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Electrons in quantum materials exhibiting coexistence of dispersionless (flat) bands piercing

dispersive (steep) bands can give rise to strongly correlated phenomena, and are associated

with unconventional superconductivity. It is known that in twisted trilayer graphene steep

Dirac cones can coexist with band flattening, but the phenomenon is not stable under layer

misalignments. Here we show that such a twisted sandwiched graphene (TSWG) – a three-

layer van der Waals heterostructure with a twisted middle layer – can have very stable flat

bands coexisting with Dirac cones near the Fermi energy when twisted to 1.5◦. These flat

bands require a specific high-symmetry stacking order, and our atomistic calculations predict

that TSWG always relaxes to it. Additionally, with external fields, we can control the relative

energy offset between the Dirac cone vertex and the flat bands. Our work establishes twisted

sandwiched graphene as a new platform for research into strongly interacting phases, and

topological transport beyond Dirac and Weyl semimetals.

Graphene, an atomically thin crystal of carbon, provides an experimentally favorable plat-

form for two dimensional (2D) Dirac physics as it exhibits ultrarelativistic Dirac cones in its band

structure, described with massless quasiparticles when weak spin-orbit coupling is neglected.1
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Bilayers of graphene in the energetically favorable Bernal (AB) stacking have quadratic disper-

sion and quasiparticles with well-defined effective mass.1 Twisted bilayer graphene (TBG) – two

rotationally mismatched graphene layers – can be fabricated at the so-called magic angle near 1.1◦,

where it hosts ultraheavy fermions with remarkably flat, almost dispersionless electronic bands2–5

of a topological origin.5–8 The twist angle serves as a precise control of the interlayer coupling

between the graphene monolayers, revealing the band flattening phenomena as an ultimate mani-

festation of hybridization of Dirac cones. Flat bands and the corresponding large density of elec-

tronic states can lead to novel strongly correlated phenomena. Indeed, since the recent discovery of

correlated insulators and unconventional superconductivity in TBG,9–12 van der Waals multilayer

stacks have been further explored as a platform of exotic correlated physics. In particular, effect-

ively 2D heterostructures consisting of flat sheets of graphene, transition metal dichalcogenides,

and hexagonal boron nitride have been successful candidates for the moiré-induced correlated

phenomena.13–23 Recent experimental progress in studying correlations in multilayer heterostruc-

tures with more than two twisted graphene layers13, 24–26 has led to a search for novel multilayer

platforms with a particular focus on the trilayer geometry.14, 27–30

In this work, we provide a detailed ab initio study of a unique extension of the TBG system:

the twisted graphene sandwich (Fig. 1b), which is a promising construct of a three-layer graphene

heterostructure.28 In general, different trilayer systems are also represented by the untwisted ABC

stack, the twisted monolayer on bilayer, and the doubly incommensurate twisted trilayer. The

ABC graphene stack has been well understood,1 although it has recently been observed to host

correlated states when placed on hexagonal boron nitride due to a lattice-mismatch induced moiré
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superlattice.13 The twisted monolayer on bilayer system is of the same experimental complexity as

the twisted bilayer, and can host both parabolic and Dirac cone bands near the Fermi energy,14, 31

but has a less robust flat band at its magic angle regime due to its reduced symmetry (Fig. 1c). The

doubly incommensurate twisted trilayer is challenging to model accurately due to a complicated

umklapp scattering process mediated by two independent twist angles, and the existing studies do

not show the same spectacular flat bands as in the twisted bilayer.29

In contrast, the graphene sandwich retains a high degree of symmetry.28 In the meantime,

it has an effectively stronger interlayer coupling between layers, promising flat bands at larger

angles and thus smaller moiré length-scales, likely enhancing correlated effects. We show in this

work that the trilayer system hosts a unique feature compared to the twisted bilayer: a symmetry-

protected Dirac cone that pierces through the magic-angle flat band. However, the system poses an

experimental challenge: to perfectly mimic the moiré pattern of TBG, the bottom and top layers

of TSWG need to be aligned in AA stacking. We show that this challenge is overcome by natural

relaxation of the sandwiched heterostructure, leading to protected coexistence of ultraheavy and

ultrarelativistic Dirac quasiparticles at the same energy scale.

