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Abstract: We consider the low temperature quantum theory of a charged black hole

of zero temperature horizon radius Rh, in a spacetime which is asymptotically AdSD
(D > 3) far from the horizon. At temperatures T � 1/Rh, the near-horizon geometry is

AdS2, and the black hole is described by a universal 0+1 dimensional effective quantum

theory of time diffeomorphisms with a Schwarzian action, and a phase mode conjugate

to the U(1) charge. We obtain this universal 0+1 dimensional effective theory starting

from the full D-dimensional Einstein-Maxwell theory, while keeping quantitative track

of the couplings. The couplings of the effective theory are found to be in agreement

with those expected from the thermodynamics of the D-dimensional black hole.
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1 Introduction

Charged black holes in asymptotically AdSD spacetimes have a near-horizon geometry,

AdS2 ×Md, where Md is a compact space, and D ≡ d+ 2; see Fig. 1. The presence of

the AdS2 factor implies universal low energy quantum theories for such black holes. At

sufficiently low energy scales, non-constant modes on Md are not excited, and much has

been learnt about the resulting theories whose form depends only upon the conserved

U(1) charges and the supersymmetry [1–22]. UV complete theories which realize these

low energy limits are found in complex Sachdev-Ye-Kitaev models [10, 23, 24], and they

are also expected to appear in the low energy limit of supersymmetric string theories.

A common property of these black holes with chargeQ is that their entropy S(Q, T )

at low T has the form

S(Q, T → 0) = S0(Q) + γ T + . . . , (1.1)

where the zero temperature limit S0(Q) is non-zero. The recent advances concern the

linear-in-T term with co-efficient γ, which is determined by corrections to the purely

AdS2 near-horizon geometry. It has recently been recognized that these corrections are

also universal [7, 8, 12], and described by a Schwarzian effective action [9].
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Figure 1. Charged black holes in asymptotically AdSd+2 space with a near-horizon AdS2×Sd
geometry. We choose the compact space Md to be Sd, the d-sphere. The intermediate

geometry is described by the effective action in Eq. (1.6).

For charged black holes, it is also important to consider the variation in the entropy

as a function of Q. In particular, an important dimensionless parameter is E , defined

by
dS0(Q)

dQ = 2πE , T = 0. (1.2)

The electric field in the near horizon region of the black hole is also determined by E
[1], as we shall see in Eq. (2.35). The relationship in Eq. (1.2) appeared in the context

of complex SYK models [24], before also appearing in the black hole context [1], as was

recognized later [10]. The parameter E also determines the particle-hole asymmetry

of probe matter fields in the AdS2 region: e.g. a fermion of unit charge and scaling

dimension ∆ has the Green’s function [25, 26]

G(τ) ∼
{ −τ−2∆ τ > 0

e−2πE(−τ)−2∆ τ < 0
, T = 0 ; (1.3)

this form applies also to the complex SYK models.

The universal low temperature quantum theory describes both energy and charge

fluctuations. It is expressed in terms of a monotonic time diffeomorphism f(τ) obeying

f(τ + 1/T ) = f(τ) + 1/T , (1.4)
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and a phase phase field φ(τ) obeying

φ(τ + 1/T ) = φ(τ) + 2πn , (1.5)

n integer, which is conjugate to the total integer charge Q. In the absence of supersym-

metry, symmetry arguments lead to the following imaginary time action in the grand

canonical ensemble [17]

Ieff [f, φ] = −S0(Q) +
K

2

∫ 1/T

0

dτ(∂τφ− i(2πET )∂τf)2

− γ

4π2

∫ 1/T

0

dτ {tan(πTf(τ)), τ}, (1.6)

where we have introduced the Schwarzian

{g(τ), τ} ≡ g′′′

g′
− 3

2

(
g′′

g′

)2

. (1.7)

This action is characterized by three parameters, γ, K, and E , and these can be specified

by their connection to thermodynamics. These parameters depend upon the charge Q
(or the chemical potential µ), but this dependence has been left implicit. We have

already described the connections of γ and E to the thermodynamics above. The

parameter K is the zero temperature compressibility

K =
dQ
dµ

, T = 0 . (1.8)

A different 0+1 dimensional super-Schwarzian action is expected for supersymmetric

black holes [15, 16], which we will not discuss here.

