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We describe the zero-temperature phase diagram of a model of a two-dimensional square-lattice
array of neutral atoms, excited into Rydberg states and interacting via strong van der Waals inter-
actions. Using the density-matrix renormalization group algorithm, we map out the phase diagram
and obtain a rich variety of phases featuring complex density wave orderings, upon varying lattice
spacing and laser detuning. While some of these phases result from the classical optimization of
the van der Waals energy, we also find intrinsically quantum-ordered phases stabilized by quantum
fluctuations. These phases are surrounded by novel quantum phase transitions, which we analyze by
finite-size scaling numerics and Landau theories. Our work highlights Rydberg quantum simulators
in higher dimensions as promising platforms to realize exotic many-body phenomena.

The ability to fully control coherent quantum many-
body systems is an exciting frontier. Apart from quan-
tum information processing, controlled many-body sys-
tems can enable new insights into strongly correlated
phases of matter including the realization of exotic or-
ders, nonequilibrium quantum dynamics, and the role of
quantum entanglement. A number of physical platforms,
such as cold atoms [1, 2], trapped ions [3], and supercon-
ducting qubits [4], have exhibited these capabilities in
systems of small to intermediate sizes. In this regard,
arrays of neutral atoms trapped in optical tweezers and
interacting via controlled excitations into atomic Ryd-
berg states, provide an especially promising platform. A
unique feature of this system is the ability to arrange
atoms in arbitrary geometries in one [5], two [6–9], or
three [10, 11] spatial dimensions. Additionally, strong
(potentially direction-dependent) interactions lead to the
Rydberg blockade mechanism [12], preventing two nearby
atoms to be simultaneously excited to the Rydberg state.
Together, these properties allow for the programmable
realization and high-fidelity manipulation of a wide range
of effective interacting spin models [13, 14]. Indeed, ex-
periments on one-dimensional Rydberg atom arrays have
already shed light on various phenomena, such as the na-
ture of quantum phase transitions (QPTs) [15, 16] and
the Kibble-Zurek mechanism [17], and even uncovered
surprising dynamical behavior such as quantum many-
body scarring [18, 19]. The interplay of constraints from
the Rydberg blockade and the geometric positions of the
atoms in two spatial dimensions implies that a host of
richer, nontrivial phenomena can be realized, ranging
from phases with competing crystalline orders [20–23],
to the physics of quantum dimer models and topological
phases [14, 24].

Motivated by such possibilities, we numerically study
the phases in a fully coherent collection of Rydberg atoms
on a square lattice, using the density-matrix renormal-
ization group (DMRG) algorithm. Along with several
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Figure 1. Phase diagram of the 2D Rydberg Hamiltonian
(1), traced out by the bipartite entanglement entropy S on
a 15× 8 square lattice on a cylinder. The five density-wave-
ordered phases along the line δ/Ω = 2.7 are sketched in Fig. 3,
together with the banded phase. The QPT along the line
Rb/a= 1.2 is analyzed in Fig. 4. Red (green) dashes mark
first-order (continuous) transitions. The yellow diamonds de-
marcating the phase boundaries are the calculated finite-size
pseudocritical points [25].

density-wave-ordered phases, arising from the densest
(constrained) packing of Rydberg excitations, we also
find signatures of intrinsically quantum phases stabilized
by quantum fluctuations [Fig. 1]. We quantitatively de-
termine the phase boundaries and map out the full phase
diagram in detail. Additionally, we comprehensively ex-
amine the nature of the QPTs, based on finite-size scaling
analyses and effective Landau theories. In particular, we
demonstrate an instance of a QPT in the 3D Ising uni-
versality class; we thus propose the 2D Rydberg atom
array as the first experimental platform to unambigu-
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ously observe this transition that has proved elusive in
condensed-matter systems to date [26]. Furthermore, we
provide evidence for exotic QPTs, such as those described
by theories of three-dimensional O(N)-symmetric vector
models with anisotropic perturbations.