Results

Electronic structure.— The electronic states of the twisted graphene sandwich consist of two

main features near the Fermi energy: a set of four nearly flat bands, similar to those found in

twisted bilayer graphene, and a Dirac cone reminiscent of monolayer graphene. Much like twisted
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bilayer graphene, the flatness of the first feature depends sensitively on the twist angle, crystal

relaxation, and external perturbations.32, 33 The sandwich’s Dirac cone is nearly identical to that of

the monolayer cone, with a Fermi velocity of 0.75 × 106 m/s compared to 0.81 × 106 m/s in the

monolayer case. We note that the sandwiched trilayer graphene has an advantage compared to the

twisted monolayer on bilayer graphene (BG/MG), where the effects of band flattening are obscured

by non-symmetric band hybridization due to the absence of a layer-inversion symmetry between

the monolayer and bilayer materials (see Fig. 1). In contrast, the magic angle graphene sandwich

shows a Dirac cone piercing nearly flat bands, which in the non-interacting picture already classi-

fies it as an unconventional semimetal. In our ab initio calculations, the principal magic angle is

found at 1.61◦ (see Fig. 1) for a rigid system, and inclusion of realistic lattice relaxation effects

sharpens it to 1.47◦ (see Fig. 2).

The electronic structure of the TSWG can be explained by considering the top and bottom

layers as one effective layer. We assume that the top and bottom layers are aligned to ensure

that they have the identical electronic coupling to the middle layer. Then, the effective states are

odd or even combinations between the pz orbitals of the top and bottom carbon atoms. The even

combinations can couple with the middle layer, with an interlayer coupling a factor of
√

2 stronger

than that of the twisted bilayer graphene, moving the flat band regime from θ = 1.1◦ to roughly

θ = 1.5◦. The odd combination is decoupled from the middle layer, leaving a copy of the pristine

monolayer Dirac cone being pierced by the flat bands. In fact, this decoupling is not exact, and we

report a weak coupling between the “bread” of the sandwich (top and bottom graphene layers) of

6 meV in density functional theory (DFT) calculations, which is ignored in our tight-binding and
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continuum models in this work. The weak coupling could be important for the strongly-correlated

electron physics. If included, the coupling can cause weak hybridization between the flat bands

and the Dirac cone, similar to the effect of vertical displacement fields (see Fig. 4c).

In realistic TSWG, the vertex of the Dirac cone is slightly off-set from the flat bands at

the K point (see Fig. 2). The off-set energy ∆EK (the energy difference between the Dirac cone

vertex and the flat bands) is always small and positive, meaning the flat electronic bands are always

piercing the Dirac cone slightly above the vertex in our study. We report that the exact value of

∆EK appears to be very sensitive to the parameterization of the model. Throughout this work, we

use a model for monolayer graphene that includes up to the third nearest-neighbour and accounts

for strain effects.34 This model gives ∆EK = 2 meV. However, if using an older model with up

to eight nearest-neighbours (but no strain corrections),35 we obtain ∆EK = 10 meV. If we modify

this model by truncating the range of the coupling, ∆EK reduces smoothly to the 2 meV result at

third nearest-neighbour. To explain this strong dependence on the monolayer model, it is important

to understand the origin of ∆EK . The Dirac cone is effectively decoupled from the twisted system,

and so its vertex lies at the same energy as it would in the monolayer case, at the monolayer Fermi

level. The flat bands of TSWG, however, have a modified Fermi energy ∆E due to the interlayer

coupling over the moiré cell. The shift ∆E in the flat bands Fermi energy is not well documented

in the existing TBG literature, as it can always be safely ignored by fixing the Fermi energy of the

bilayer system to zero after a band structure calculation is performed. Yet the sandwiched graphene

is different. The “monolayer” energy reference is preserved in the decoupled Dirac cone, causing

a relative offset between the flat bands and the cone’s vertex. Comparison to experiments and fully
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self-consistent modeling is necessary to accurately assess ∆EK , yet the coexistence of flat bands

and a weakly off-set Dirac cone at the magic angle is robust.