For neutral black holes connected to the Majorana SYK theory, the 0+1 dimen-

sional theory has allowed non-perturbative computation of the density of low-energy

states [16, 27–30]. The phase action in Eq. (1.6) can extend such computations to

charged black holes, and this is described in other recent papers [31, 32]. Contrary

to early speculations [33], the zero temperature entropy, S0(Q), is not associated with

an exponentially large degeneracy of the ground state (except in cases with N = 2

supersymmetry [1, 2, 4, 6, 15]). Instead, there is an exponentially small level spacing

down to the ground state, and the envelope of the resulting density of states can be

computed from Ieff .

This paper will start from the Einstein-Maxwell theory of spherical black holes

in asymptotically AdSd+2 space, which we review in Section 2. At low temperatures,

such black holes are dominated by fluctuations in the near-horizon AdS2 geometry
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[25], and this is reviewed in our notation in Section 2.1. Section 3 describes a further

dimensional reduction from AdS2 to the 0+1 dimensional Schwarzian theory, while

keeping quantitative track of all couplings from the parent AdSd+2 theory. This analysis

yields the precise co-efficient, γ, of the Schwarzian action in terms of the couplings in

the Einstein-Maxwell theory. This value of γ is found to be just that expected from a

match between the thermodynamics of the black hole in AdSd+2 and the Schwarzian

theory.

We turn our attention to the action for the phase mode, φ, in Eq. (1.6) in Section 4.

Here, we identify φ with the value of a Wilson line extending from the black hole horizon

to the AdSd+2 boundary: see Eq. (4.2), and also Refs. [20, 34]. We present arguments,

based largely on gauge invariance, which lead to a derivation of the K term in Eq. (1.6).

2 Black holes in asymptotically AdS space

We consider the case of spherical black holes in global AdSd+2 (d > 1), following the

analysis of Chamblin et al. [35]. The Einstein-Maxwell theory of a metric g and a U(1)

gauge flux F = dA has Euclidean action

IEM =

∫
dd+2x

√
g

[
− 1

2κ2

(
Rd+2 +

d(d+ 1)

L2

)
+

1

4g2
F

F 2

]
, (2.1)

where κ2 = 8πGN is the gravitational constant, Rd+2 is the Ricci scalar, L is the radius

of AdSd+2, and gF is a U(1) gauge coupling constant. We will not assume any particular

value for the length ratio L/Rh, and only assume that it is kept fixed as we take the

T → 0 limit. We choose a solution of the saddle-point equations of Eq. (2.1) with

metric

ds2 = V (r)dτ 2 + r2dΩ2
d +

dr2

V (r)
(2.2)

where dΩ2
d is the metric of the d-sphere, and

V (r) = 1 +
r2

L2
+

Θ2

r2d−2
− M

rd−1
. (2.3)

Note that as r →∞, the metric in Eq. (2.2) is AdSd+2 with boundary geometry Sd×S1;

here Sd is a sphere with a d-dimensional surface, and S1 represents the thermal circle.

The gauge field solution has the form

A = iµ

(
1− rd−1

0

rd−1

)
dτ (2.4)
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The equations (2.2) and (2.4) solve the Einstein-Maxwell equations provided

Θ =

√
(d− 1)

d

κrd−1
0

gF
µ (2.5)

The value of the gauge field at the AdS boundary defines the chemical potential µ,

provided r0 is the horizon. This in turn demands that V (r0) = 0 or

M = rd−1
0

(
1 +

r2
0

L2
+

Θ2

r2d−2
0

)
. (2.6)

The temperature of the black hole, T , is given by

4πT = V ′(r0) . (2.7)

The Eqs. (2.5,2.6,2.7) determine all the parameters, Θ, M , r0 in terms of µ and T . So

we have determined a unique black hole solution in terms of the independent thermo-

dynamic parameters µ and T .

Let us now specify the thermodynamic potentials of the black hole solution. We

can compute the grand potential, Ω(µ, T ), by evaluating the action in Eq. (2.1) for the

solution above. However, to obtain a finite answer as the boundary of spacetime at

r = r∞ → ∞, we have to include boundary counterterms to render the action finite.

