε/4. So the J2 terms can be neglected. Indeed,

the low energy solution is then entirely independent of the strength of the exchange interaction,

which is rather different from the structure of the FP4 fixed point in Section III with both g∗
and γ∗ non-zero. Instead, it is the FP3 fixed point, with γ∗ = 0, which matches the structure of

the present large M solution, and this fixed point was found to be unstable in the RG analysis

for M = 2, M ′ = 1. We will therefore only write down the saddle point equations here, and not

consider this case further.

From (C39), (C29) and (C30) we have

πkt2

Γ(2∆b + 2(1− r̄))

[
CbC+RΓ(2∆b)

π

]
sin(π∆b + θb) =

sin(π∆f + θf )

Cf
(C40)

πkt2

Γ(2∆b + 2(1− r̄))

[
CbC−RΓ(2∆b)

π

]
sin(π∆b − θb) = −sin(π∆f − θf )

Cf
(C41)

The combination of (C37), (C41) or (C38), (C40) yields

Γ(2∆f ) sin(π∆f + θf ) sin(π∆f − θf )
Γ(2∆b) sin(π∆b + θb) sin(π∆b − θb)

= −k (C42)

We also have from (C37), (C38) or (C40), (C41)

C+R

C−R
= −sin(π∆f + θf ) sin(π∆b − θb)

sin(π∆f − θf ) sin(π∆b + θb)
(C43)

which is consistent with the relations in (C23).

We can also apply the self-consistency relations in (C23) to the exponents, and obtain r̄ = 1/2

and ∆f = (2− ε)/4.
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b. ∆f = ε/4

Now the t2 and J2 terms in (C29) and (C30) are equally important, and we will see that the

structure of this large M solution is very similar to that of the critical point found in the RG

analysis in Section III.

Solving (C34) and ∆f − ε/2 = ∆b − r̄ we obtain the scaling dimensions.

∆f =
ε

4
(C44)

∆b = r̄ − ε

4
(C45)

In the large M limit, the spin correlator is given by

〈S(τ) · S(0)〉 ∼ −Gf (τ)Gf (−τ) (C46)

and so the anomalous dimension of the spin operator is

ηS = 4∆f (C47)

We now see that the spin anomalous dimension implied by the large M equations (C44) and (C47)

is consistent with the result (3.36) obtained to all orders in the ε and r̄ expansion.

Comparison of the amplitude of (C29) with (C39) yields

kt2
CbC+RΓ(2r̄ − ε/2)

Γ(2− ε/2)
sin(π∆b + θb)

+ J2CfCQΓ(ε/2)

Γ(2− ε/2)
sin(π∆f + θf ) =

sin(π∆f + θf )

Cf
(C48)

while the comparison of (C30) with (C39) yields

−kt2CbC−RΓ(2r̄ − ε/2)

Γ(2− ε/2)
sin(π∆b − θb)

+ J2CfCQΓ(ε/2)

Γ(2− ε/2)
sin(π∆f − θf ) =

sin(π∆f − θf )
Cf

(C49)

Comparison of (C48) and (C49) again yields (C43), which is consistent with (C23).

Let us combine the saddle point equations (C37), (C38), (C44), (C45), (C48), and (C49) with

self-consistency equations (C23), and collect all the equations which determine the parameters

∆f,b, θf,b, and Cf,b in the low frequency ansatzes for Gf and Gb in (C15) and (C19). All these

equations reduce to ε = 1, r̄ = 1/2, and the following independent equations

∆f =
1

4

∆b =
1

4
t2C2

fC
2
b cos(2θf ) = π

J2C4
f cos(2θf )− kt2C2

fC
2
b cos(2θb) = π . (C50)
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Note that the values of ∆f and ∆b above, combined with (C36) and (C47) yield the self-consistent

values in (3.39). For the last two equations in (C50), notice the bounds |θf | < π/4 and π/4 < θb <

π/2 below (C24); so all the co-efficients on the left hand sides of (C50) are positive, and the last

two equations determine the values of Cf and Cb. The values of θf and θb are then determined

by the particle density p from (C24). So this low energy solution can exist at a variable particle

density, and the present low energy M = ∞ theory describes a potential critical phase, rather

than a critical point.

Finally, let us note the form of the electron Green’s function from (C35)

Gc(τ) =


CfCb sin(π/4 + θf ) sin(π/4− θb)

π|τ | , for τ > 0 and T = 0

CfCb sin(π/4− θf ) sin(π/4 + θb)

π|τ | , for τ < 0 and T = 0

. (C51)

The exponent and signs of (C51) agree with the self-consistent electron Green’s function obtained

in (3.40) (recall (C16) and (C20)), but it appears that the magnitudes of the amplitudes in (C51)

can be different between τ > 0 and τ < 0. This is a subtle feature of the large M theory which is

not reproduced by the ε and r̄ expansion in the body of the paper. This is related to the discussion

below (C18).