Lattice relaxation effects.— Lattice relaxation effects are indispensable for understanding

TSWG electronic structure at small twist angles, inducing renormalization of the quasiparticle

spectrum near the Fermi energy and providing robust energetic stability to the flat bands. An

example of the relaxation patterns in TSWG is given in Fig. 2a. The top and bottom layers (layers 1

and 3) are in AA stacking and the middle layer (layer 2) is twisted 1.47◦ counter clockwise relative

to them. The relaxation pattern is similar to that of twisted bilayer graphene: the relaxation fields

form spirals around the AA and AB stacking regions, causing the effective twist angle between

layers to change locally. The spirals around AA enhance the local twist angle, while the spirals

around AB reduce the local twist angle. Overall, this maximizes the AB/BA low energy stacking

configuration and minimizes the area of the high-energy AA stacking. The displacements in layer

2 are the opposite sign and roughly twice the magnitude compared to layer 1 or 3. This is expected

as layer 2 experiences twice the interlayer potential of the other layers (see Methods).

The inclusion of atomic relaxation changes the graphene sandwich’s electronic structure (see

Fig. 2d). The flattest bands occur at roughly 0.1◦ smaller of a twist angle when compared to the

unrelaxed case as shown in Fig. 1c, and the gaps on both the electron and hole side of the flat bands

at the Γ point are significantly increased. This is similar to the effects of relaxation in TBG, and

has to do with changes in the relative interlayer coupling strength between AA and AB stacked

domains as well as the pseudo-gauge fields caused by in-plane strains.36
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Energetical stability, experimental viability— To address a technical challenge of aligning

external layers towards an AA stacking, we investigate the effect of graphene layers misalignment.

In particular, we focus on the θ = 1.47◦ graphene sandwich as a representative moiré supercell

with the flat band regime (Fig. 2). For a trilayer graphene, one of the interlayer shifts can be safely

eliminated by a corresponding shift of the reference frame; however there is still a remaining degree

of freedom which alters the electronic band structure. To be concrete, we consider the relative

displacement d13 of layer 3 with respect to the layer 1, where d13 = 0 is a desirable condition for

coexistence of flat bands with Dirac cones. We find that after shifting layer 3 with respect to layer 1

(d13 6= 0), the relaxation pattern does change, while the overall optimized energy does not. In fact,

the TSWG system after relaxations behaves in the way that layers 1 and 3 translate to remove the

initial displacement away from AA stacking (Fig. 2a). We remark that this phenomenon may be

general for multilayered van der Waals structures, meaning stacking misalignment will not occur

easily in fabricated devices.

To confirm that the AA stacking of the bread layers is robust against interlayer shifts, we fix

the displacement of each layer to prevent translation back to AA stacking (Fig. 2b) and calculate

the total energy as a function relative displacement between layers 1 and 3 (Fig. 2c) The AA

stacking order has an energy barrier of 20 meV/nm2 when the displacement between layers 1 and

3, labeled d13, is fixed. To compare with important energy scales, we use our model for twisted

bilayer graphene which gives an energy difference of 30 meV/nm2 between relaxed and unrelaxed

TBG at θ = 1◦, and produces relaxation patterns in a good agreement with those observed in

diffraction experiments.37 We thus conclude that the TSWG relaxation barrier of 20 meV/nm2
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is experimentally vital, and we expect that relaxation will cause graphene sandwich devices to

naturally align the bread layers as AA, circumventing the experimental challenge of aligning the

top and bottom layers manually. We note that the AA stacked alignment is the highest symmetry

configuration of the system, yielding a 3-fold rotation (D3) center. This is a natural result, as most

crystals minimize their energy by maximizing internal symmetry, except in some more exotic

situations – such as Peierls distortions and charge density waves.