One of these terms is the familiar Gibbons-Hawking term:

IGH = − 1

κ2

∫
∂

dd+1x
√
gbKd+1 (2.8)

where the boundary has induced metric gb, and trace of the extrinsic curvature Kd+1.

In addition, the CFTd+1 residing on the boundary requires local counterterms to obtain

a finite action, and these are [19, 35–38]

Ict =
1

κ2

∫
∂

dd+1x
√
gb

[
d

L
+

L

2(d− 1)
Rd+1 + . . .

]
(2.9)

where the boundary has Ricci scalar Rd+1, and we have only shown terms that are

needed in d = 2. We list the individual contributions of the different actions:

TIEM =
sd
κ2

(
−(d− 1)

2L2
(rd+1
∞ − rd+1

0 )− (d+ 1)

2
(rd−1
∞ − rd−1

0 )

)
+
sd(d− 1)2r0µ

2

2dg2
F

TIGH =
sd
κ2

(
−(d+ 1)rd+1

∞
2L2

− (d− 1)rd−1
∞

2

)
TIct =

sd
κ2

(
2r3
∞
L2

+ 2r∞ − r0 −
r3

0

L2

)
− 2πr0µ

2

g2
F

, d = 2 , (2.10)
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where sd ≡ 2π(d+1)/2Γ((d + 1)/2) is the area of Sd with unit radius. Combining the

actions, the terms diverging as r∞ →∞ cancel, and the grand potential is [35]

Ω(T, µ) = T (IEM + IGH + Ict)

=
sd[r0(T, µ)]d−1

2κ2

(
1− [r0(T, µ)]2

L2

)
− sd(d− 1)µ2[r0(T, µ)]d−1

2dg2
F

. (2.11)

We can now evaluate the entropy by taking the temperature derivative of Ω to obtain

S(T, µ) =
2πsd
κ2

[r0(T, µ)]d, (2.12)

which is precisely the expression expected from Hawking’s formula. Similarly, the total

charge is obtained by taking the µ derivative of Ω

Q(T, µ) =
sd(d− 1)µ [r0(T, µ)]d−1

g2
F

, (2.13)

and this expression can also be obtained from Gauss’s law evaluated as r →∞
All results above apply for general T and µ, and the T and µ dependence of r0 can

be obtained from Eqs. (2.5,2.6,2.7). Let as us now turn to a consideration of the low

T limit. Explicitly, we have for r0

r0(T, µ) = Rh +
2πL2

d+ 1
T +O(T 2) , T → 0, µ fixed , (2.14)

where Rh is the radius the black hole horizon at T = 0

Rh ≡
L

gF

[
(d− 1)(µ2

0κ
2(d− 1)− dg2

F )

d(d+ 1)

]1/2

, (2.15)

with µ0 ≡ µ(T = 0). Note that the size of the black hole at T = 0 is determined by

the chemical potential µ0 alone, and µ0 has to be large enough so that the expression

inside the square root is positive. We can invert Eq. (2.15) to write

µ0 =
gF

Lκ(d− 1)

[
d
(
(d+ 1)R2

h + (d− 1)L2
)]1/2

(2.16)

For the charge Q in Eq. (2.13) we have

Q = −
(
∂Ω

∂µ

)
T

=
sdR

d−1
h

√
d [(d+ 1)R2

h + (d− 1)L2]

LκgF
, T = 0 , (2.17)

Below we will express all the low T thermodynamic parameters of the black hole in

terms of Rh. These results can be converted to a dependence on Q or µ0 via Eqs. (2.17)

or (2.16).
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For the grand potential at T = 0 we obtain

Ω0 = − dR2
hsd

(d− 1)L2κ2
, T = 0 , (2.18)

while the T = 0 entropy in Eq. (2.12) is

S0 = −
(
∂Ω

∂T

)
µ

=
2πsd
κ2

Rd
h , T = 0 . (2.19)

We can obtain the function S0(Q) by eliminating Rh between Eqs. (2.17) and (2.19).