Model.—We study the following Hamiltonian describ-
ing interacting Rydberg atoms arranged in a 2D square
lattice of size N ≡Lx×Ly, with open (periodic) bound-
ary conditions in the x (y)-direction:

HRyd =

N∑

i=1

Ω

2
(|g〉i〈r|+ |r〉i〈g|)− δ|r〉i〈r|

+
1

2

∑

i 6=j
V
(
||xi − xj ||/a

)
|r〉i〈r| ⊗ |r〉j〈r|. (1)

Here, i labels sites at positions xi of the lattice (with
lattice constant a), while |g〉i and |r〉i denote the inter-
nal atomic ground state and a Rydberg state of the i-th
atom, respectively. The parameters Ω (Rabi frequency)
and δ (detuning) characterize a coherent laser driving
field, while V (x) =C6/x

6 quantifies the van der Waals
interactions of atoms in Rydberg states. HRyd can equiv-
alently be parametrized by the Rydberg blockade radius,
Rb, defined by V (Rb/a)≡Ω, within which interactions
are so strong that effectively no two neighboring atoms
can simultaneously be excited to Rydberg states; the sites
are then said to be blockaded [12]. Note that HRyd maps
to a model of hard-core bosons [27, 28]. However, it does
not have a global U(1) symmetry, distinguishing it from
related models [29–31] on the square lattice that have
attracted much attention in the context of supersolidity.

The ground states hosted by the Hamiltonian HRyd

depend sensitively on δ/Ω and Rb/a, which control the
density of Rydberg excitations 〈ni〉;ni = |r〉i〈r|. At large
negative δ/Ω, configurations with most atoms in |g〉 are
favored, resulting in a so-called disordered phase. For
large positive values of δ/Ω, the density of atoms in |r〉
increases, but their geometric arrangement is constrained
by the interactions between proximate Rydberg atoms.
This competition between δ and V (or Rb) leads to or-
dered phases with different spatial symmetries, referred
to as “Rydberg crystals” [28, 32] in which Rydberg atoms
are arranged regularly across the array. In two spatial di-
mensions, classical combinatorics suggest that a plethora
of such crystalline phases can be realized, in close corre-
spondence with the solutions of the circle packing opti-
mization problem [33], which is known to be NP (nonde-
terministic polynomial time) hard [34–36].

Methods and observables.—We numerically obtain the
ground states of HRyd for various values of Rb/a, δ/Ω
using DMRG [37, 38] with a snakelike matrix product
state ansatz [see the Supplemental Material (SM) [39]
for details]. We retain interactions between atoms sepa-
rated by up to two lattice units (third-nearest neighbors)
in Eq. (1): with this truncation, one approximates the

physics of HRyd faithfully for Rb/a.
√

5. The linear di-
mensions Lx,Ly are chosen to be compatible with most
of the possible ordering patterns while respecting the op-
timal aspect ratio α∗=Lx/Ly ' 1.9 needed to minimize
finite-size corrections in 1/Ly and render the bulk of the
cylinder a good approximation of the infinite 2D sys-
tem [40]. Unless specified otherwise, we choose Lx = 15,
Ly = 8, and work in units of Ω = 1, a = 1.

The properties used to identify the phases and the
QPTs between them (Fig. 2) are best illustrated in a
context that can be understood analytically. To be-
gin, we scan δ along the line Rb = 1.2, where only
nearest-neighbor sites are blockaded. For small δ, the
system is a “paramagnet” with a unique, featureless
ground state containing a low density of Rydberg ex-
citations, whereas for larger positive δ, the ground state
is twofold degenerate, with an antiferromagnetically or-
dered, checkerboard arrangement of excitations (i.e., a
Néel state) [41, 42]. Therefore, the staggered mag-

netization [43, 44] ms = 〈|MN |〉;MN ≡
∑N
i=1(−1)i (ni −

1/2)/N , can serve as an order parameter detecting the
Z2-symmetry-breaking QPT. As δ approaches the quan-
tum critical point (QCP) δc from above, ms vanishes.
Moreover, approaching δc from below, the energy gap
to the first-excited state ∆≡E1−E0 closes at the QPT
[45, 46]. This behavior is indeed corroborated by our
numerics in Fig. 2, where the QPT occurs at δc≈ 1.3.
In Fig. 2(a), ∆ is seen to be nearly zero in the ordered
phase, which is a numerical indicator of the ground state
being degenerate.

The drawback of using an order parameter such as ms

or the gap ∆ to determine the (finite-size) phase bound-
aries is that the former requires a priori knowledge of the
ordering of the phases and obtaining the latter is compu-
tationally expensive. A more unbiased diagnostic is the
half-cylinder bipartite entanglement entropy (EE) of the
ground state S≡−Tr (ρr ln ρr), where ρr is the reduced
density matrix of half the cylinder (partitioned along x̂).
As seen in Fig. 2, S peaks near the QCP [47] and then
drops sharply in the ordered phase (DMRG selects one of
the two symmetry-broken states rather than their super-
position, being biased toward states having low entangle-
ment [48]). This is indeed the quantity we scrutinize to
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Figure 2. The observables used to diagnose the Z2-symmetry-
breaking QPT are (a) the staggered magnetization, the energy
gap, and (b) the bipartite entanglement entropy, plotted here
along the line Rb/a = 1.2.
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(a) (b)Checkerboard: δ = 2.7, Rb = 1.2 Striated: δ = 2.7, Rb = 1.4 Star: δ = 2.7, Rb = 1.6