Perfectly flat bands piercing Dirac cones.— The behaviour of flat bands piercing the Dirac

cone can be most clearly understood in the chirally-symmetric limit of the effective continuum

model (see Methods). At the magic angle twist 1.5◦, the moiré superlattice is approximately 40

graphene unit cells, and the effective behaviour of electrons in TSWG is governed by a large-

period moiré field built on the three symmetry-related wave vectors |qi| = 2kD sin(θ/2). For the

given input monolayer Fermi velocity v0, the continuum model for TSWG is captured by three

key parameters: interlayer couplings between AA and AB sites (wAA and wAB) as well as by the

twist degree of freedom (θ). Out-of-plane lattice relaxation affects the relative ratio of wAA/wAB ,

which is strongly suppressed at small angles justifying the use of a chiral-symmetric model with

wAA = 0. Importantly, this model is ruled entirely by the only dimensionless twisting parameter

α(θ) = wAB/2kDv0 sin θ
2
, and shows the perfectly flat bands piercing the Dirac cone at α∗ ' 0.414

which for wAB = 110 meV corresponds to the magic angle θ∗ ≈ 1.55◦ (see Fig. 3). The principle

magic angle of TSWG, being exactly defined in the continuum model, is nearly 40% larger than

the reported magic angle in TBG, which makes TSWG experimentally attractive.
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Fig.3 shows the band structures for three instances of TSWG with twist angles exactly at

the principal magic angle (α∗ = 0.414..), and just above and below this angle. We observe the

perfectly flat bands piercing the Dirac cone vertex at θ = 1.55◦ (Fig. 3b), while for slightly

different angles (Fig. 3a,c) the bands are dispersive. We further track the renormalized Fermi

velocities for TSWG, one from the Dirac cone itself and one from the flat bands. We define

the first Fermi velocity as the slope corresponding to the flattened bands at the K point and the

second Fermi velocity corresponding to the Dirac cones. The first Fermi velocity vanishes at

θ1 = 1.55◦ and then reappears (see Fig 3b), thus showing the behaviour similar to the case of

twisted bilayer graphene.3, 5 On the contrary, the second Fermi velocity is constant in this model

and equals to the monolayer value v0, confirming that the Dirac cone is a robust feature of TSWG,

and the second Fermi velocity is very weakly dependent on twist as is reflected in our rigorous

atomistic calculations. The continuum model for the twisted graphene sandwich also predicts

higher-order magic angles (e.g. α2 ' 1.57, and α3 ' 2.65, which corresponds to θ2 ≈ 0.405◦ and

θ3 ≈ 0.240◦), but these have not been confirmed by ab initio calculations and are likely suppressed

by lattice relaxations as in the bilayer case.33 We remark that the flawlessly flat band TSWG model

(wAA = 0) captures the principle magic angle accurately (1.55◦ vs 1.47◦ in atomistic calculations

with relaxations), but stretches the energy scales. The inclusion of a realistic wAA ≈ 90 meV

produces the energy scales similar to ab initio band structures, preserving the magic angle value.

The continuum model is also interesting because the flat band condition can be derived ana-

lytically up to an arbitrary precision. The leading order perturbation theory in α gives the following
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dependence of the flat band Fermi velocity on twist θ:

v(θ) = v0
1− 6α2(θ)

1 + 6α2(θ)
. (1)

The principal magic angle is thus precisely defined when the two Dirac cones hybridize into the

flat band with v(θ∗) = 0, which has a solution at

α∗ =
1√
6
≈ 0.408, θ∗ =

wAB
α∗kDv0

. (2)

