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We present a lattice model of fermions with N flavors and random interactions which describes
a Planckian metal at low temperatures, T → 0, in the solvable limit of large N . We begin with
quasiparticles around a Fermi surface with effective mass m∗, and then include random interactions
which lead to fermion spectral functions with frequency scaling with kBT/~. The resistivity, ρ, obeys
the Drude formula ρ = m∗/(ne2τtr), where n is the density of fermions, and the transport scattering
rate is 1/τtr = f kBT/~; we find f of order unity, and essentially independent of the strength and
form of the interactions. The random interactions are a generalization of the Sachdev-Ye-Kitaev
models; it is assumed that processes non-resonant in the bare quasiparticle energies only renormalize
m∗, while resonant processes are shown to produce the Planckian behavior.

Electronic transport in metals has been successfully
described by the Drude formula for many decades:

ρ =
m∗

ne2

1

τtr
, (1)

where ρ is the resitivity, n is the density of electrons, and
m∗ is the effective mass of the quasiparticles at the Fermi
surface. The transport scattering time τtr is estimated
from the quantum Boltzmann equation to obey

1

τtr
∼ U2T 2 , (2)

at low temperatures, T , where U measures the strength
of the electron-electron interactions.

It was recognized early [1] that the normal state of the
cuprate high temperature superconductors does not obey
the above paradigm, with a T -linear resistivity above the
superconducting critical temperatures near optimal dop-
ing. This ‘strange’ metal behavior has since been exten-
sively studied, and has been found to be ubiquitous in
correlated electron superconductors [2]. More recently,
the T -linear resistivity has been quantitatively charac-
terized [3] by the Drude formula (1), using a value of m∗

in a nearby quasiparticle regime. A ‘Planckian’ metal
behavior has been observed [4–7], with

1

τtr
= f

kBT

~
(3)

with f ≈ 1 in correlated electron systems, twisted bi-
layer graphene, and ultracold atoms, where ‘Planckian’
emphasizes the universality of Eq. (3), dependent only
on Planck’s constant and the absolute temperature in
units of energy. Specifically [4], many cuprates and or-
ganic superconductors obey (3) at the lowest T , after sup-
pression of superconductivity by a magnetic field, with
0.7 . f . 1.2. This is in striking contrast to (2), both in
the T -linear dependence, and in the independence on the
interaction strength U . Note that the value of U varies
over several orders of magnitude across the experimental
systems noted above.

This letter will present a model of fermions with N
flavors and random interactions, which is solvable in the
large-N limit and whose transport realizes a Planckian
metal. Our model is a lattice extension [8–13] of the
Sachdev-Ye-Kitaev (SYK) models [14, 15]. Its ingre-
dients are fermionic quasiparticles hopping on a lattice
without disorder with dispersion εk near a Fermi sur-
face, where k is the crystal momentum. These quasiparti-
cles have random interactions whose effective strength is
weaker than the Fermi energy (see below (9)), unlike pre-
vious lattice extensions [9–13]. These interactions pro-
duce a Planckian metal state without well-defined quasi-
particle excitations down to T = 0. A key feature of
our model is that it explicitly retains only quasiparticle
interactions which are resonant i.e. scattering of quasi-
particles with momenta k1 and k2 to k3 and k4 is re-
stricted to those obeying εk1 + εk2 = εk3 + εk4 . It is as-
sumed that non-resonant interactions have already been
accounted for by a suitable renormalization procedure,
and absorbed into the quasiparticle dispersion εk. Note
that this ‘resonant selection’ is closely analogous to that
appearing in a renormalization group approach to Fermi
liquid theory [16]: the Landau interactions F a,s` act only
on quasiparticles exactly on the Fermi surface, and so all
interaction corrections are implicitly resonant; off-Fermi
surface processes are assumed to have been absorbed into
the values of F a,s` . We will show that a resonant lattice
SYK model realizes a Planckian metal with resistivity
obeying (1) and (3), with f essentially independent of
the strength and form of interactions and of order unity.

The Model. We consider quasiparticles annihilated by
fermionic operator ckα, where α = 1 . . . N is the SYK
flavor index, with Hamitonian H = Hk +HU

Hk =

∫
k

∑
α

εkc
†
kαckα, (4)

HU =
1

(2N)3/2

∑
αa

∫
ka

Uαa(ka)c†k1α1
c†k2α2

ck3α3
ck4α4

.