Banded: δ = 1.8, Rb = 1.9 Rhombic: δ = 2.7, Rb = 1.9 Staggered: δ = 2.7, Rb = 2.1

Checkerboard Striated Star

Banded Rhombic Staggered

Figure 3. Magnetization profiles, ni and |n(k)|, of the six ordered phases in (a) real and (b) momentum space. In the cases
where boundary effects induce defects near the edges, the bulk (framed) reflects the ideal ordering.

limn the phases below, and generate the phase diagram.

Ordered phases at larger Rb.—Away from the simple
case above, we find a number of new phases, with dif-
ferent density-wave orderings that have no analog in 1D.
Figure 1 displays three broad lobes in the (δ/Ω, Rb/a)
parameter space, which, along with the intermediate re-
gions between them, constitute six ordered phases. Their
magnetization profiles as well as their associated Fourier
transforms n(k) =

∑
i exp(ik · ri) 〈ni〉/

√
N are presented

in Fig. 3.

Consider increasing Rb from the checkerboard phase
at Rb≈ 1.2 while remaining on the line δ= 2.7 (vertical
dashed line in Fig. 1). As Rb is increased, the Néel order
begins to melt, and the system transitions into a striated
phase [49, 50] characterized by a nonzero row magneti-

zation mr ≡
∣∣∑N

i=1(−1)row(i) 〈ni〉
∣∣/N. Given that in the

classical limit (δ/Ω→∞,Rb/a 6= 0), the star state (de-
scribed below) is always energetically favored over one
with pure striated ordering, the appearance of this phase
is unexpected. A key role is played here by quantum fluc-
tuations, which stabilize the striated phase in a narrow
window: the system optimizes the packing fraction by
placing Rydberg atoms on one sublattice in the, say, odd
rows together with a small but nonzero density of de-
localized excitations on the same sublattice on the even
rows. Smearing out these additional excitations offsets
the energy penalty due to V while maximizing the re-
duction in energy from δ. Hence, the striated ordering
coexists with a vestigial Néel order.

Once Rb&
√

2, diagonally adjacent sites are also block-
aded by the repulsive interactions and the system enters
a so-called star phase [51, 52]; the order parameter is

the conventional magnetization m≡∑N
i=1 〈ni − 1/2〉 /N .

Next to the star phase, lies the rhombic phase in which
Rydberg excitations are clustered in a pattern resembling
a diamond. Despite the large size of the unit cell, con-
sisting of 40 sites and 9 Rydberg atoms, the rhomboidal
crystal is remarkably robust on a wide range of lattice
sizes. This phase is separated from the disordered one
by a sliver of the intermediate (purely quantum) banded

Phase â1,2 D Maxima of |n(k)| n̄b

Checkerboard x̂± ŷ 2 (π, π) 1
2

Striated 2x̂, 2ŷ 4 (π, 0), (π, π) –

Star 2x̂ ± ŷ 8 ±(π/2, π), (π, 0) 1
4

Banded 5x̂, 2̂y 20 ±(2π/5, π) –

Rhombic 5x̂± 4ŷ 80 ±(π, π/4), ±(2π/5, π) 9
40

Staggered 2x̂+ ŷ, x̂− 2ŷ 10 ±( 2π
5
,− 4π

5
), ±( 4π

5
, 2π

5
) 1

5

Table I. Properties of the six ordered phases for infinite system
sizes: the primitive lattice vectors of the density wave â1,2,
the ground-state degeneracy D, the dominant peaks in the
Fourier spectrum, and the density of Rydberg excitations in
the classical limit, n̄b. On an infinite lattice, the ground state
also includes Rydberg crystals with C4-rotated copies of the
lattice vectors and momentum peaks tabulated above, even
though the symmetry between rows and columns is broken by
the boundary conditions in a finite-size system.

phase. Finally, increasing Rb even further, till third-
nearest neighbors are blockaded, brings us to the stag-
gered phase where nearest excitations are always a dis-
tance of

√
5 apart, their arrangement being reminiscent

of the allowed moves of a knight on a chessboard. The
salient features of these phases are enlisted in Table I.
Nature of phase transitions.—While the array of or-

dered phases of the 2D Rydberg Hamiltonian (1) are in-
triguing, equally interesting are the symmetry-breaking
QPTs that engender them. We focus on the continuous
transitions—encountered upon going from the disordered
phase to one of the ordered phases—that can be char-
acterized by universal critical exponents [45, 46], which
we numerically determine by finite-size scaling (FSS)
[53, 54].