This estimate is also valid for a more realistic case of wAA 6= 0. The chiral symmetric model with

wAA = 0 also has an exact mapping to the twisted bilayer graphene28, and thus, in continuum

theory, the graphene sandwich can have an infinite set of magic angles related to the TBG magic

angles by the factor
√

2. For our discussion, only the principal magic angle is relevant.

Tunability under external electric fields.— An advantage of the graphene sandwich is

the tunability under external fields, with which the energy off-set between the Dirac cone and

the Fermi level can be precisely controlled. We show this with application of external fields and

uniform strains to the unrelaxed structure to understand how the position of the Dirac vertex could

be tuned in experimental devices. We find that uniform planar strain can smoothly tune ∆EK , with

a larger (smaller) lattice giving a smaller (larger) gap, which happens essentially due to rescaling of

the system’s characteristic energy. As the lattice expands, the nearest-neighbour bonding distances

increase and the electronic couplings become weaker. The Fermi velocity of the Dirac cone is

directly proportional to this nearest-neighbour coupling energy, and as previously discussed, the

Fermi velocity sets an overall energy scale for the twisted graphene systems. Thus, as the bonds

are made weaker or stronger, the energy scale becomes smaller or larger, which directly relates to
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the value of ∆EK .

Applying an external vertical electric displacement field can control the magnitude of ∆EK

and tune the amount of hybridization between the flat bands and the Dirac cone (Fig. 4). As

mentioned earlier, this hybridization is set to be zero in our simplified tight-binding model in the

absence of displacement electric field, but we expect some non-zero hybridization at zero field

because of the weak electronic coupling between the bread layers. When the displacement field is

stronger than 0.4 V/nm, the low-energy band structure is no longer easily comparable to the zero

field case, as the flat bands become very dispersive and higher-energy bands begin intersecting the

original flat bands near the Fermi energy. To compare the displacement field modeled here to ex-

perimental devices, the dielectric screening of the graphene layers and any encapsulating substrate

should be considered. Regardless, sufficiently weak external electric fields provide tunable con-

trol of the relative position of the Dirac cone vertex and the intensity of the van Hove singularity

associated with the flat bands.

Discussion.— We first discuss the implication of our TSWG results for experiments. Most

importantly, the magic angle in TSWG is 1.5◦, which is 40% larger than in the parent TBG hetero-

structure. In general, this is advantageous for two reasons: first, it is easier to fabricate a multilayer

heterostructure at larger twist angles; second, a qualitative trend is that larger angles (smaller moiré

patterns) generally correspond to a higher superconducting TC . As an example, in TBG the magic

angle is 1.1◦ and TC = 1.7 K, but when applying appropriate hydrostatic pressure the magic angle

superconductivity can be observed at larger angle (1.27◦) and larger TC (3.5 K).11 Another example
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is the twisted double bilayer graphene (TDBG) which has the flat band region around 1.25◦, and

superconducting TC = 3.5 K.24–26 Additionally, the twisted sandwich graphene can be fabricated

from the single flake of graphene. First, one makes the twisted bilayer graphene with a standard

approach.38 At small angles this heterostructure relaxes on the moiré length scale, which will assist

the deposition of a third layer at the correct 0◦ alignment with the first layer. As we have shown in

Fig. 2(c), even if the third layer is not positioned perfectly, it will tend to relax towards the energy

minimum with depth of order 20 eV/nm2. We note that this energy barrier is relatively large, as it

is the same order of magnitude as between unrelaxed and fully relaxed TBG.

The flat bands in the graphene sandwich exhibit a strong van Hove singularity in the density

of electron states (see Fig. 2d). If realized experimentally, this will promote strongly correlated

electron states as the kinetic energy is suppressed. Therefore, we may expect the emergence of

correlated insulation and unconventional superconductivity under fine tuning, similar to TBG and

TDBG. One of the main result of this study is that although at first glance the TSWG seems

challenging to fabricate, our ab initio results predict that the system will always relax towards the

beneficial AA stacking between the first and third layers, providing the proper atomic geometry

for the remarkably flat bands.