Also note that the 1/τ decay of (C51) is similar to that of a Fermi liquid. Nevertheless, this

state is not a Fermi liquid because the spin correlator in (C46) decays as 1/|τ |, in contrast to

the 1/τ 2 decay expected in a Fermi liquid. The exponents in (C46) and (C51) can be understood

together in a picture of fractionalization of the electron into spinons and holons, where the spinon

and holon correlators both decay as 1/
√
τ .

Appendix D: RG details

This appendix contains further details on the RG computation of Section III.

The beta functions are defined as follows:

β(g) = µ
dg

dµ
|g0 ; β(γ) = µ

dγ

dµ
|γ0 (D1)

To begin,

µ
dg0

dµ
= 0 = r̄

µr̄Zgg√
ZfZb

+ µ
µr̄g√
ZfZb

dZg
dµ

+ µ
µr̄Zg√
ZfZb

dg

dµ
− µ

2

µr̄Zgg√
ZfZb

[
1

Zf

dZf
dµ

+
1

Zb

dZb
dµ

]
, (D2)

which gives us,

r̄gZgZfZb + β(g)

[
ZgZfZb + gZfZb

∂Zg
∂g
− g

2

(
ZgZb

∂Zf
∂g

+ ZgZf
∂Zb
∂g

)]
+ β(γ)

[
gZfZb

∂Zg
∂γ
− g

2

(
ZgZb

∂Zf
∂γ

+ ZgZf
∂Zb
∂γ

)]
= 0 . (D3)
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Similarly, we have

ε

2
γZγZf + β(g)γ

[
Zf
∂Zγ
∂g
− Zγ

∂Zf
∂g

]
+ β(γ)

[
γZf

∂Zγ
∂γ

+ ZfZγ − γZγ
∂Zf
∂γ

]
= 0 . (D4)

1. Flow away from criticality

For the flow equation of s at one-loop, we will follow the momentum-shell RG procedure, where

the cut-off D is kept explicitly. In this case, we introduce masses for bosons and fermions, but

keeping in mind that only their difference is physically relevant. To this end we consider the

Fourier-transformed action,

S(D − δD) = Sψ(D − δD) + Sg(D − δD) + Sγ(D − δD) + Sφ(D − δD)

+
1

β

∑
iωn,α

f †α [−iωn + λ+mf + ΣF ] fα +
1

β

∑
iωn

b† [−iωn + λ+mb + ΣB] b , (D5)

where the self energies are evaluated as follows:

Σa = g2
0

∫ D

D−δD
dk

kr

iωn − λ− k −mb
= −g2

0D
r−1

(
δD + (iωn − λ−mb)

δD

D

)
= −g2

(
δD + (iωn − λ−mb)

δD

D

)
(with g2 ≡ g2

0D
r−1) , (D6)

Σb = γ2
0

3

4

Sd
2

∫ D

D−δD
dk

kd−2

iωn − λ− k −mf

= −3

4
γ2

0

Sd
2
Dd−3

(
δD + (iωn − λ−mf )

δD

D

)
= −3

4
γ2 Sd

2S̃d+1

(
δD + (iωn − λ−mf )

δD

D

)
(with γ2 ≡ γ2

0D
d−3S̃d+1) , (D7)

Σc = 2g2
0

∫ D

D−δD
dk

kr

iωn − λ− k −mb
= −2g2

0D
r−1

(
δD + (iωn − λ−mb)

δD

D

)
= −2g2

(
δD + (iωn − λ−mb)

δD

D

)
(with g2 ≡ g2

0D
r−1) , (D8)

with ΣF = Σa + Σb and ΣB = Σc. The scaling factor is l = 1 + δD/D such that under the scaling

k′ = lk and iω′ = liω. Thus we have,

S ′(D) = l−3−r(S ′c(D) + S ′g(D)) + l−1S ′γ(D) + l−d+1S ′φ(D)

+
l−2

β

∑
iω′
n

f †
[
(−iω′n + λ)(1 + g2 δD

D
+

3

4
γ2 δD

D
) + lmf (1 +

3

4
γ2 δD

D
)− lg2δD + lg2mb

δD

D
− l3

4
γ2δD

]
f

+
l−2

β

∑
iω′
n

b†
[
(−iω′n + λ)(1 + 2g2 δD

D
) + lmb − l2g2δD + l2g2mf

δD

D

]
b . (D9)
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Thus we have the following expressions for the renormalized masses:

m′f =

(
1 +

δD

D
− g2 δD

D

)
mf −

(
g2 +

3

4
γ2

)
δD

D
+ g2mb

δD

D
, (D10)

m′b =

(
1 +

δD

D
− 2g2 δD

D

)
mb − 2g2 δD

D
+ 2g2mf

δD

D
. (D11)