We begin by examining the purportedly simplest QPT
from the disordered to the checkerboard phase on the
line Rb = 1.2 (horizontal dotted line in Fig. 1). First, we
precisely establish the location of the QCP in the thermo-
dynamic limit for use in all scaling forms, by computing
the Binder cumulant [55] 2U4≡ 3−〈M4

N 〉/〈M2
N 〉2, which
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is size independent at the QCP for sufficiently large sys-
tems. As is visible in Fig. 4(a), the cumulants all inter-
sect at one point for system sizes ranging from Ly = 4
to 10, with fixed aspect ratio α= 2. Crossings of the
curves for pairs of system sizes Ly and Ly + 2 proffer
a sequence of finite-size estimates δc (L) of the critical
point, which can be extrapolated to Ly→∞ [56], yield-
ing δc/Ω = 1.1477± 0.0006.

Near the QCP, the correlation length diverges as
ξ∼ |δ− δc|− ν with ν the correlation length exponent. We
can thus posit that U4 satisfies an ansatz of the form

U4 =F (1)
α (L

1/ν
y (δ− δc)/Ω), with F some universal scal-

ing function. Indeed, excellent data collapse [57–59] is
achieved upon plotting U4 as a function of the scaling

variable L
1/ν
y (δ− δc) for different values of δ and Ly

[Fig. 4(b)], using the exponent ν≈ 0.629 of the 3D (clas-
sical) Ising transition [60–62].

Similarly, other critical exponents can be accessed from
the squared staggered magnetization and susceptibility
χs≡N (〈M2

N 〉− 〈|MN |〉2). These (dimensionful) quanti-
ties obey the ansätze [63]

M2
N = L−2β/νF (2)

α

(
L1/ν
y (δ − δc)/Ω

)
, (2)

χs = L2−(η+z)F (3)
α

(
L1/ν
y (δ − δc)/Ω

)
, (3)

where β, η, and z are the magnetization, anomalous spin
scaling, and dynamical critical exponents, respectively,
which are related as β= ν (η+D+z−2) [64]. Once again,
the resulting curves for different system sizes merge into
a single one using the exponents β≈ 0.326, η≈ 0.036, and
z= 1 (i.e., that of a Lorentz invariant theory), confirm-
ing that the QPT unequivocally belongs to the 3D Ising
universality class.

In principle, one could carry out a similar analysis for
the QPTs to the other ordered phases. In practice, how-
ever, this is computationally intractable with the present
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Figure 4. (a) Binder cumulant U4 for different lattice sizes;
all of the curves intersect at the QCP. Data collapse is ob-
tained for (b) U4, (c) the squared magnetization, and (d) the
susceptibility using the 3D Ising critical exponents in the FSS
ansätze.

DMRG approach. We therefore consider an alternative
strategy, and construct effective Landau theories [65] to
describe the transitions. The central idea behind this
framework is similar to conventional mean-field theory,
in which one represents an exponentially large number
of degrees of freedom by an order parameter expectation
value, say, ψ0; minimizing the free energy as a function of
ψ0 then yields the optimal equilibrium state. Landau the-
ory builds upon this concept of free energy optimization
by additionally incorporating spatial fluctuations, within
the “soft spin” approximation. With reference to the Ry-
dberg system, this means that the discrete local density
ni at each site i is promoted to a coarse-grained continu-
ous magnetization field φ (r)∈R (whose magnitude can
vary freely), representing an approximate average of ni
in the vicinity of r = ri; the hard occupation constraint
is thus softened. The underlying assumption is that the
important spatial variations occur on a scale much larger
than the lattice spacing [45], so we effectively focus on
long-wavelength and low-energy physics. The field φ (r)
can be expanded in the basis set of the real-space eigen-
functions of the N lowest-energy modes as

φ(r) = Re

( N∑

n=1

ψn eikn·r
)
, (4)

where ψn ∈C is the order parameter corresponding to
the n-th mode. The positions of these soft modes in mo-
mentum space can be identified from the peaks in the
Fourier spectra listed in Table I. The Landau functional
is given by all homogeneous quartic polynomials in the
amplitudes ψn that are invariant under the symmetry
transformations of the underlying square lattice [66–69].
For example, in the case of the striated phase, our func-
tional for the two (real) amplitudes is