Also we can compute the compressibility

K =
dQ
dµ

∣∣∣∣
T=0

=
dQ/dRh

dµ0/dRh

=
(d− 1)sdR

d−3
h [d(d+ 1)R2

h + (d− 1)2L2]

(d+ 1)g2
F

. (2.20)

We also quote another derivative we will need later in Section 4.1(
∂2Ω

∂T 2

)
µ

= −4dπ2sdL
2Rd−1

h

(d+ 1)κ2
, T = 0 . (2.21)

For the analysis of the low T limit, it is better to work at fixed Q rather than fixed

µ. In the SYK model, the intermediate frequency structure at T � ω � J remains

independent of T only when we work at fixed µ [10, 24, 39]. We will find a similar

feature in the low T limit of the present black hole solution below. So as T → 0, we

write

µ = µ0 − 2πET + . . . , T → 0, Q fixed (2.22)

where

2πE ≡ −
(
∂µ

∂T

)
Q

=

(
∂S

∂Q

)
T

. (2.23)

The first equality in Eq. (2.23) is the definition of E which follows from the expansion

in Eq. (2.22), while the second equality is a general thermodynamic Maxwell relation.

We will see below in Eq. (2.35) that E also specifies the electric field at the surface of

the black hole. We can compute the value of E from the definition in Eq. (2.23) and

Eqs. (2.5,2.6,2.7,2.13), and obtain

E =
gFRhL

√
d [(d+ 1)R2

h + (d− 1)L2]

κ [d(d+ 1)R2
h + (d− 1)2L2]

. (2.24)

The ‘equation of state’ obeyed by E and Q is obtained by eliminating Rh between

Eqs. (2.17) and (2.24); this leads to a lengthy expression which we shall not write
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Figure 2. Low temperature crossovers outside a black hole of charge Q. The value of Rh
is determined from Q via Eq. (2.17), and we describe T � 1/Rh at fixed Q, µ specified by

Eq. (2.22), and R2 ∼ Rh. We denote contributions to the free energy F = Ω + µQ in each

region (E0 = Ω0 + µ0Q is the ground state energy).

out explicitly. But, we can use Eqs. (2.17), (2.19) and (2.24) to verify the identity in

Eq. (1.2)
dS0

dQ =
∂S0/∂Rh

∂Q/∂Rh

= 2πE , T = 0. (2.25)

Using Eq. (2.22), we can compute the variation of the entropy at fixed Q, and so

obtain

γ =

(
∂S

∂T

)
Q

=
4π2dsdL

2Rd+1
h

κ2(d(d+ 1)R2
h + (d− 1)2L2)

. (2.26)

We will match this to the co-efficient of the Schwarzian below in Eqs. (2.39) and (3.11).

2.1 Dimensional reduction

As illustrated in Figs. 1 and 2, the black hole solution exhibits interesting crossovers in

the near-horizon region, when

TRh � 1 . (2.27)

Throughout we will assume that the AdSd+2 radius, L is held fixed as T is lowered. So

we take the T → 0 limit at fixed, but arbitrary, L/Rh.

It is useful to introduce the co-ordinate ζ via

r = Rh +
R2

2

ζ
, (2.28)
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so that T = 0 the horizon will be at ζ =∞. We choose the length scale R2 to be

R2 =
LRh√

d(d+ 1)R2
h + (d− 1)2L2

, (2.29)

and the reason for this specific choice for R2 will become clear below. Note that as

T → 0, R2/Rh is fixed, and we assume in this subsection that we are in the near-horizon

region defined by (see Fig. 2)

ζ � Rh . (2.30)

Now we insert the co-ordinate change (2.28) in the metric (2.2), and expand in

powers of TRh while assuming ζ ∼ 1/T . Before performing this expansion it is impor-

tant that we fix the charge of the black hole at Q also at T > 0 [25]. This requires that

the chemical potential acquires the T -dependence in Eq. (2.22). With this T -dependent

µ, we find that the metric takes the form

ds2 =
R2

2

ζ2

[
(1− 4π2T 2ζ2)dτ 2 +

dζ2

1− 4π2T 2ζ2

]
+R2

hdΩ2
d . (2.31)