Note that along with this the fermionic and bosonic operators, bosonic field and the coupling

constants are also renormalized. For instance, f ′ = l−1+g2/2+3γ2/8f and b′ = l−1+g2b. In addition

to the self-energy corrections there is also a vertex correction to γ at this order. However, this

does not influence the mass renormalization and thus we can already proceed to calculate the flow

equation for the mass. In our notation introduced earlier, s ≡ mf −mb. Now,

β(s) ≡ −D δs

δD
= −s+ 3g2s− g2 +

3

4
γ2 . (D12)

We can compute the relevant eigenvalue associated with the flow of s at the fixed points of the

beta functions, and find

λs = 1 +
3ε− 16r̄

6
, (D13)

at the non-trivial fixed point FP4. At the self-consistent values, i.e., ε = 1 and r̄ = 1/2 we have

λs = 1/6, although we cannot trust the result at such large values of ε and r̄. Similarly, at FP1,

FP2, and FP3 we find λs to be 1, 1, and 1− 2r̄ respectively.

Within the momentum-shell RG, we get the same beta functions for g and γ, after considering

the vertex correction as well.

2. Particle density

(a) (b)

FIG. 9. Lowest order diagrams for particle densities. There are corrections, which are expected to vanish

at T = 0.

We can also calculate the particle densities (nf/b). This can be done at any s. We will first

make the following identification: s = s̃/β, such that s̃ is small. This will facilitate us to do a
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(a) (b) (c) (d)

FIG. 10. Two-loop diagrams for fermion self energy. In these diagrams, solid line is for f propagator,

dashed line is for ψ propagator, wavy is for b propagator, and spiral is for φ propagator.

small s̃ expansion. From the diagrams we find,

qf (λ) = 2e−β(λ+s) ∼ 2e−βλ(1− s̃) , (D14)

qb(λ) = e−βλ . (D15)

q(λ) = qf (λ) + qb(λ), such that,

nf/b = lim
λ→∞

qf/b
q

. (D16)

So, we have,

nf =
2− 2s̃

3− 2s̃
∼ 2

3
(1− s̃)(1 +

2

3
s̃) ∼ 2

3
− 2

9
s̃ , (D17)

nb =
1

3− 2s̃
∼ 1

3
(1 +

2

3
s̃) ∼ 1

3
+

2

9
s̃ . (D18)

Note that we still satisfy the particle density constraint nf + nb = 1 exactly. It is also interesting

to note that nb = 1/3 at zeroth order, which corresponds to pc = 1/3.

3. Two-loop self energy

We first evaluate the fermionic self energies to two-loop order. The relevant Feynman diagrams

are shown in Fig. 10.

Σf
10(a)(iν) = −2

g4
0

β2

∑
iω1n,iω2n

∫
dk1dk2

|k1|r
iω1n − k1

|k2|r
iω2n − k2

1

(iν − iω1n − λ)2

1

iν − iω1n + iω2n − λ

= 2g4
0

∫
dk1dk2

|k1|r|k2|rθ(k1)θ(−k2)

(iν − k1 − λ)2(iν − k1 + k2 − λ)

= 2g4
0(iν − λ)−1+2r

[
1

8r̄2
− (2πi− 1)

4r̄

]
, (D19)
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(a) (b)

FIG. 11. Two-loop diagrams for boson self energy. In these diagrams, solid line is for f propagator,

dashed line is for ψ propagator, wavy is for b propagator, and spiral is for φ propagator.

Σf
10(b)(iν) =

9

16

γ4
0

β2

∑
iω1n,iω2n

∫
ddk1d

dk2
1

ω2
1n + k2

1

1

ω2
2n + k2

2

1

(iν + iω1n − λ)2

1

iν + iω1n + iω2n − λ

=
9

16
γ4

0

∫
ddk1

ddk2

4k1k2

1

(iν − k1 − λ)2

1

iν − k1 − k2 − λ

=
9

16
γ4

0(iν − λ)−5+2d

[
1

2ε2
− −1 + ℵ+ 2iπ

2ε

]
, (D20)

Σf
10(c)(iν) =

−3

16

γ4
0

β2

∑
iω1n,iω2n

∫
ddk1d

dk2
1

ω2
1n + k2

1

1

ω2
2n + k2

2

1

iν + iω1n − λ
1

iν + iω1n + iω2n − λ
1

iν + iω2n − λ

=
−3

16
γ4

0

∫
ddk1

ddk2

4k1k2

1

iν − k1 − λ
1

iν − k2 − λ
1

iν − k1 − k2 − λ

=
−3

16
γ4

0(iν − λ)−5+2d

[
− 1

ε2
− 1− 2ℵ − 4iπ

2ε

]
, (D21)

Σf
10(d)(iν) = −3

4

γ2
0g

2
0

β2

∑
iω1n,iω2n

∫
ddk1dk2|k2|r

1

ω2
1n + k2

1

1

(iν + iω1n − λ)2

1

iω2n − k2

1

iν + iω1n − iω2n − λ

=
3

4
γ2

0g
2
0

∫
ddk1dk2

|k2|r
2k1

θ(k2)
1

(iν − k1 − λ)2

1

iν − k1 − k2 − λ

=
3

4
γ2

0g
2
0(iν − λ)−3+d+r

[
1

2r̄(ε+ 2r̄)
+
−2iπ(ε+ 2r̄)− ℵε+ 4r̄

4r̄(ε+ 2r̄)

]
. (D22)

We will now evaluate the bosonic self energies to two-loop order. The relevant Feynman dia-

grams are shown in Fig. 11.