Here
∫
k
≡
∫
ddk/(2π)d in d spatial dimensions. The

Uαa(ka) (with a = 1 . . . 4) are Gaussian random inter-
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actions with zero mean, whose second moment factorizes
into flavor and momentum dependent factors

U∗αa(ka)Uα′
a′

(k′a′) = Uαaα′a′ K(ka, k
′
a′). (5)

The Uαaα′a′ are the same as those in the complex

SYK model [17]: they are non-vanishing, with val-
ues ±U2, only if all αa equal α′a′ , up to anti-
symmetrizations and Hermiticity implied by HU e.g.
Uα1,α2,α3,α4(k1, k2, k3, k4) = −Uα2,α1,α3,α4(k2, k1, k3, k4),
Uα1,α2,α3,α4(k1, k2, k3, k4) = U∗α4,α3,α2,α1

(k4, k3, k2, k1).
Without the k index, H as defined above is the well-

studied ‘single-island’ complex SYK model in which all
quasiparticles have the same bare energy ε. Such a model
realizes a critical solution [14, 17–21] for a range of val-
ues of |ε| . 0.24U [20], with a Green’s function which is
a universal scaling function of ~ω/(kBT ) (ω is the fre-
quency) and a low energy spectral asymmetry parameter
E determined by ε/U : this scaling function will be de-
scribed below. For |ε| & 0.24U , there are no non-trivial
solutions for the single island SYK model, and so the
number density on the island for the non-quasiparticle
state cannot be too far from half-filling [19, 20]; this fea-
ture of the SYK model will lead to some artifacts below
in our model of the Planckian metal.

Including the k dependence of the quasiparticle energy
εk, the simplest choice for the interactions is to have K
momentum independent, apart from a momentum con-
serving delta function needed to preserve average trans-
lational invariance

K0(ka, k
′
a′) = δ(k1 +k2−k3−k4−k′1−k′2 +k′3 +k′4). (6)

In real space, (6) implies that the interactions are in-
dependent random variables on each island (associated
with each lattice site), but with a site-independent vari-
ance. Such lattice SYK models have been thoroughly
studied in recent work [9–13], and related models in ear-
lier work [8] (there is also a connection to the holographic
analysis of a pair of SYK islands with single fermion hop-
ping between them [22]). Assuming the dispersion εk has
bandwidth W , such a model realizes a non-Fermi liq-
uid ‘incoherent metal’ with the momentum-independent,
critical Green’s function of the single site model in the
intermediate temperature regime W 2/U � T � U ; a
heavy Fermi liquid appears for T � W 2/U . The resis-
tivity of the non-Fermi liquid is (in two spatial dimen-
sions) ρ ∼ (h/e2)(T/(W 2/U)). These properties are
generic for almost all translationally invariant choices
for K, and have some drawbacks in comparison to the
observed Planckian metals: (i) there is no sign of a
Fermi surface in the non-Fermi liquid regime, which has
been completely wiped out by the random interactions;
(ii) the T -linear resistivity is always in a ‘bad metal’
regime, obeying ρ � h/e2, in contrast to observations
with smaller resistivities; (iii) the co-efficient of the T -
linear resistivity is strongly dependent upon U .

FIG. 1. Self-consistent Dyson equation, exact in the
large-N limit, for the fermion propagator G(k, ω) =

(1/N)
∑N
α=1〈ck,α(ω)c†k,α(ω)〉 (thick red line). The dashed

blue line denotes the disorder averaging of the random cou-
plings Uαa(ka) in (5) that is enforced by a large-N saddle
point (Supplementary Information). G0 (black line) is the
non-interacting fermion propagator.

In passing, we note that recent work [11, 12] also con-
sidered 2-band lattice generalizations of the SYK model,
with a Kondo exchange interaction between itinerant
electrons and SYK islands. These provide an explicit
realization of a ‘marginal Fermi liquid’ of the itinerant
electrons, with properties similar to those in early stud-
ies [14, 23, 24]. While such a marginal Fermi liquid is
not a bad metal, it has other drawbacks in comparison to
observations: (i) the Fermi surface is ‘small’ and counts
only the itinerant electrons, in contrast to the observed
large Fermi surface which counts all electrons; (ii) the
scattering rate 1/τtr is linear in T , but the prefactor is
not universal and strongly dependent upon the strength
of the Kondo exchange interaction.