This metric is AdS2 × Sd at T = 0. But there is a co-ordinate transformation which

maps the T > 0 metric to the T = 0 metric for AdS2: we map the (τ, ζ) co-ordinates

to (τ0, ζ0) co-ordinates via

τ0 =
(πT )−1(1− 4π2T 2ζ2)1/2 sin(2πTτ)

1 + (1− 4π2T 2ζ2)1/2 cos(2πTτ)

ζ0 =
2ζ

1 + (1− 4π2T 2ζ2)1/2 cos(2πTτ)
. (2.32)

Then the metric for (τ0, ζ0) is just as in Eq. (2.31) but with T = 0. Also note that for

small ζ, the co-ordinate transformation becomes

τ0 = g(τ) , ζ0 = ζg′(τ) , g(τ) =
tan(πTτ)

πT
, ζ → 0 . (2.33)

We see from Eq. (2.31) that the horizon at non-zero T � 1/Rh is at ζ = 1/(2πT ), and

we are interested in the near-horizon region (A) in Fig. 2

Rh � ζ <
1

2πT
. (2.34)

Note also the prefactor of R2
2 in Eq. (2.31); the value of R2 was chosen in Eq. (2.29) by

anticipating this prefactor.

Turning to the gauge field sector, the solution in Eq. (2.4) has the form

A = i
E
ζ

(1− 2πTζ)dτ , (2.35)
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where the dimensionless electric field E is exactly equal to that obtained from the

definition in Eq. (2.23). This can also be mapped onto the T = 0 gauge field via

the co-ordinate transformation in Eq. (2.32), but after a gauge transformation [26].

Explicitly, let us write in the co-ordinate system at T = 0, Aτ0 = E/ζ0. Then

Aτ0dτ0 = Aτdτ + Aζdζ , (2.36)

and Aτ,ζ can be computed from Eq. (2.32). We perform a gauge transformation gener-

ated by Λ to obtain Aτ = Aτ −∂τΛ, Aζ = Aζ−∂ζΛ. In this manner, we obtain Aζ = 0,

and Aτ as in Eq. (2.35), provided we choose

Λ = i2πTEτ − 2iE tan−1

(
1−

√
1− 4π2T 2ζ2

ζ
tan(πTτ)

)
. (2.37)

It is useful to write out some of the thermodynamic parameters in terms of the

parameters of the AdS2× Sd geometry, but independent of L, the radius of AdSd+2.

We can write the charge Q in Eq. (2.17) as

Q =
sd
g2
F

Rd
h

R2
2

E , (2.38)

which is the expression expected from application of Gauss’s law at the horizon using

Eqs. (2.31,2.35). And the linear-in-T term in the entropy in Eq. (2.26) can be written

as

γ =
4π2dsdR

2
2R

d−1
h

κ2
. (2.39)

Although there is no corresponding expression for K which is independent of L, we do

have the relation

µ0 =
ERh

(d− 1)R2
2

. (2.40)

The expression in Eq. (2.40) relates the chemical potential to the work done by a unit

charge moving from the horizon to the boundary.

We emphasize that the relations in Eqs. (2.38,2.39,2.40) hold at arbitrary values of

the ratio L/Rh.

3 The Schwarzian action

Section 2.1 described the reduction of the spacetime metric from d+2 dimensions, a form

which factorized spacetime into 2 and d dimensions. Fluctuations in the d-dimensional

space, which is a sphere of radius ∼ Rh ∼ R2, are expected to be subdominant for T �
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1/Rh. In this section we will perform the equivalent reduction in terms of the action, to

an effective quantum gravity theory in 2 dimensions. Then we will follow Maldacena et

al. [12] and further reduce the two-dimensional gravity to a one-dimensional Schwarzian

action.