Σb
11(a)(iν) = −2

g4
0

β2

∑
iω1n,iω2n

∫
dk1dk2

|k1|r
iω1n − k1

|k2|r
iω2n − k2

1

(iν + iω1n − λ)2

1

iν + iω1n − iω2n − λ

= 2g4
0

∫
dk1dk2

θ(−k1)θ(k2)|k1|r|k2|r
(iν + k1 − λ)2(iν + k1 − k2 − λ)

= 2g4
0(iν − λ)−1+2r

[
1

8r̄2
− 2iπ − 1

4r̄

]
, (D23)
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(a) (b) (c)

FIG. 12. Two-loop diagrams for vertex corrections to g0. In these diagrams, solid line is for f propagator,

dashed line is for ψ propagator, wavy is for b propagator, and spiral is for φ propagator.

Σb
11(b)(iν) = 2

3

4

g2
0γ

2

β2

∑
iω1n,iω2n

∫
dk1d

dk2
|k1|r

iω1n − k1

1

ω2
2n + k2

2

1

(iν + iω1n − λ)2

1

iν + iω1n + iω2n − λ

= 2
3

4
g2

0γ
2

∫
dk1d

dk2
θ(−k1)
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4. Two-loop vertex corrections

Let us first evaluate the vertex correction to the fermionic bath coupling g0 at two-loop level.

The relevant Feynman diagrams are shown in Fig. 12,.

Γg12(a) =
g5

0

β2

∑
iω1n,iω2n

∫
dk1dk2

|k1|r
iΩ1n − iω1n − k1

|k2|r
iω2n − iΩ2n − k2

× 1

iω1n − λ
1

iω2n − λ
1

iω2n − iΩ1n + iω1n − λ
1

iω2n − iΩ2n + iω1n − λ
= −g5

0

∫
dk1dk2

|k1|rθ(k1)

iΩ1n − k1 − λ
|k2|rθ(−k2)

iΩ2n + k2 − λ
1

iΩ2n + k2 − k1 − λ
1

iΩ1n + k2 − k1 − λ

We set the external frequency of c particle to zero. In other words, Ω1n = Ω2n. Then
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(a) (b) (c)

(d) (e) (f)

FIG. 13. Two-loop diagrams for vertex corrections to γ0. In these diagrams, solid line is for f propagator,

dashed line is for ψ propagator, wavy is for b propagator, and spiral is for φ propagator.
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Γg12(c) = g0Cs2
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However, Cs1 = 0. So there is only one non-zero contribution to the g0 vertex correction.

We will now evaluate the two-loop vertex correction to the bosonic bath coupling γ0. The
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corresponding diagrams are shown in Fig. 13.
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g4

0

β2

∑
iω1n,iω2n

∫
dk1dk2

|k1|r
iΩ1n − iω1n − k1

|k2|r
iω2n − k2

1

iω1n − λ
1

iω1n + iω2n − λ

× 1

iΩ2n − iΩ1n + iω1n + iω2n − λ
1

iΩ2n − iΩ1n + iω1n − λ
= γ0Csfg

4
0

∫
dk1dk2|k1|r|k2|rθ(k1)θ(−k2)

1

iΩ1n − k1 + k2 − λ
1

iΩ2n − k1 + k2 − λ
× 1

iΩ1n − k1 − λ
1

iΩ2n − k1 − λ

= γ0Csfg
4

[
πr csc(πr)Γ(2− 2r)Γ(r + 1)(l − iΩ1n)2r−2

Γ(3− r)

]
= γ0Csfg

4A2
µ

[
1

8r̄2
− 3 + 2iπ

4r̄

]
. (D33)

We get Csf = 0. Using the results in this appendix we obtain the renormalization factors and beta
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[1] C. Proust and L. Taillefer, “The Remarkable Underlying Ground States of Cuprate Superconductors,”

Annual Review of Condensed Matter Physics 10, 409 (2019), arXiv:1807.05074 [cond-mat.supr-con].