The main point of the present letter is that a ‘reso-
nant’ choice for K leads to Planckian behavior down to
T → 0, without the drawbacks described above. The
renormalization group rationale for such a choice was de-
scribed above, in that the non-resonant interactions are
accounted for by a renormalization of εk. So we choose

K(ka, k
′
a′) = K0(ka, k

′
a′)

1

2

[
K1(ka)δ(εk1 + εk2 − εk3 − εk4)

+ K1(k′a′)δ(εk′1 + εk′2 − εk′3 − εk′4)
]
, (7)

where K1 is a smooth function of momenta. We will as-
sume inversion symmetry upon disorder average in our
system, so εk = ε−k and K1(ka) = K1(−ka). The addi-
tional delta function momentum dependence in (7), over
that in (6), implies long-range power-law correlations in
the random interactions in real space.
Large-N solution. The large-N limit of H with inter-
actions defined by (5) and (7) is described by equations
for the Euclidean frequency (ω)/time (τ) Green’s func-
tion G and self energy Σ (Fig. 1):

G−1(k, ω) = iω − εk − Σ(k, ω), (8)

Σ(k, τ) = −U2

∫
k1,k2,k3

δ(εk + εk1 − εk2 − εk3)

×K1(k, k1, k2, k3)G(k1,−τ)G(k2, τ)G(k3, τ) . (9)

In our solutions of (8,9), we will assume that εk is lin-
earized around the Fermi energy EF , so the energy scale
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Ueff ≡ Uν
3/2
0 � EF ,W , where ν0 is the density of

states at EF . The arguments of K1 in the above are
ka = (k, k1, k2, k3); in practice, the K1 factor places up-
per limits on the values of |εka − εk|, but the universal
structure of the solution for G(k, τ) described below is
not sensitive to its precise form. We will work with

K1(k, k1, k2, k3) =
1

Λ2
Ξ (|εk1 − εk|) Ξ (|εk2 − εk1 |)

× Ξ (|εk3 − εk2 |) , (10)

where Ξ(|εk|) is a smooth function that restricts |εk| . Λ
and Λ� Ueff . The expression for the self energy becomes

Σ(k, τ) = −U
2
eff

Λ2

∫ ∞
−∞

dεk2dεk3Ξ (|εk2 − εk3 |) Ξ (|εk3 − εk|)

× Ξ (|εk2 + εk3 − 2εk|)G(εk2 , τ)G(εk3 , τ)

× G(εk2 + εk3 − εk,−τ). (11)

We also have the particle-hole transmutation relations
G,Σ (−εk, τ) = G,Σ (εk, β − τ) (β = 1/T ).

Our key observation is that the solution of (8, 11) obeys
ω/T scaling for |ω|, T, |εk|,Λ � Ueff , which is the order
of scales we shall be mostly interested in in this letter.
With the resonant condition applied, this scaling holds all
the way down to T = 0. Moreover, the Green’s function
has the same form as in the single-site SYK model, but
with a momentum dependent dimensionless particle-hole
asymmetry parameter Ek; this momentum dependence is
sufficient to lead to the remnant Fermi surface (RFS).
Specifically, we find under the above specified conditions
(Supplementary Information)

G(k, 0 ≤ τ < β) = A(Ek)e−2πEkTτ
(

T/Ueff

sin(πTτ)

)2∆

,

(12)
and G(k, τ + β) = −G(k, τ) due to the anticommutation
property of fermion operators. The consistency of the
τ dependence in (12) can be verified by direct substitu-
tion into (8,9) using steps similar to those in Ref. 25.
One finds that the fermion scaling dimension must be
∆ = 1/4, as in the in the SYK model with two-body
interactions. This value of ∆ is essential to obtain the
Planckian behavior of τtr. The exponential τ dependence
in (12) becomes consistent with (9) after imposition of
the resonance condition, and a linear dependence of Ek
on the bare quasiparticle energy εk:

Ek = C
εk
Ueff

. (13)

The dimensionless constant C is the not determined
by the analytic low energy analysis; its determination
requires full numerical solution of (8,11) at all energy
scales, and it is given by a slowly varying function of
Λ/Ueff .

In the special case of Λ → 0, K1(k, k1, k2, k3)δ(εk +
εk1 − εk2 − εk3) = δ (εk1 − εk) δ (εk2 − εk1) δ (εk3 − εk2),
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FIG. 2. Remnant Fermi surface: (a) The occupancy nk as
a function of εk, which is exactly nk = 1/2 for k on the
RFS (εk = 0). The zero-frequency spectral density A(k, 0)
as a function of εk, which has a maximum for k on the
RFS. We use T/Ueff = 0.01 and the same color codes for
both plots; the function Ξ(|εk|) = 1.866(1 − |εk|/Λ)2θ(Λ −
|εk|) in (10), where θ is the Heaviside step function, with
(1/Λ2)

∫∞
−∞ dεk2dεk3Ξ(|εk2 − εk3 |)Ξ(|εk3 − εk|)Ξ(|εk2 + εk3 −

2εk|) = 1.

and only fermions with the same bare energies interact.
For each εk, (11) then reduces to the self-energy of an
SYK model with chemical potential εk [14, 17]. We then
have

A(Ek)

∣∣∣∣∣
Λ=0

= −π
1/4 cosh1/4(2πEk)√

1 + e−4πEk
, (14)

and C ≈ 0.41. For Λ 6= 0, we can only determine
A(Ek) numerically, but (14) provides a good approxima-
tion (Supplementary Information).