Last but not least, TSWG hosts both the stable flat bands and a Dirac cone in close proximity

to one another in the band structure. There are only a few systems with this property, such as the

exotic Kondo Weyl Semimetals and some Kagomé lattice systems with relatively flat bands offset

from Dirac cones. All these systems are difficult to realize experimentally. From this perspect-
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ive, TSWG may open a feasible experimental path for realizing the coexistence of both strongly

localized and ultramobile quasiparticles simultaneously, important for the “steep band/flat band”

scenario of superconductivity. As the flat bands can pierce the Dirac cone extremely close to

its vertex, TSWG can also be viewed as a potential platform for reaching the so-called triple point

states, a fine tuning for which the low-energy physics is effectively described by the Dirac equation

with pseudospin-1 (see also Refs.39, 40). To conclude, the twisted sandwiched graphene represents

a novel, experimentally feasible platform for a broad range of exotic electronic phenomena.

1 Methods

Density functional method.– We use the VASP 41–43 implementation of density functional theory

(DFT) to calculate electronic structure for untwisted bilayer and trilayer graphene systems. The

semi-local meta-GGA functional SCAN+rVV10 44 is used for its good performance in van der

Waals materials and low computational cost. Multiple calculations of these untwisted systems are

performed, with the graphene layers shifted in-plane to accurately capture electronic and mech-

anical effects of different stacking orders. The graphene sandwich (bilayer) systems have 6 (4)

carbon atoms, and we include a vertical vacuum space of 20 Å to prevent interactions between

periodic images in the z direction of the heterostructures. Then ab initio tight-binding parameters

are extracted by the method of maximally localized Wannier functions with the wannier90 pack-

age. From this, one obtains a fully parameterized model for in-plane and inter-plane pz orbital

interactions, which can also accurately account for corrugations and in-plane strain.34–36, 45 We find

that the largest effective tight-binding coupling between pz orbitals of the top and bottom layers
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of the sandwich is 6 meV, roughly 2% of the maximum coupling between adjacent layers. For this

reason, we ignore couplings between the top and bottom layers in tight-binding and continuum

simulations.

Lattice relaxations modelling.–The relaxation of TSWG is obtained using a continuum

model to account for in-plane distortions due to relaxation and the Generalized Stacking Fault

Energy (GSFE) to account for the interlayer coupling. The relaxation of the layer i, ui(b), is

defined in terms of the local configuration or the relative local stacking, b, and we obtain ui(b)’s

by minimizing the total energy.46 The energy has two contributions. The first is the intralayer

energy of the i-th layer, which is calculated based on linear elasticity theory,

Eintra[ui(b)] =

∫
Γ

db
1

2
E(∇bui(ui))Ci E(∇bui(b))

=

∫
Γ

db
1

2

[
G(∂xui,x + ∂yui,y)

2

+K((∂xui,x − ∂yui,y)2 + (∂xui,y + ∂yui,x)
2)
]
, (3)

where Γ is the union of all configurations, E(∇ui) is the strain tensor, Ci is the linear elasticity

tensor of the i-th layer (which is identical for all i’s in this case), G and K are shear and bulk mod-

ulus of a monolayer graphene, which we take to be G = 47352 meV/cell, K = 69518 meV/cell

and the graphene unit cell size is 5.3128 Å2. The values of G and K are obtained with DFT cal-

culations by isotropically straining and compressing the monolayer and performing a linear fitting

of the ground-state energy as a function of the applied strain. The second energy contribution is

the interlayer energy, which is described by the GSFE.36, 47, 48 The GSFE, denoted as VGSFE(b), has

been employed to explain relaxation in van der Waals heterostructures,36 which depends on the rel-
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ative stacking between two adjacent layers. We obtain the VGSFE by applying a 9×9 grid sampling

of rigid shifts to layer 1 in the unit cell with respect to layer 2 and extract the relaxed ground state

energy at each shift from DFT. The GSFE of graphene at a given configuration b =

(
v w

)T
can

then be expressed as follows,

VGSFE(v, w) = c0 + c1(cos v + cosw + cos(v + w))

+ c2(cos(v + 2w) + cos(v − w) + cos(2v + w))