[2] I. M. Vishik, M. Hashimoto, R.-H. He, W.-S. Lee, F. Schmitt, D. Lu, R. G. Moore, C. Zhang,

W. Meevasana, T. Sasagawa, S. Uchida, K. Fujita, S. Ishida, M. Ishikado, Y. Yoshida, H. Eisaki,

Z. Hussain, T. P. Devereaux, and Z.-X. Shen, “Phase competition in trisected superconducting

dome,” Proceedings of the National Academy of Science 109, 18332 (2012), arXiv:1209.6514 [cond-

mat.supr-con].

[3] Y. He, Y. Yin, M. Zech, A. Soumyanarayanan, M. M. Yee, T. Williams, M. C. Boyer, K. Chatterjee,

W. D. Wise, I. Zeljkovic, T. Kondo, T. Takeuchi, H. Ikuta, P. Mistark, R. S. Markiewicz, A. Bansil,

S. Sachdev, E. W. Hudson, and J. E. Hoffman, “Fermi Surface and Pseudogap Evolution in a

Cuprate Superconductor,” Science 344, 608 (2014), arXiv:1305.2778 [cond-mat.supr-con].

[4] K. Fujita, C. K. Kim, I. Lee, J. Lee, M. H. Hamidian, I. A. Firmo, S. Mukhopadhyay,

H. Eisaki, S. Uchida, M. J. Lawler, E.-A. Kim, and J. C. Davis, “Simultaneous Transitions in

Cuprate Momentum-Space Topology and Electronic Symmetry Breaking,” Science 344, 612 (2014),

arXiv:1403.7788 [cond-mat.supr-con].
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[22] P. Coleman, C. Pépin, Q. Si, and R. Ramazashvili, “Topical Review: How do Fermi liquids get

heavy and die?” Journal of Physics Condensed Matter 13, R723 (2001), arXiv:cond-mat/0105006

[cond-mat.str-el].

[23] K. Haule and G. Kotliar, “Strongly correlated superconductivity: A plaquette dynamical mean-field

theory study,” Phys. Rev. B 76, 104509 (2007), arXiv:0709.0019 [cond-mat.str-el].

[24] O. Parcollet and A. Georges, “Non-Fermi-liquid regime of a doped Mott insulator,” Phys. Rev. B

50

http://dx.doi.org/10.1126/science.aaw8850
http://dx.doi.org/ 10.1103/PhysRevB.66.064501
http://arxiv.org/abs/cond-mat/0204106
http://arxiv.org/abs/cond-mat/0204106
http://dx.doi.org/10.1103/PhysRevB.69.144510
http://arxiv.org/abs/cond-mat/0307392
http://arxiv.org/abs/1909.10258
http://dx.doi.org/ 10.1126/science.1091806
http://arxiv.org/abs/cond-mat/0311326
http://dx.doi.org/10.1103/PhysRevB.52.10286
http://dx.doi.org/10.1103/PhysRevB.52.10286
http://arxiv.org/abs/cond-mat/9504036
http://dx.doi.org/10.1103/PhysRevB.52.10295
http://arxiv.org/abs/cond-mat/9504120
http://dx.doi.org/10.1103/PhysRevD.94.106002
http://dx.doi.org/10.1103/PhysRevD.94.106002
http://arxiv.org/abs/1604.07818
http://dx.doi.org/10.1103/PhysRevLett.70.3339
http://arxiv.org/abs/cond-mat/9212030
http://online.kitp.ucsb.edu/online/entangled15/
http://online.kitp.ucsb.edu/online/entangled15/
http://arxiv.org/abs/1903.10499
http://dx.doi.org/ 10.1016/j.physb.2004.12.041
http://arxiv.org/abs/cond-mat/0409033
http://dx.doi.org/ 10.1088/0953-8984/13/35/202
http://arxiv.org/abs/cond-mat/0105006
http://arxiv.org/abs/cond-mat/0105006
http://dx.doi.org/10.1103/PhysRevB.76.104509
http://arxiv.org/abs/0709.0019
http://dx.doi.org/ 10.1103/PhysRevB.59.5341
http://dx.doi.org/ 10.1103/PhysRevB.59.5341


59, 5341 (1999), cond-mat/9806119.

[25] L. Arrachea and M. J. Rozenberg, “Infinite-range quantum random Heisenberg magnet,” Phys. Rev.

B 65, 224430 (2002), cond-mat/0203537.

[26] A. Camjayi and M. J. Rozenberg, “Quantum and Thermal Fluctuations in the SU(N) Heisenberg

Spin-Glass Model near the Quantum Critical Point,” Phys. Rev. Lett. 90, 217202 (2003), cond-

mat/0210407.

[27] A. Georges, O. Parcollet, and S. Sachdev, “Mean Field Theory of a Quantum Heisenberg Spin

Glass,” Phys. Rev. Lett. 85, 840 (2000), arXiv:cond-mat/9909239 [cond-mat.dis-nn].

[28] A. Georges, O. Parcollet, and S. Sachdev, “Quantum fluctuations of a nearly critical Heisenberg

spin glass,” Phys. Rev. B 63, 134406 (2001), arXiv:cond-mat/0009388 [cond-mat.str-el].