The k dependence of the particle-hole symmetry pa-
rameter Ek in the exponential in (12) yields an RFS in
G (Fig. 2), which is apparent from a computation of the
Fourier transform of G(k, τ) in τ : we find an electron
spectral density A(k, ω) ≡ −2Im[G(k,−iω + 0+)] which
is peaked at frequency of order EkT , and a width of order
T ; see Fig. 3. Using (13) as εk crosses zero, we therefore
find a peak which disperses across the RFS. The volume
of the region enclosed by the RFS is not fixed to be that
enclosed by the sharp Fermi surface present when U = 0:
The total charge in the system, q0, which is invariant as
U is turned on, is given by

q0 =

∫
k

G(k, τ = 0−). (15)

This is not exactly the volume enclosed by the RFS. How-
ever since we have Ueff � EF , it is very close to it.
The occupancy function nk ≡ (1/N)

∑N
α=1〈c

†
k,αck,α〉 =

G(k, τ = 0−) varies smoothly across the RFS, in con-
trast to the sharp jump displayed in the non-interacting
system.

The critical solution (12) does not extend to εk arbi-
trarily far away from the RFS. Consequently, in Fig. 2,
nk reaches 0, 1 for larger |εk|. This artifact is a conse-
quence of the lack of a non-trivial solution of the single
island SYK model for |ε/U | & 0.24, which was noted ear-
lier. For |εk| & ε∗k, where ε∗k ∼ O(Ueff), (12) crosses over
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FIG. 3. Electron spectral density: (a) The electron spectral
density A(k, ω) (color, normalized scale) as a function of εk
and frequency ω. Near the RFS the peak disperses as ω ∼
EkT ∼ εkT/Ueff (see also (b)). Far away from the RFS the
peak disperses as ω ∼ εk (top right and bottom left corners)
and is much sharper. (b) Form of A(k, ω) near the RFS. We
use T/Ueff = 0.01 and 2Λ = 0.16Ueff , with the same function
Ξ as in Fig. 2.

to a nearly-free solution G(k, ω) ∼ 1/(iω − εk) instead
(Supplementary Information). For Λ→ 0, this crossover
becomes a sharp transition [20], whereas for Λ 6= 0 it is
a smooth crossover.

It is interesting to compare our Green’s function in
(12), with a different higher-dimensional generalization
of the SYK solution. In the holographic approach of
Refs. [26, 27], the near-horizon anti-de Sitter AdS2 geom-
etry of a charged black hole in an asymptotically AdSD
(D ≥ 4) spacetime is identified with that of the complex
SYK model [25, 28]. In this case, the higher-dimensional
dispersion yields a near-horizon Green’s function whose
τ dependence has the form in (12), but with a k depen-
dence distinct from ours: their scaling dimension ∆ is
dependent upon momentum k, while their particle-hole
asymmetry E is momentum independent and determined
by the electric field on the surface of the black hole. The
placing of the momentum dependence in Ek, and not in
∆, are crucial features of our model, and play a central
role in our transport results below, which are very differ-
ent from the holographic results of Refs. [24].

Resistivity. The conductivity σ = 1/ρ in our model
can be computed from the two-point current correlation
function using the Kubo formula. In order to do this we
note the uniform U(1) current operator, which has two
contributions arising from the two lines in (4); I = II+III,
where

II = e

∫
k

∑
α

vkc
†
kαckα; vk = ∇kεk, (16)

III =
ie

(2N)3/2V 1/2

∑
αa

∑
xa

Uαa(xa)c†x1α1
c†x2α2

cx3α3
cx4α4

×(x1 + x2 − x3 − x4), (17)

Uαa(xa) =

∫
ka

Uαa(ka)ei(k1·x1+k2·x2−k3·x3−k4·x4).