L1 =

2∑

n=1

(
∇ψ2

n + rψ2
n

)
+ u

2∑

n=1

ψ4
n + v ψ2

1 ψ
2
2 , (5)

where r,u, and v are coupling constants; we need v < 0
to ensure that both ψ1,2 condense in the ordered phase.
The quartic perturbation breaks the O(2) symmetry of
the quadratic terms down to D4. The values of the order
parameters ψn, for the different possible states, are ob-
tained by minimizing L1, given r,u, and v. Analyzing the
RG flow of this theory provides us with valuable informa-
tion about the set of fixed points and their corresponding
critical exponents [70], which can also be measured ex-
perimentally [17]. Specifically, a theory like L1 informs
us of whether the transition is in the well-known N-
vector universality classes [71] or if the O(N)-symmetry-
breaking terms modify the asymptotic critical behavior.
This question of the relevance of the anisotropic per-
turbations can be directly addressed by classifying them
[70, 72] using irreducible representations of the O(N) in-
ternal group, and computing the RG dimensions of their
associated couplings [73].
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The Landau functionals for the other QPTs are pre-
sented in Sec. II of the SM and summarized in Table SI
therein [39]. These involve four or more real fields and
are described by three-dimensional O(N)-symmetric vec-
tor models (N= 4, 8) [74] with anisotropic perturbations
[73]. While two of these Landau-Ginzburg-Wilson the-
ories have been studied [70, 75], we also find an exotic
theory [Eq. (S15)] that has not been investigated pre-
viously. Experimentally extracting the exponents of the
transition, possibly via the Kibble-Zurek mechanism [76–
80], can help reveal the critical properties of this theory.

Lastly, we comment on the possibility of probing the
above-mentioned phase diagram experimentally. In an
adiabatic sweep protocol (where the detuning is ramped
up, driving the system from the disordered to an or-
dered phase), the time needed to maintain adiabaticity
scales as N/Ω. Due to the finite lifetime of Rydberg
states, t′, on average, N0'N2/(Ω t′) atoms will spon-
taneously emit a photon during this process. For ex-
periments with N = 100 Rb atoms, Rabi frequencies of
(2π)×10 MHz, and t′≈ 150µs for a 70S Rydberg state,
we estimate N0∼ 1. Such driving parameters, as well as
sweeps over the required detuning range δ∼ 2–3 Ω have
already been utilized in one-dimensional atom arrays [5]
to demonstrate physics originating from coherent many-
body dynamics [2, 17, 81, 82]. Even though a single spon-
taneous emission event can affect the full many-body co-
herence [83–86], the small number of such expected emis-
sion events points to the promising experimental feasibil-
ity of both coherently preparing all the different density-
wave-ordered ground states and observing the essential
characteristics of these crystalline phases.

Outlook and conclusion.— We have numerically stud-
ied the ground-state phase diagram of interacting Ry-
dberg atoms arranged on a 2D square lattice. We il-
lustrated that even in this relatively simple geometry,
owing to the nontrivial constraints imposed by the Ry-
dberg blockade, a variety of intricate competing ordered
phases and exotic phase transitions are realized. Our
work serves as a useful guide to and benchmark for exper-
iments with Rydberg atoms in 2D, and more generally,
highlights the utility of Rydberg quantum simulators [87]
in higher dimensions as fertile test beds to explore and
realize novel physical phenomena. This begets the ques-
tion: going beyond the square lattice and considering
more complex geometries, where numerical studies be-
come ever more intractable but which are still within the
grasp of a quantum simulator, what exciting new physics
can we observe?
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In this Supplemental Material, we provide details of
the computational methods used for the calculations de-
scribed in the main text. We also derive and discuss the
effective Landau theories for the quantum phase transi-
tions in the 2D Rydberg atom array.

I. COMPUTATIONAL METHODS

The primary tool that we employ to find the ground
states of HRyd is the finite-system density-matrix renor-
malization group (DMRG) [1–4], implemented using the
ITensor package [5]. The desired wavefunction can be
represented as a matrix product state (MPS) [6, 7] of the
form

|Ψ〉 =
∑

τ1...τn

∑

b1...bn−1

Aτ1b1A
τ2
b1b2

Aτ3b2b3 · · ·A
τn
bn−1
|τ1, . . . , τn〉,

(S1)
where the A are matrices with physical indices τ and
link indices b. The DMRG algorithm then presents an
efficient method to find the optimal MPS representation
of the many-body state [8].