[29] P. Werner, A. J. Kim, and S. Hoshino, “Spin-freezing and the Sachdev-Ye model,” Europhys. Lett.

124, 57002 (2018), arXiv:1805.04102 [cond-mat.str-el].

[30] N. Tsuji and P. Werner, “Out-of-time-ordered correlators of the Hubbard model: Sachdev-Ye-

Kitaev strange metal in the spin-freezing crossover region,” Phys. Rev. B 99, 115132 (2019),

arXiv:1812.04217 [cond-mat.str-el].

[31] P. Cha, G. Parcollet, A. Georges, and E.-A. Kim, “Incoherent metal in the quantum critical region

of SU(2) symmetric model,” Bull. Am. Phys. Soc. , S06.00011 (2019).

[32] P. B. Wiegmann, “Superconductivity in strongly correlated electronic systems and confinement versus

deconfinement phenomenon,” Phys. Rev. Lett. 60, 821 (1988).

[33] C. Wang, A. Nahum, M. A. Metlitski, C. Xu, and T. Senthil, “Deconfined quantum critical points:

symmetries and dualities,” Phys. Rev. X 7, 031051 (2017), arXiv:1703.02426 [cond-mat.str-el].

[34] A. Karch and D. Tong, “Particle-Vortex Duality from 3d Bosonization,” Phys. Rev. X 6, 031043

(2016), arXiv:1606.01893 [hep-th].

[35] E. Witten, “Global aspects of current algebra,” Nucl. Phys. B 223, 422 (1983).

[36] A. Tanaka and X. Hu, “Many-Body Spin Berry Phases Emerging from the π-Flux State: Competition

between Antiferromagnetism and the Valence-Bond-Solid State,” Phys. Rev. Lett. 95, 036402 (2005),

arXiv:cond-mat/0501365 [cond-mat.str-el].

[37] T. Senthil and M. P. A. Fisher, “Competing orders, nonlinear sigma models, and topological terms

in quantum magnets,” Phys. Rev. B 74, 064405 (2006), arXiv:cond-mat/0510459 [cond-mat.str-el].

[38] J. Lee and S. Sachdev, “Wess-Zumino-Witten Terms in Graphene Landau Levels,” Phys. Rev. Lett.

114, 226801 (2015), arXiv:1411.5684 [cond-mat.str-el].

[39] J. L. Smith and Q. Si, “Spatial correlations in dynamical mean-field theory,” Phys. Rev. B 61, 5184

(2000), arXiv:cond-mat/9903083 [cond-mat.str-el].
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[41] K. Haule, A. Rosch, J. Kroha, and P. Wölfle, “Pseudogaps in the t-J model: An extended dynamical

mean-field theory study,” Phys. Rev. B 68, 155119 (2003), arXiv:cond-mat/0304096 [cond-mat.str-

el].

[42] S. Florens and A. Georges, “Quantum impurity solvers using a slave rotor representation,” Phys.

Rev. B 66, 165111 (2002), arXiv:cond-mat/0206571 [cond-mat.str-el].

[43] S. Florens and A. Georges, “Slave-rotor mean-field theories of strongly correlated systems and the

Mott transition in finite dimensions,” Phys. Rev. B 70, 035114 (2004), arXiv:cond-mat/0404334

[cond-mat.str-el].

[44] S. Florens, P. Mohan, C. Janani, T. Gupta, and R. Narayanan, “Magnetic fluctuations near the Mott

transition towards a spin liquid state,” EPL 103, 17002 (2013), arXiv:1006.3620 [cond-mat.str-el].

[45] W. Fu, Y. Gu, S. Sachdev, and G. Tarnopolsky, “Z2 fractionalized phases of a solvable, disordered,

t-J model,” Phys. Rev. B 98, 075150 (2018), arXiv:1804.04130 [cond-mat.str-el].

[46] S. Sachdev, C. Buragohain, and M. Vojta, “Quantum Impurity in a Nearly Critical Two Dimensional

Antiferromagnet,” Science 286, 2479 (1999), arXiv:cond-mat/0004156 [cond-mat.str-el].

[47] M. Vojta, C. Buragohain, and S. Sachdev, “Quantum impurity dynamics in two-dimensional anti-

ferromagnets and superconductors,” Phys. Rev. B 61, 15152 (2000), arXiv:cond-mat/9912020 [cond-

mat.str-el].

[48] S. Sachdev, “Static hole in a critical antiferromagnet: field-theoretic renormalization group,” Physica

C Superconductivity 357, 78 (2001), arXiv:cond-mat/0011233 [cond-mat.str-el].

[49] M. Vojta and L. Fritz, “Upper critical dimension in a quantum impurity model:Critical theory of the

asymmetric pseudogap Kondo problem,” Phys. Rev. B 70, 094502 (2004), arXiv:cond-mat/0309262

[cond-mat.str-el].