Here III has been expressed in real (xa) space, and V
is the system volume. A consequence of our choice of
disorder correlations in (5,7) is that only II contributes
to the current correlation function. Namely,

Uαa(xa)U∗α′
a′

(x′a′) = Uαaα′a′
[
δx1,x2δx1,x3

×δx1,x4F(x1, x
′
a′) + (xa ↔ x′a′)

]
, (18)

with

F(x1, x
′
a′) =

1

2

∫
k′
a′

K1(k′a′)δ(εk′1 + εk′2 − εk′3 − εk′4)

×ei(k
′
1·(x1−x′1)+k′2·(x1−x′2)−k′3·(x1−x′3)−k′4·(x1−x′4)), (19)

and F∗(x1, x
′
a′) = F(x1, x

′
a′). Therefore, under the dis-

order average, and in the large-N limit, the two-point
function of III vanishes as either all xa or all x′a′ have to
be the same. There is also no two-point cross correla-
tion of II and III in the large-N limit, so we only need to
compute the two-point function of II.

In the large-N limit, the two point function of II is
given by the bubble diagram (Fig. 4) plus a series of
ladder diagrams. The ladder diagrams however vanish
due to inversion symmetry. We thus have

σ = lim
Ω→0

Im[〈II · II〉R(Ω)]

Ωd
=

∫ ∞
−∞

dε

∫
k

|∇kεk|2

d
δ(εk − ε)

×Ne
2

T

∫ ∞
−∞

dω

16π
sech2

( ω
2T

)
A2(ε, ω). (20)

If we linearize εk around the RFS, we can replace∫
k

|∇kεk|2

d
δ(εk − ε) =

∮
RFS

dd−1ak
(2π)d

|∇kεk|
d

≡ VRFS
m∗

,

(21)
where dd−1ak is the local area element on the RFS and
VRFS =

∫
k
θ(−εk) is the volume of the RFS. As noted ear-

lier, since Ueff � EF , the carrier density is n = NVRFS.
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FIG. 4. Contributions to the current correlation function in
the large-N limit. The boxes denote II vertices, and the lines
are defined as in Fig. 1. The ladder diagrams vanish be-
cause the directions of the momenta k1, k

′
1 flowing through

the current vertices are not correlated with each other and
v−k = −vk, ε−k = εk.

The second equality in (21) provides our definition of
m∗, which coincides with the traditional definition for
εk = k2/(2m∗)−EF in any number of dimensions d. The
spectral function obtained from (12) has the low-energy
form

A(εk, ω) = −2A(Ek)

×Im

e iπ4 (1 + ie−2πEk
)

Γ
(
i(2πEkT−ω)

2πT + π
4

)
Γ
(
i(2πEkT−ω)

2πT + 3
4

)√
2πTUeff

 , (22)

We now describe a key feature of (20): the insensitivity
of the conductivity to the value of Ueff . Notice that the
expression for the conductivity in (20) has two explicit
dependencies on Ueff : from the spectral density in (22);
and from that in Ek which is a linear function of εk in
(13), but is more generally given by Ek = g(εk/Ueff) for
some function g. Therefore, the explicit dependence on
Ueff disappears from (20) by scaling the integrand ε →
εUeff . There is some implicit dependence on the ratio
Λ/Ueff arising from the functional forms of A and g, but
our numerical computations show that this dependence
is negligible, and not more than a few percent.

A more serious non-universality of (20) is that aris-
ing from the artifact of the single island SYK model:
the crossover to nearly-free fermions with nk = 0, 1 for
|εk| & ε∗k. We do not expect this feature to be present in
more realistic microscopic models, so a reasonable strat-
egy is to work around this feature by assuming that the
linearized expression for Ek in (13) holds for the full range
of ε integration in (20); in other words, we are focusing
on the physics proximate to the RFS, and ignoring un-
physical features of our simple model far from the RFS.
We then find that the resulting resistivity ρ = 1/σ has
precisely the Drude form in (1), and the transport time
is given by the Planckian form in (3). The numerical
constant f is a very weak function of Λ/Ueff , and takes
the value f ≈ 1.11 in the limit Λ→ 0 of independent mo-
mentum shells. If we include the artifact of the crossover
far from the RFS, then the Planckian forms in (1) and (3)
continue to hold, and our numerical computations yield
f ≈ 4.98, and again fairly insensitive to Λ/Ueff .

We also computed σ by directly inserting the numer-
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FIG. 5. Numerically calculated transport scattering rate
τ−1
tr vs. temperature T . (a) For T � Ueff , we find the

Planckian dependence. We have 2Λ = 0.04Ueff , and find
f ≈ 4.8. (b) As T approaches and exceeds Ueff , τ−1

tr satu-
rates to τ−1

tr ∼ O(Ueff) (plotted for Ueff = 1): In this high-
temperature regime, A(ε, ω) has a peak in ω of width ∼ Ueff

and height ∼ U−1
eff , which is centered at ω � T for ε � T .