+ c3(cos 2v + cos 2w + cos(2v + 2w)), (4)

where ci’s are coefficients found by fitting the ground state energy at each shift. c0 = 6.832 meV/cell,

c1 = 4.064 meV/cell, c2 = −0.374 meV/cell, c3 = −0.095 meV/cell. In terms of the VGSFE, the

total interlayer energy Einter can be then written as follows for a relaxed TSWG,

Einter[u1,u2] = 2

∫
Γ

dbVGSFE(b+ u1(b)− u2(b)), (5)

where the factor of 2 comes from the sum of couplings between layers 1, 2 and layers 2, 3, and we

use the fact that u1(b) = u3(b) due to the layer inversion symmetry in the TSWG system. Note

that the VGSFE is a function of the sum of unrelaxed configuration and the relaxation displacement

vectors in order to describe the inter-layer stacking energy after relaxation. The total energy is the

sum of the interlayer and the intralayer energies:

Etot(u(r)) =
3∑
i=1

Eintra(ui(b)) + Einter(u1(b),u2(b)). (6)

The relaxation ui(b) is computed by minimizing the total energy. The following linear transform-

ation maps the relaxation from the local configuration to the real space positions r:

b = (E−1
1 E2 − 1)r, (7)
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where E1 and E2 are the unit cell vectors of the first (unrotated) and the second layers (rotated

counter clockwise by θ), respectively.

Tight binding calculations.–We take a1 = α(1, 0) and a2 = α(1
2
,
√

3
2

) with α = 2.4768Å

as the unit cell vectors of graphene. Periodic supercells are constructed in terms of the integers n

and m according to cos θ = n2+4nm+m2

2(n2+nm+m2)
. For the trilayer sandwich, the bottom and top layers are

untwisted while the middle layer is twisted counterclockwise by θ. This gives supercell vectors of

(na1−ma2) and (−ma1+(m+n)a2) for the untwisted layers and supercell vectors of (ma′1−na′2)

and (−na′1 + (m + n)a′2) for the twisted layer (a′i are ai rotated c.c.w by θ). Band structures are

calculated by diagonalization of these supercell Hamiltonians. The interlayer electronic couplings

deal with relaxation and strain effects easily, as they depend directly on the pz orbital positions

by design. Strain is included for in-plane coupling with a simple bond-length approximation,

where the coupling t is dependent on the bond-length r by t = t0 + αt
r−r0
r0

.34 The vertical electric

displacement field effect is treated in the leading order by adding on-site energies δ = Ezrz in the

existing tight-binding model.

Continuum model. We use an effective continuum model based on approach of Refs5, 28.

In the pristine setting, the effective continuum model for the twisted graphene sandwich can be

described by

H =


−i~v0(σ−θ/2 ·∇) T (r) 0

T †(r) −i~v0(σ+θ/2 ·∇) T †(r)

0 T (r) −i~v0(σ−θ/2 ·∇)

 , (8)
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where the moiré-induced interlayer coupling is taken up to the first shell in momentum space,

T (r) =
∑

n=1,2,3

Tn e
−iqnr,

with the three-fold star of qi, |qj| = 2kD sin(θ/2), each equirotated by φ = 2π/3, and

Tn = e−iG
(n)
θ d Ω̂n−1

φ

wAA wAB

wAB wAA

 Ω̂1−n
φ ,

where G(0)
θ = 0, G(1)

θ = q2 − q1, G(2)
θ = q3 − q1 are the moiré reciprocal cell vectors and d is the

relative displacements of one layer with respect to another one, and

Ω̂φ =

 0 e+iφ

e−iφ 0

 .

Note that in the continuum model, one can eliminate one of the displacements after redefining the

reference frame. The Hamiltonian of Eqn. (8) acquires additional chiral symmetry and perfectly

flat bands piercing Dirac cones at neutrality for wAA = 0. In this idealistic setting, the twisted

trilayer graphene have a family of well-defined magic angles, enlarged compared to the similar

sequence in the TBG by
√

2. See Ref.28 for further details.
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Figure 1: Twisted sandwich graphene and ab initio tight-binding band structures for twisted graphene stacks.