We write the (d + 2)-dimensional metric g of IEM in Eq. (2.1) in terms of a two-

dimensional metric h and a scalar field Φ [17, 19]:

ds2 =
ds2

2

Φd−1
+ Φ2 dΩ2

d . (3.1)

Both h and Φ, and the gauge field A, are allowed to be general functions of the two-

dimensional co-ordinates ζ and τ . To begin with, we do not specialize to just the

near-horizon region, and so there are no restrictions on the value of ζ other than it is

outside the horizon; from Eq. (2.28) the latter constraint is ζ < R2
2/(r0 − Rh). The

boundary of the spacetime is at ζ → 0, corresponding to r →∞. Then the expressions

for the Einstein-Maxwell (Eq. (2.1)) and Gibbons-Hawking (Eq. (2.8)) actions reduce

to (x ≡ (τ, ζ))

IEM =

∫
d2x
√
h

[
− sd

2κ2
ΦdR2 + U(Φ) +

Z(Φ)

4g2
F

F 2

]
IGH = − sd

κ2

∫
∂

dx
√
hbΦ

dK1 (3.2)

along with an additional term not displayed which cancels in IEM + IGH [19]. The

Gibbons-Hawking term is to be evaluated at the boundary at ζ → 0 or r → ∞. Here

R2 is the two-dimensional Ricci scalar, the second integral is over a one-dimensional

boundary with metric hb and extrinsic curvature K1. The powers of Φ in Eq. (3.1) were

judiciously chosen so that there would be no gradient of Φ in Eq. (3.2), and that R2

would couple to Φd. The explicit forms of the potentials U(Φ) and Z(Φ) are,

U(Φ) = − sd
2κ2

(
d(d− 1)

Φ
+
d(d+ 1)Φ

L2

)
, Z(Φ) = sdΦ

2d−1 . (3.3)

The two-dimensional action in Eqs. (3.2,3.3) has exactly the same saddle point solution

as that of the four-dimensional action in Eq. (2.1), and this solution can be obtained

by mapping Eq. (3.1) to Eq. (2.2). In particular, we obtain from this solution using

Eqs. (2.2) and (2.28) the exact expression for the saddle point value of Φ

Φ(ζ) = Rh +
R2

2

ζ
. (3.4)

This scalar field profile will be a key ingredient in the derivation of the Schwarzian

action below.
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The next step is to renormalize the theory in Eq. (3.3) down to the near horizon

region so that the spacetime is in the region defined by Eq. (2.34), and the boundary

of spacetime is at a ζ = ζb in region (B) of Fig. 2

Rh � ζb �
1

T
. (3.5)

This moving of the boundary will induce a complicated renormalization of the potentials

V (Φ) and Z(Φ), but it will turn out that we will not need the explicit form of this

renormalization. The boundary term IGH in Eq. (3.2) will now be evaluated at ζ =

ζb. Note that the counterterms, Ict, in Eq. (2.9) all vanish when evaluated at a one-

dimensional boundary with d = 0 spatial dimensions: so they have no counterpart

for two-dimensional gravity. Nevertheless, in computing the free energy of the theory

in Eq. (3.2), the countributions of Ict have to be included, and computed in the full

d + 2 dimensional theory as ζ → 0. However, after renormalizing to the boundary at

ζ = ζb, no remaining contributions from Ict are needed. Also, such counterterms are

not needed for the action in Eq. (3.2) to yield consistent local equations of motion.

We already know from Section 2.1 that the saddle point metric in the near-horizon

region is AdS2. In the form in Eq. (3.1), the two-dimensional metric is scaled by factor

[Φ(ζ →∞)]d−1 = Rd−1
h from that in Eq. (2.31):

ds2
2 =

R2
2R

d−1
h

ζ2

[
(1− 4π2T 2ζ2)dτ 2 +

dζ2

1− 4π2T 2ζ2

]
. (3.6)

Also in the near-horizon regions (A) and (B), the field coupling to R2, which in our

case is Φd, has the saddle point obtained from Eq. (3.4)

[Φ(ζ)]d = Φ0 +
Φ1

ζ
+ . . . , Rh � ζ <

1

2πT
, (3.7)

with the coefficients

Φ0 = Rd
h , Φ1 = dRd−1

h R2
2 . (3.8)

Note that Φ1/ζ � Φ0 in the entire AdS2 region, including both its bulk (A) and its

boundary (B), as in Fig. 2. The solution with Φd = Φ0 and the metric in Eq. (3.6)

describes the near-horizon AdS2×Sd region (A) in Fig. 2, and we are interested in the

structure of the corrections from Φ1 to this leading order result.