These properties then produce the observed behavior from
(20), in which the ε integral is now effectively cut off by T
instead of Ueff . Note that ~ = kB = 1 in these plots.

ically determined spectral density into (20,21), without
restricting the integrals (Fig. 5). For T � Ueff we find
that the above transport results work well.

Outlook. We have introduced resonant SYK models:
these have the unique features of being solvable while
realizing compressible states of quantum matter, in non-
zero spatial dimensions, whose spectral functions obey
~ω/(kBT ) scaling as T → 0. We presented a renor-
malization group motivation for the resonance condition,
but within the large-N limit, the resonance appears as a
fine-tuning condition designed to retain ~ω/(kBT ) scal-
ing down to T = 0 even in the presence of a dispersion.
However, then many other desirable features follow: we
obtain a Planckian metal with a large RFS at εk = 0,
and an effective mass m∗ defined by the dispersion of εk,
with a resistivity ρ ∼ (m∗/(ne2))kBT/~ independent of
the strength of interactions.

It would be interesting to extend our model to include
disorder in single-particle terms in the Hamiltonian. For
the resonant SYK interactions described above, we ex-
pect a crossover to a T -independent residual resistivity
at low enough T . Refs. [29, 30] examine models with
single-particle disorder and local interactions by numer-
ically summing the ‘melonic’ diagrams of Fig. 1 without
averaging over disorder, and without a resonance con-
dition: they find that Planckian transport exists over a
wide range of T .

Photoemission experiments can test features of the
spectral function in Fig. 3 of the Planckian metal: an
energy width ∼ T near the RFS, and a ‘kink’ in the dis-
persion close to the RFS with the apparent Fermi velocity
becoming proportional to T .
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Supplementary Information

Real-space action and saddle point

The Hamiltonian for our lattice model in real (x) space is given by

H = −t
∑
〈xx′〉

∑
α

(
c†xαcx′α + H.c

)
− EF

∑
x

∑
α

c†xαcxα +
1

(2N)3/2

∑
αa

∑
xa

Uαa(xa)c†x1α1
c†x2α2

cx3α3
cx4α4

, (S1)

with Uαa(xa) defined in (17). Upon averaging over the disorder using (18) and introducing auxiliary fields G,Σ to fix
the values of the fermion two-point functions in the large-N limit [10, 12, 17], we obtain the action

S =

∫ β

0

dτ

∑
x

∑
α

c†xα(τ) (∂τ − EF ) cxα(τ)− t
∑
〈xx′〉

∑
α

(
c†xα(τ)cx′α(τ) + H.c

)
− NU2

2

∫ β

0

dτdτ ′

 ∑
x1,x′a′

F(x1, x
′
a′)G(x1 − x′4, τ − τ ′)G(x1 − x′3, τ − τ ′)G(x′2 − x1, τ

′ − τ)G(x′1 − x1, τ
′ − τ)


−N

∑
x,x′

∫ β

0

dτdτ ′Σ(x− x′, τ − τ ′)

[
G(x′ − x, τ ′ − τ)− 1

N

∑
α

cx′α(τ ′)c†xα(τ)

]
, (S2)

where we have chosen a physically motivated translationally invariant form for G,Σ after the disorder average, and
F is defined in (19). In the large-N limit, the equations obtained by setting the variations δS/δΣ = δS/δG = 0
after transforming the action to momentum space produce the Dyson equations (8,9). The form of the interaction
in real space is controlled by (18,19), which doesn’t have a simple expression for general εk and Ξ,Λ. However, for
εk = k2/(2m∗)− EF and Λ→ 0, we can express it as (focusing on d = 2, with a bandwidth W )

F(x1, x
′
a′)

∣∣∣∣∣
Λ=0,d=2

=
m∗3

2

∫ Wm∗

0

dz

(2π)4
J0

(
|x′1 − x1|

√
2z
)
J0

(
|x′2 − x1|

√
2z
)
J0

(
|x′3 − x1|

√
2z
)
J0

(
|x′4 − x1|

√
2z
)
,

(S3)

where J0 is the zeroth Bessel function of the first kind. This function F is peaked around the regions where |x′1 −
x1| ± |x′2 − x1| ± |x′3 − x1| ± |x′4 − x1| = 0 and decays as 1/

√
|x′1 − x1||x′2 − x1||x′3 − x1||x′4 − x1| at large distances.

Functions with similar characteristics can be obtained numerically for other values of εk, Λ, Ξ and d.