(a) Schematic of the graphene sandwich: the middle layer is rotated by θ, while the ”bread” layers are aligned. (b) For

the sandwiched graphene, the Brillouin zones of the bread layers are identical (red&blue striped line); the resulting

moiré Brillouin zone (mBZ) is depicted in black. (c) Comparison for (unrelaxed) band structures with the same

single-twist mBZ: (left) Band structure of twisted bilayer graphene (TBG) at the magic angle 1.08◦; (center): Band

structure of monolayer graphene twisted on bilayer AB graphene (MG/BG) at the same angle; (right) Band structure

of the twisted sandwiched graphene (TSWG) at it’s (unrelaxed) magic angle θ=1.61◦. Already in unrelaxed atomistic

calculations, the TSWG reveals a remarkable coexistence of Dirac cones pierced by ultraflat bands.
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Figure 2: Energetic stability and electronic effects of lattice relaxations on the flat bands. (a) Atomic re-

laxations in the graphene sandwich with 1.47◦ twisting angle, obtained via a extended continuum model. Atomic

displacements in each layer (u(r)) are visualized with white arrows (not to scale); the color data denotes information

on the local value of the in-plane twisting (∆θ) due to the relaxations (∇ × u), with positive ∆θ corresponding to

counter-clockwise rotation. The moiré supercell is outlined in black. When the relative stacking between layer 1 and

3 (d13) is unconstrained, the system always reaches minimum energy by translating back to d13 = 0. The relaxation

when d13 is nonzero is weaker, and the overall energy is higher compared to the unconstrained case. (b) Energy as

a function of the stacking configuration d13, between Layers 1 and 3, with the high-symmetry stackings highlighted

(AA, AB, and Saddle Point). The black ‘x’ indicates the stacking shown in the second relaxation plot (d13 6= 0)

on subfigure (a). We see that the AA stacking of bread layers, vital for coexistence of flat bands with Dirac cones,

is protected by a large energy barrier of approximately 20 meV/nm2. Inset figure: Diagram of d13, defined as the

vector displacement between the A orbital of L1 and the A orbital of L3. (c) Fully relaxed TSWG band structure

(tight-binding calculations) at the redefined magic angle 1.47◦ and the corresponding density of states (right panel).

Protected by relaxations towards AA stacking, the flat bands and Dirac cones coexist at the same energy scale and are

slightly offset by just 4 meV.
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Figure 3: Coexistence of ultraheavy and ultrarelativistic quasiparticles in idealized sandwiched graphene. (a)-

(c) Band structures for twisted graphene sandwich in the continuum chirally-symmetric model below (a) and above (c)

the magic angle condition (b). Exactly at the magic angle (b), the low-energy quasiparticle spectrum is represented by

flawlessly dispersionless bands piercing the steep Dirac cones through vertexes. Similar to the case of twisted bilayer

graphene, the flat bands become dispersive both above (a) and below (c) the magic angle tuning, showing evolution of

the flat band Fermi velocities at moiré Dirac points with further twists (d). The renormalization shown with the dashed

line is likely affected by atomic relaxations not accounted here.

26



)Ve
m( ygrenE

40

20

0

-20

-40

0  V/nm 0.16  V/nm 0.32  V/nm

M KΓ Γ M KΓ Γ M KΓ Γ

O
ffs

et
 e

ne
rg

y 
(m

eV
)

40

20

0

-20

-40
0 0.2 0.4

Electric Field (V/nm)

a. b.

Figure 4: Controlling hybridization and the Dirac cone offset with external fields. (a) When the electric field is

non-zero, the Dirac-cone splits into two, one above and one below the flat bands, and the flat bands have a parabolic

touching point atK (unrelaxed band structures at 1.61◦). (b) The extracted offset energy ∆EK as a function of electric

fields is shown with the green regions representing the energy regions where the Dirac-cone will overlap with other

electronic states. Clearly, the offset energy ∆EK is linear in moderate electric fields, providing precise control of the

relative position of the Dirac cone vertex and the intensity of the van Hove singularity associated with the flattened

bands.
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