Unless stated otherwise, we place the system on a
cylinder with open boundary conditions along x̂ but pe-
riodic along ŷ, as opposed to fully periodic boundaries,
which would necessitate squaring the number of states
required for a given accuracy [9]. One of the major draw-
backs of two-dimensional DMRG is that the number of
states retained must be increased exponentially with the
width of the system to maintain a constant accuracy [10]
and this constrains the system sizes that can be sim-
ulated: in this work, we considered sizes ranging from
Lx = 8–20 and Ly = 4–10 with an associated bond di-
mension d =200–1600. The system is regarded to have
converged to its true ground state once the truncation
error drops below a certain threshold value (taken to be
10−11 here) and in practice, the convergence criterion was
typically found to be satisfied after performing ∼ O(102)
successive sweeps. Our sweeping strategy entails initially
performing a large number of sweeps at relatively small
bond dimensions before ramping d up progressively at
later stages. To help facilitate the proper build-up of
long-range correlations, a small “noise” term [11] is ini-
tially added to the density matrix at each step, but then
turned off in later sweeps. Given a ground state |ψ0〉 ob-

tained in this fashion, we can also target the first-excited
state using the Hamiltonian H ′ = HRyd + wP0, where
P0 =|ψ0〉〈ψ0| is a projection operator and w is an energy
penalty.

y

x

y

x

...

(a) (b)

FIG. S1. (a) The real-space geometry of the system used for
performing the DMRG computations, illustrating the cylin-
drical boundary conditions. The x-axis is the direction along
the cylinder, while the y-axis wraps around it. (b) The num-
bering scheme used to transform the 2D lattice into a 1D
chain results in a so-called snake-like ordering.

Particular care must be taken to ensure the compati-
bility of the density-wave ordering with the system size
and boundary conditions. Since the open boundaries act
as effective pinning fields [12, 13], the ground state can
differ nontrivially between lattices with even and odd
lengths. For instance, both the striated and star phases
require Lx to be odd—because the system prefers max-
imizing Rydberg excitations at the edges—but on such
lattices, we cannot isolate a defect-free state belonging
to the rhombic phase due to the very same reason. A
signature of this disagreement with our 15 × 8 system
size is seen in the small fluctuations of the entanglement
entropy in the top-right corner of the phase diagram in
Fig. 1 of the main text. In the same vein, as evidenced
by Fig. 3(a), the ideal local magnetization pattern of the
staggered phase is not compatible with the combination
of cylindrical boundaries and even Ly, so the numerically
calculated ground state will always have a nonzero den-
sity of defects. To reduce these boundary effects, one can
either study the central bulk of a given Lx × Ly system
[14, 15] or switch to open boundaries.
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II. DERIVATION OF THE LANDAU
FUNCTIONALS

In the spirit of Refs. [16–19], in this section, we for-
mulate the most general continuum theory of the order-
parameter fields ψn that is invariant under the symme-
try transformations of the square lattice. The elements
of the space group include translations along the x (Tx)
and y (Ty) axes, reflections about the x (Rx) and y (Ry)
axes as well as the two diagonals x = y (Rd) and x = −y
(Rd′), and fourfold rotations around the z axis (C4). To
write down the quartic Landau functional, we need to
determine how the ψn transform under these operations.
This, in turn, follows from the transformation properties
of the eigenvectors exp(ikn · r), introduced in Eq. (4) of
the main text, as

Ôφ(r) = Re

[∑

n

ψneikn·(Ôr)

]
≡ Re

[∑

n

(
Ôψ
)
n

eikn·r
]
.

We outline this procedure individually for each of the
phases in the following.

A. Disordered to striated

The minimal set of momenta {kn} required to describe
the magnetization field φ(r) can be read off Table I of
the main text. In the striated phase, |n(k)| shows peaks
at not only (π, 0) and (0, π) but also (π, π) = (π, 0) +
(0, π). For the purpose of describing the phase transition,
therefore, it suffices to focus on the first two momenta
alone. The magnetization can be expressed in terms of
two real fields ψ1 and ψ2 as

φ(r) = ψ1 ei (π,0)·r + ψ2 ei (0,π)·r. (S2)

In the basis Ψ ≡ (ψ1, ψ2), the matrix representations of
the symmetry transformations are:

Tx = −σ3, Ty = σ3, Rx = Ry = 1, Rd = Rd′ = C4 = σ1,

where σ are the 2× 2 Pauli matrices. The Landau func-
tional is given by all homogeneous polynomials that are
invariant under the group generated by these transfor-
mations and, up to quartic order, is expressed by Eq. (5)
of the main text.