IR analysis

To show the self-consistency of (12), we insert it into (11), and use (13). This yields

Σ(k, 0 ≤ τ < β) =

(
T

sin(πTτ)

)3/2

e−2πTτCεk/Ueff ×
U

1/2
eff

Λ2

∫ ∞
−∞

dεk2dεk3Ξ (|εk2 − εk3 |) Ξ (|εk3 − εk|) Ξ(|εk2 + εk3 − 2εk|)

×A
(
C
εk2
Ueff

)
A
(
C
εk3
Ueff

)
A
(
C
εk2 + εk3 − εk

Ueff

)
e−2πC(εk2+εk3−εk)/Ueff . (S4)

Importantly, the τ dependence of the above is associated only with εk (and not εk2 , εk3) due to the resonance condition
and the linearity of Ek in εk in the IR. Now, applying (8) leads to two conditions: (i) Re[Σ(k, ω → 0)] + εk = 0,
which we assume holds in the IR, and will be discussed further in the next subsection, and (ii) Im[G(k, ω → 0)] =
1/Im[Σ(k, ω → 0)], which yields

A
(
C

εk
Ueff

)∫ ∞
−∞

dεk2dεk3Ξ (|εk2 − εk3 |) Ξ (|εk3 − εk|) Ξ(|εk2 + εk3 − 2εk|)A
(
C
εk2
Ueff

)
×A

(
C
εk3
Ueff

)
A
(
C
εk2 + εk3 − εk

Ueff

)
e−2πC(εk2+εk3 )/Ueff =

πΛ2

4
sech

(
2πC

εk
Ueff

)
. (S5)
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FIG. S1. (a) Numerically determined Ek = −(1/(4πT )))d(G(εk, τ)/G(ε, k, β − τ))/dτ |τ=β/2. We find Ek ≈ 0.42εk/Ueff . For εk
outside the plot range, G(εk, τ) starts to enter the crossover region (Fig. 3 (a)), and Ek cannot be extracted. (b) Comparison

of the numerical solution of (S5) with C = 0.42 (blue) to the numerically determined A(Ek) = U
1/2
eff eπEkG(ε, k, τ = β/2)/

√
T

(orange), with Ek determined as in (a) Good agreement is maintained outside the crossover region. (c) Comparison of the τ
dependence of G(εk, τ) between the numerical solution of (8,11) (with A(εk) determined as in (b)), and (12) (with Ek determined
as in (a)). Each curve is actually two lines corresponding to the two quantities, which lie almost perfectly on top of each other.
We used 2Λ = 0.16Ueff and T = 0.0025Ueff , with the same function Ξ as in Figs. 2, 3.

After fixing the value of C, this integral equation for A can be solved numerically by an iterative update scheme
similar to that used for solving the Dyson equations for the SYK models. The value of C must be determined by
matching to the UV, which requires the direct numerical solution of the full Dyson equations, and is a function of
Λ/Ueff . The sign of A is fixed to be −1 by noting that G(k, 0 ≤ τ < β) < 0. Since Ξ(|εk|) only depends on |εk|/Λ,
we can further see that A carries an implicit Λ/Ueff dependence. In the Λ → 0 limit, we obtain (14). In Fig. S1 we
compare the exact numerical solutions of (8,11) to the Ansatz determined by (12) and (S5), and show that there is
good agreement.

Transition/crossover at large ε/U in SYK

Here, we review the solution of the Dyson equations for the SYK model, and explain the reason for the transition
to a nearly-free fermion regime at large enough ε/U . The Hamiltonian and Dyson equations for the SYK model are

H = ε
∑
α

c†αcα +
1

(2N)3/2

∑
αa

Uαac
†
α1
c†α2

cα3
cα4

, Σ(τ) = −U2G2(τ)G(−τ), G−1(ω) = iω − ε− Σ(ω). (S6)

At T = 0, if we insert the conformal-limit solution [17]

G(τ > 0) = − cosh1/4(2πE)

U1/2π1/4
√

1 + e−4πE

1√
τ
, G(τ < 0) = −G(−τ > 0)e−2πE , (S7)

into the Dyson equations, we get

Σ(ω) =
e
πE
2

(
2− 2e2πE)√UηUV

(2π)3/4 (e4πE + 1)
3/4

+
(1− i)e−4πE (e2πE − i

)
cosh

3
4 (2πE)

π1/4 (e−4πE + 1)
3/2

√
2Uω, (S8)

where η−1
UV � ω−1 is a short-time UV cutoff that cuts off the short-time divergence in the Fourier transform of Σ(τ)

to Σ(ω). Because G(ω) ∼ 1/(iω) at high frequencies, Σ(ω → 0) is dominated by contributions from the low frequency
conformal-limit regime of G (S7).