[50] L. Fritz and M. Vojta, “Phase transitions in the pseudogap Anderson and Kondo models: Critical

dimensions, renormalization group, and local-moment criticality,” Phys. Rev. B 70, 214427 (2004),

arXiv:cond-mat/0408543 [cond-mat.str-el].

[51] L. Fritz, “Quantum Phase Transitions in Models of Magnetic Impurities,” Ph. D. Dissertation, Uni-

versität Karlsruhe (2006).

[52] Q. Si and G. Kotliar, “Fermi-liquid and non-Fermi-liquid phases of an extended Hubbard model in

infinite dimensions,” Phys. Rev. Lett. 70, 3143 (1993).

[53] Q. Si and G. Kotliar, “Metallic non-Fermi-liquid phases of an extended Hubbard model in infinite

dimensions,” Phys. Rev. B 48, 13881 (1993), arXiv:cond-mat/9307060 [cond-mat].

[54] C. Gonzalez-Buxton and K. Ingersent, “Renormalization-group study of Anderson and Kondo im-

purities in gapless Fermi systems,” Phys. Rev. B 57, 14254 (1998), arXiv:cond-mat/9803256 [cond-

mat.str-el].

[55] A. M. Sengupta, “Spin in a fluctuating field: The Bose(+Fermi) Kondo models,” Phys. Rev. B 61,

52

http://dx.doi.org/ 10.1103/PhysRevB.68.155119
http://arxiv.org/abs/cond-mat/0304096
http://arxiv.org/abs/cond-mat/0304096
http://dx.doi.org/ 10.1103/PhysRevB.66.165111
http://dx.doi.org/ 10.1103/PhysRevB.66.165111
http://arxiv.org/abs/cond-mat/0206571
http://dx.doi.org/10.1103/PhysRevB.70.035114
http://arxiv.org/abs/cond-mat/0404334
http://arxiv.org/abs/cond-mat/0404334
http://dx.doi.org/ 10.1209/0295-5075/103/17002
http://arxiv.org/abs/1006.3620
http://dx.doi.org/ 10.1103/PhysRevB.98.075150
http://arxiv.org/abs/1804.04130
http://dx.doi.org/10.1126/science.286.5449.2479
http://arxiv.org/abs/cond-mat/0004156
http://dx.doi.org/10.1103/PhysRevB.61.15152
http://arxiv.org/abs/cond-mat/9912020
http://arxiv.org/abs/cond-mat/9912020
http://dx.doi.org/10.1016/S0921-4534(01)00198-8
http://dx.doi.org/10.1016/S0921-4534(01)00198-8
http://arxiv.org/abs/cond-mat/0011233
http://dx.doi.org/10.1103/PhysRevB.70.094502
http://arxiv.org/abs/cond-mat/0309262
http://arxiv.org/abs/cond-mat/0309262
http://dx.doi.org/10.1103/PhysRevB.70.214427
http://arxiv.org/abs/cond-mat/0408543
http://dx.doi.org/10.1103/PhysRevLett.70.3143
http://dx.doi.org/10.1103/PhysRevB.48.13881
http://arxiv.org/abs/cond-mat/9307060
http://dx.doi.org/10.1103/PhysRevB.57.14254
http://arxiv.org/abs/cond-mat/9803256
http://arxiv.org/abs/cond-mat/9803256
http://dx.doi.org/ 10.1103/PhysRevB.61.4041
http://dx.doi.org/ 10.1103/PhysRevB.61.4041


4041 (2000).

[56] Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, “Locally critical quantum phase transitions in

strongly correlated metals,” Nature 413, 804 (2001), arXiv:cond-mat/0011477 [cond-mat.str-el].

[57] L. Zhu and Q. Si, “Critical local-moment fluctuations in the Bose-Fermi Kondo model,” Phys. Rev.

B 66, 024426 (2002), arXiv:cond-mat/0204121 [cond-mat.str-el].

[58] J. H. Pixley, S. Kirchner, K. Ingersent, and Q. Si, “Quantum criticality in the pseudogap Bose-Fermi

Anderson and Kondo models: Interplay between fermion- and boson-induced Kondo destruction,”

Phys. Rev. B 88, 245111 (2013), arXiv:1306.2352 [cond-mat.str-el].

[59] Y. Huang, K. Chen, Y. Deng, and B. Svistunov, “Trapping centers at the superfluid-Mott-

insulator criticality: Transition between charge-quantized states,” Phys. Rev. B 94, 220502 (2016),

arXiv:1608.02232 [cond-mat.quant-gas].

[60] S. Whitsitt and S. Sachdev, “Critical behavior of an impurity at the boson superfluidMott-insulator

transition,” Phys. Rev. A 96, 053620 (2017), arXiv:1709.04919 [cond-mat.quant-gas].