One of the remarkable observations of Almheiri and Polchinski [7] and Maldacena

et al. [12] is that the action for quantum fluctuations with these corrections, with

general U(Φ), is universal. More specifically, they argued that the field coupling to R2

must have the saddle point spatial dependence in Eq. (3.7), and that the action for the

quantum fluctuations reduces to a boundary action in region (B) dependent only upon

– 12 –



the value of Φ1 in Eq. (3.7). The independence of the bulk action in region (A) on the

Φ1/ζ correction in Eq. (3.7) follows from the first order variation in the action IEM in

Eq. (3.2), which vanishes because of the bulk equation of motion for Φ0

δIEM =

[
− sd

2κ2
dΦd−1

0 R2 + U ′(Φ0) +
Z ′(Φ0)

4g2
F

F 2

]
Φ1

ζ
= 0 . (3.9)

The result in Eq. (3.9) is easily verified after employing the AdS2 metric in Eq. (3.6),

the near-horizon gauge field in Eq. (2.35), and potentials in Eq. (3.3).

Another important observation of Maldacena et al. [12] is that quantum fluctu-

ations about the metric in Eq. (3.6) can be represented entirely by fluctuations of a

quantum boundary theory (such as the complex SYK model). In the bulk inside the

boundary, the metric remains fixed at that in Eq. (3.6), and the induced metric on the

boundary is fixed at R2
2R

d−1
h /ζ2

b . The fluctuations of the boundary theory are realized

by a boundary time diffeomorphism, which also determines the shape of the boundary

embedded in AdS2. Before determining the action for such fluctuations, we change

notation for the bulk time from τ to f , and use τ as the symbol for the parametric

time along the boundary. Then the boundary curve is at bulk co-ordinates (f(τ), ζ(τ)).

The boundary metric induced by Eq. (3.6) equals R2
2R

d−1
h /ζ2

b after we choose, in an

expansion in ζb,

ζ(τ) = ζbf
′(τ) + ζ3

b

(
[f ′′(τ)]2

2f ′(τ)
− 2π2T 2 [f ′(τ)]

3

)
+ . . . . (3.10)

Finally, we evaluate IGH in Eq. (3.2) along this boundary curve. As we have already

included the contribution of Φ0 in Eq. (3.7) at the saddle point, and so we need only

include Φd → Φ1/ζb in Eq. (3.2). In this manner we obtain the action [12] (see Ap-

pendix A)

I1,eff [f ] = −sdΦ1

κ2

∫ 1/T

0

dτ
(
{f(τ), τ}+ 2π2T 2 [f ′(τ)]

2
)

= −sdΦ1

κ2

∫ 1/T

0

dτ {tan(πTf(τ)), τ} . (3.11)

Note that the function tan(πTf(τ)) in the last equation is the same as that obtained

in Eq. (2.33) in the co-ordinate mapping from T = 0 to T > 0 near the boundary.

Comparing with the action in Eq. (1.6), we obtain

γ =
4π2sdΦ1

κ2
. (3.12)
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After using the value of Φ1 in Eq. (3.8), we find that this value of γ is in perfect

agreement with the value obtained from the thermodynamics of the Einstein-Maxwell

theory in d + 2 dimensions, which is presented in Eqs. (2.26) and (2.39). This is the

main result of this section.

We note here that upon evaluating the Schwarzian for f(τ) = τ , we obtain I1,eff =

−γT/2, which yields a change in the free energy F = Ω + µQ of

∆F = −γT 2/2. (3.13)

We are working here at constant Q, and hence I1,eff contributes to F , and not directly

to Ω. This result for ∆F was indicated in Fig. 2, and its T -derivative is in Eq. (1.1).

4 Effective action for the phase mode

This section will consider gauge fluctuations of the Einstein-Maxwell action in Eq. (2.1).

These correspond to charge fluctuations in the boundary theory, which are represented

by a phase field φ. As in Section 3, we will limit our consideration to d = 2 in the

present section.