Demanding that Re[Σ(ω → 0)] + ε = 0 (which is necessary for a self-consistent low-energy solution [14]), we obtain
the condition

e
πE
2

(
2− 2e2πE)

(2π)3/4 (e4πE + 1)
3/4

= − ε√
UηUV

, (S9)

The LHS of (S9) is a bounded odd function of E , ranging from −0.263 to 0.263, so as long as ηUV does not increase
arbitrarily with |ε|, (S9) cannot hold for arbitrarily large |ε|.
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To show that ηUV cannot be arbitrarily large, we note that ηUV should roughly be the scale where |ω| ∼ |ε+ Σ(ω)|;
for |ω| > ηUV, the iω term in G−1(ω) starts to dominate and the Green’s function becomes that of a free fermion.
From (S8), we see that

ηUV ∼
U

cosh1/2(2πE)
, (S10)

which is indeed bounded. Therefore the conformal-limit solution (S7) cannot hold for arbitrarily large |ε|, and must
fail for |ε| ∼ O(U). Similar arguments also indicate the failure of (12) at large enough |εk| with the resonant Dyson
equations (8,11). It may be possible that a different set of Dyson equations with a different UV completion could
allow the conformal-limit solutions (S7,12) to extend over a wider range of ε or εk, but finding such a construction is
beyond the scope of this letter.

Other physical properties

Specific heat. The free energy density in our model at the large-N saddle point can be derived by integrating out
the fermions c, c† in (S2) and substituting in the relation (9) between Σ and G [31]. It is given by

F = −N
∫
k

[
T
∑
ω

lnG−1(k, ω)− 3

4
T
∑
ω

Σ(k, ω)G(k, ω)

]
, (S11)

which can be further reduced to an integral over the dispersion εk by linearizing around the RFS. In our T � U �
EF ,W approximation, there is an effective particle-hole symmetry about the RFS, and the specific heat is then simply
given by CV = −T∂2F/∂T 2. We can then express the specific heat as

CV = N

∫
k

CV (k) = N

(∮
RFS

dd−1ak
(2π)d

1

|∇kεk|

)∫ ∞
−∞

dεk CV (εk). (S12)

Since the T, τ, Ueff dependencies of (12) are the same as that of the complex SYK model, we expect CV (εk) =
(T/Ueff)h(εk/Ueff) as T → 0 [31], and hence the interaction strength Ueff also cancels out in the total specific heat.
For the case of Λ→ 0, we found numerically that∫ ∞

−∞
dεk CV (εk) ≈

∫ ε∗k

−ε∗k
dεk CV (εk) ≈ 0.50× T, (S13)

for T � Ueff , where ε∗k ≈ 0.24 × Ueff is the crossover scale to nearly-free fermions. For comparision, the textbook
Fermi liquid specific heat is

CFL
V = N

(∮
FS

dd−1ak
(2π)d

1

|∇kεk|

)
π2

3
T. (S14)

Thus, our model has a T -linear specific heat proportional to the effective mass as T → 0, as in a Fermi liquid, but
with a different numerical constant of proportionality.

Lorenz number. The Lorenz number L is the ratio of the thermal (κ) and electrical (σ) conductivities, L =
κ/(σT ). Due to the effective particle-hole symmetry about the RFS in the large EF approximation, thermoelectric
effects can be ignored, and κ is then simply given by the two-point function of the energy current operator via
the Kubo formula. The contribution IE

I to the energy current IE that determines κ is analogous to (16); the term
analogous to (17) does not contribute to κ for the same reason (17) does not contribute to σ. We have

IE
I =

∫
k

∑
α

vkc
†
kα∂τ ckα, κ = lim

Ω→0

Im[〈IE
I · IE

I 〉R(Ω)]

TΩd
. (S15)

The Lorenz number is then given by [11]

L =

∫∞
−∞ dε

∫∞
−∞ dω

(
ω
T

)2
sech2

(
ω
2T

)
A2(ε, ω)∫∞

−∞ dε
∫∞
−∞ dω sech2

(
ω
2T

)
A2(ε, ω)

. (S16)

Due to the ω/T scaling of A near the RFS, we can see that L will be independent of T as T → 0 up to very small
non-universal contributions coming from large |ε| > ε∗k. In the special case of Λ→ 0, cutting off the ε integrals at ε∗k
gives L ≈ 1.40 × (kB/e)

2. If we assume instead that the linearized expression for Ek in (13) holds for the full range
of ε integration, then we obtain L ≈ 9.83× (kB/e)

2. In a Fermi liquid L = L0 = (π2/3)(kB/e)
2 as T → 0.
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