B. Disordered to star

The Fourier maxima in this phase are seen to be at
(π, 0), (0, π), (π/2, π), and (π, π/2), but noting that
(π, 0) = 2 (π/2, π)—and similarly for (0, π)—we can
write the magnetization as simply

φ(r) = Re
(
ψ1 ei (π/2,π)·r + ψ2 ei (π,π/2)·r

)
, (S3)

and the other wavevectors are described by harmonics,
ψ2
1,2, of the order parameters. Unlike in the previous

case, ψ1 and ψ2 are now complex. Using the basis, Ψ ≡
(ψ1, ψ2, ψ

∗
1 , ψ

∗
2), the symmetry operators can be written

as matrices which are

Tx =




i 0 0 0
0 −1 0 0
0 0 −i 0
0 0 0 −1


 , Ty =




−1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 −i


 , (S4)

Rx =




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


 , Ry =




0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


 ,

Rd =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 , Rd′ =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 , C4 =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


 .

These seven matrices generate a subgroup of O(4) and
the quartic terms of the Landau functional, composed of
all polynomials invariant under this group, is written as

L̄2 =
2∑

n=1

[
u |ψn|4 + w

(
ψ4
n + (ψ∗n)4

)]
+v |ψ1|2|ψ2|2. (S5)

We need v > 0 to ensure only one of ψ1,2 condenses, as
observed in the star phase. This model is equivalent to
the so-called tetragonal theory which is the M = 2, N =
2 version of the general three-coupling Landau-Ginzburg-
Wilson Hamiltonian

H =

∫
ddx
{∑

i,a

1

2

[
(∂µφa,i)

2 + rφ2a,i
]

(S6)

+
∑

ij,ab

1

4!

(
u0 + v0δij + w0δijδab

)
φ2a,iφ

2
b,j

}
,

where a, b = 1, ...M and i, j = 1, ...N . The RG flow of
this model was discussed in Sec. 11.6 of Ref. [20]. Besides
the eight fixed points [21–23] referenced therein, another
important fixed point—relevant to the case at hand—
is given by the chiral O(2)×O(2) theory [24], which is
obtained upon setting one of the couplings to zero. It is
uncertain whether this chiral fixed point is stable in the
enlarged tetragonal theory.

C. Disordered to banded

The transition to the banded phase involves the onset
of Fourier peaks at ±(2π/5, π), which continue to persist
in the rhombic phase at larger δ/Ω. Accordingly, we write

φ(r) = Re
(
ψ1 ei (2π/5,π)·r + ψ2 ei (π,2π/5)·r

)
. (S7)
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In the basis, Ψ ≡ (ψ1, ψ2, ψ
∗
1 , ψ

∗
2), the representations of

the symmetries are

Tx =




ζ 0 0 0
0 −1 0 0
0 0 ζ4 0
0 0 0 −1


 , Ty =




−1 0 0 0
0 ζ 0 0
0 0 −1 0
0 0 0 ζ4


 , (S8)

Rx =




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


 , Ry =




0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


 ,

Rd =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 , Rd′ =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 , C4 =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


 ,

employing the shorthand ζ = exp(2πi/5). Repeating the
same procedure as above leads to the Landau functional

L̄3 =

2∑

n=1

u |ψn|4 + v |ψ1|2|ψ2|2, (S9)

where we have suppressed the trivial quadratic and
derivative terms. Once again, v > 0 is needed to en-
sure that only one of ψ1,2 condenses in the banded state.
This is a particular case of the MN model [25, 26] (the
Hamiltonian for which is given by Eq. (S6) for w0 = 0),
with M = 2 and N = 2, or equivalently, of the O(2) ×
O(2) chiral model [27, 28],

H =

∫
ddx
{1

2

∑

a

[
(∂µφa)2 + rφ2a

]
+

1

4!
u0

(∑

a

φ2a

)2

+
1

4!
v0
∑

a,b

[
(φa · φb)2 − φ2aφ2b

]}
, (S10)

which is related to the former by an exact mapping of the
fields. It has two stable fixed point in different regions of
the quartic parameters, divided by a separatrix, and the
RG flow leading to the “chiral” fixed point was studied
in Ref. [29]. One can show that this theory also has a XY
fixed point in another region of the quartic couplings.