[61] K. Chen, Y. Huang, Y. Deng, and B. Svistunov, “Halon: A quasiparticle featuring critical charge

fractionalization,” Phys. Rev. B 98, 214516 (2018), arXiv:1807.02168 [cond-mat.quant-gas].

[62] X.-Y. Song, C.-M. Jian, and L. Balents, “Strongly Correlated Metal Built from Sachdev-Ye-Kitaev

Models,” Phys. Rev. Lett. 119, 216601 (2017), arXiv:1705.00117 [cond-mat.str-el].

[63] P. Zhang, “Dispersive Sachdev-Ye-Kitaev model: Band structure and quantum chaos,” Phys. Rev.

B 96, 205138 (2017), arXiv:1707.09589 [cond-mat.str-el].

[64] D. Chowdhury, Y. Werman, E. Berg, and T. Senthil, “Translationally invariant non-Fermi liquid met-

als with critical Fermi-surfaces: Solvable models,” Phys. Rev. X 8, 031024 (2018), arXiv:1801.06178

[cond-mat.str-el].

[65] A. A. Patel, J. McGreevy, D. P. Arovas, and S. Sachdev, “Magnetotransport in a model of a

disordered strange metal,” Phys. Rev. X 8, 021049 (2018), arXiv:1712.05026 [cond-mat.str-el].

[66] A. A. Patel and S. Sachdev, “Theory of a Planckian metal,” Phys. Rev. Lett. 123, 066601 (2019),

arXiv:1906.03265 [cond-mat.str-el].

[67] M. Mitrano, A. A. Husain, S. Vig, A. Kogar, M. S. Rak, S. I. Rubeck, J. Schmalian, B. Uchoa,

J. Schneeloch, R. Zhong, G. D. Gu, and P. Abbamonte, “Anomalous density fluctuations in a

strange metal,” Proceedings of the National Academy of Science 115, 5392 (2018), arXiv:1708.01929

[cond-mat.str-el].

[68] A. A. Husain, M. Mitrano, M. S. Rak, S. I. Rubeck, B. Uchoa, J. Schneeloch, R. Zhong, G. D. Gu,

and P. Abbamonte, “Crossover of Charge Fluctuations across the Strange Metal Phase Diagram,”

Phys. Rev. X 9, 041062 (2019), arXiv:1903.04038 [cond-mat.str-el].

[69] B. Sutherland, “Model for a multicomponent quantum system,” Phys. Rev. B 12, 3795 (1975).

[70] P. A. Bares and G. Blatter, “Supersymmetric t-J model in one dimension: Separation of spin and

53

http://dx.doi.org/ 10.1103/PhysRevB.61.4041
http://dx.doi.org/ 10.1103/PhysRevB.61.4041
http://dx.doi.org/ 10.1038/35101507
http://arxiv.org/abs/cond-mat/0011477
http://dx.doi.org/ 10.1103/PhysRevB.66.024426
http://dx.doi.org/ 10.1103/PhysRevB.66.024426
http://arxiv.org/abs/cond-mat/0204121
http://dx.doi.org/ 10.1103/PhysRevB.88.245111
http://arxiv.org/abs/1306.2352
http://dx.doi.org/10.1103/PhysRevB.94.220502
http://arxiv.org/abs/1608.02232
http://dx.doi.org/10.1103/PhysRevA.96.053620
http://arxiv.org/abs/1709.04919
http://dx.doi.org/10.1103/PhysRevB.98.214516
http://arxiv.org/abs/1807.02168
http://dx.doi.org/ 10.1103/PhysRevLett.119.216601
http://arxiv.org/abs/1705.00117
http://dx.doi.org/10.1103/PhysRevB.96.205138
http://dx.doi.org/10.1103/PhysRevB.96.205138
http://arxiv.org/abs/1707.09589
http://dx.doi.org/ 10.1103/PhysRevX.8.031024
http://arxiv.org/abs/1801.06178
http://arxiv.org/abs/1801.06178
http://dx.doi.org/10.1103/PhysRevX.8.021049
http://arxiv.org/abs/1712.05026
http://dx.doi.org/10.1103/PhysRevLett.123.066601
http://arxiv.org/abs/1906.03265
http://dx.doi.org/10.1073/pnas.1721495115
http://arxiv.org/abs/1708.01929
http://arxiv.org/abs/1708.01929
http://dx.doi.org/10.1103/PhysRevX.9.041062
http://arxiv.org/abs/1903.04038
http://dx.doi.org/10.1103/PhysRevB.12.3795


charge,” Phys. Rev. Lett. 64, 2567 (1990).

[71] S. Sarkar, “The supersymmetric t-J model in one dimension,” J. Phys. A: Math. Gen. 24, 1137

(1991).

[72] F. H. L. Essler and V. E. Korepin, “Higher conservation laws and algebraic Bethe Ansätze for the

supersymmetric t-J model,” Phys. Rev. B 46, 9147 (1992).
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