D. Banded to rhombic

Going into the rhombic phase, |n(k)| develops addi-
tional maxima at ±(π, π/4). Focusing on these dominant
peaks, we formulate the field as

φ(r) = Re
(
ψ1 ei (π/4,π)·r + ψ2 ei (π,π/4)·r

)
. (S11)

As before, the matrix representations of the symmetries,
in the basis, Ψ ≡ (ψ1, ψ2, ψ

∗
1 , ψ

∗
2), are

Tx =




λ 0 0 0
0 −1 0 0
0 0 λ∗ 0
0 0 0 −1


 , Ty =




−1 0 0 0
0 λ 0 0
0 0 −1 0
0 0 0 λ∗


 , (S12)

Rx =




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


 , Ry =




0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


 ,

Rd =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 , Rd′ =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 , C4 =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


 ,

where λ denotes exp(iπ/4). The final form of the quartic
polynomial obtained by imposing invariance under these
symmetries is exactly the same as Eq. (S9).

E. Disordered to staggered

Table. I of the main text arrays a set of four indepen-
dent Fourier peaks for the staggered phase in terms of
which, the magnetization field is

φ(r) = Re

(
ψ1 ei (2π/5,6π/5)·r + ψ2 ei (4π/5,2π/5)·r

+ ψ3 ei (6π/5,2π/5)·r + ψ4 ei (2π/5,4π/5)·r
)
. (S13)

For notational brevity, we refrain from expressing the
symmetry transformations as explicit 8×8 matrices, and
instead just list their operations on the ψn:

Tx :ψ1 → ζψ1, ψ2 → ζ2ψ2,ψ3 → ζ3ψ3,ψ4 → ζψ4;

Ty :ψ1 → ζ3ψ1,ψ2 → ζψ2, ψ3 → ζψ3, ψ4 → ζ2ψ4;

Rx :ψ1 → ψ4, ψ2 → ψ∗3 , ψ3 → ψ∗2 , ψ4 → ψ1;

Ry :ψ1 → ψ∗4 , ψ2 → ψ3, ψ3 → ψ2, ψ4 → ψ∗1 ;

Rd :ψ1 → ψ3, ψ2 → ψ4, ψ3 → ψ1, ψ4 → ψ2;

Rd′ :ψ1 → ψ∗3 , ψ2 → ψ∗4 , ψ3 → ψ∗1 , ψ4 → ψ∗2 ;

C4 :ψ1 → ψ∗2 , ψ2 → ψ1, ψ3 → ψ4, ψ4 → ψ∗3 .
(S14)

The most general quartic polynomial consistent with
these transformations is

L̄4 =
4∑

n=1

u |ψn|4 + v1
(
|ψ1|2|ψ2|2 + |ψ3|2|ψ4|2

)
(S15)

+ v2
(
|ψ1|2|ψ3|2 + |ψ2|2|ψ4|2

)
+ v3

(
|ψ1|2|ψ4|2 + |ψ2|2|ψ3|2

)

+ w
[
ψ1 (ψ∗2)

3
+ ψ3

1 ψ2 + ψ3
3 ψ4 + ψ3 (ψ∗4)

3
+ c.c

]
.

While the critical exponents of N -vector models have
been estimated for large N using 1/N expansions and
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Phase Landau theory Fixed points

Striated 2-vector model with D4 symmetry Ref. [33]

Star Tetragonal theory [20] Refs. [21–24]

Banded MN model (M =N = 2) [25, 26]/
O(2)×O(2) chiral model [27, 28]

Ref. [29]

Staggered 3D O(8) model + anisotropic per-
turbations

—

TABLE SI. Summary of the Landau theories for the QPTs
from the disordered phase to the various ordered phases, and
the studies that describe their fixed points. Note that the
transition from the banded to the rhombic phase is described
by the same theory as that from the disordered to the banded,
and is, therefore, omitted above.

RG techniques [30–32], the quartic terms listed above
break the O(8) symmetry in the present case. The resul-
tant model of Eq. (S15) has not been analyzed previously
in the literature and its critical behavior remains an open
question, which we leave for future work.

Finally, we close by recapitulating our results of this
section in Table SI for convenience of reference.

[1] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[2] S. R. White, Phys. Rev. B 48, 10345 (1993).
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[4] U. Schollwöck, Phil. Trans. R. Soc. A 369, 2643 (2011).
[5] ITensor Library (version 2.0.11) http://itensor.org.
[6] I. P. McCulloch, J. Stat. Mech. 2007, P10014 (2007).
[7] F. Verstraete, V. Murg, and J. I. Cirac, Adv. Phys. 57,

143 (2008).
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