We are interested in bulk solutions satisfying the boundary condition

Aτ (τ, r →∞) = iµ(τ) , (4.1)

which is satisfied by Eq. (2.4). It is useful to consider the more general case in which

µ is time-dependent, as indicated in Eq. (4.1); but we will ultimately make µ time

independent. The key observation of Son and Nickel [34] (see also Ref. [20]) is that there

are a family of bulk gauge fields satisfying these boundary conditions. In particular

there is a non-trivial Wilson line from the horizon to the boundary which defines the

phase field φ in Eq. (1.6) with non-trivial dynamics

φ(τ) =

∫ ∞
r0

drAr(τ, r) (4.2)

Gauge transformations which maintain Eq. (4.1) only perform a time-independent shift

φ(τ)→ φ(τ) + constant, corresponding to the presence of a globally conserved U(1) on

the boundary. So the effective action of for φ will depend only on ∂τφ, as we will see

below.

To derive an effective action for this mode, let us introduce the bulk analogue of this

Wilson line

Φ1(τ, r) =

∫ r

r0

drAr(τ, r) , Ar(τ, r) = ∂rΦ1(τ, r) (4.3)
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so that

Frτ = ∂r (Aτ − ∂τΦ1) . (4.4)

The bulk field Φ1(τ, r) acts as a proxy for the radial gauge field and approaches the

boundary Wilson line as r →∞ i.e.

φ(τ) ≡ Φ1(τ, r →∞) . (4.5)

In the presence of a time-dependent Φ1, we write the metric in Eqs. (2.2) as

ds2 = gττdτ
2 + grrdr

2 + r2dΩ2
d , (4.6)

where, for now, we allow for arbitrary τ and r dependence in gττ and grr. Then the

Maxwell term in the action in Eq. (2.1) can be written as

IM =
sd

2g2
F

∫
drdτ

rd√
gττgrr

F 2
rτ (4.7)

where we have integrated over the angular co-ordinates. Now let us examine the bulk

equation of motion for Aτ

∂r

(
rd√
gττgrr

Frτ

)
= 0 =⇒ Frτ = c1(τ)

√
gττgrr

rd
(4.8)

We can determine the function c1(τ) by integrating the second equation to obtain

iµ− ∂τφ = c1(τ)

∫ ∞
r0

dr

√
gττgrr

rd
. (4.9)

This determines c1(τ) in terms of the metric and the combination iµ − ∂τφ. We can

insert the c1(τ) so determined into the Maxwell action and obtain

IM =
sd

2g2
F

∫
drdτ [c1(τ)]2

√
gττgrr

rd
(4.10)

We now need to insert the Maxwell action specified by Eqs. (4.9) and (4.10) into

Eq. (2.1), and solve the resulting saddle point equations for the metric obtained from the

total action IEM + IGH + Ict. At zeroth order in ∂τφ, this solution is just that specified

by Eq. (2.2). However, we need to determine the correction to the action to order

(∂τφ)2, and for this we need to include the corrections to the metric which are linear

order in ∂τφ; in the boundary theory, these corrections correspond to perturbations

in the stress energy tensor which are sourced by a non-zero ∂τφ. Fortunately, these

corrections, and the resulting change in the effective action, can be determined by a

– 15 –



simple argument. Notice that the influence of ∂τφ is solely by the shift µ → µ + i∂τφ

in Eq. (4.9). At low frequencies, it is safe to ignore the time-dependence in ∂τφ, and so

the shift in the metric is simply proportional to the µ derivative of the metric (which is

non-zero). So we can compute the action by working at a fixed µ, and then replacing

µ→ µ+ i∂τφ.

The combined contribution to the effective action from ∂τφ fluctuations at T = 0

is then

I2,eff =

∫
dτ [Ω(µ0 + i∂τφ, T = 0)− Ω(µ0, T = 0)]

=

∫
dτ

[
−iQ ∂τφ+

K

2
(∂τφ)2 + . . .

]
(4.11)

where Ω is the grand potential in Eq. (2.11). The second term is a total derivative, and

the last term has a coefficient which equals the compressibility K in Eq. (2.20).

4.1 Non-zero temperatures

This section describes the extension of the phase action in Eq. (4.11) to T > 0.

At T = 0, we have imposed the rigid boundary condition µ = µ0 in all our analysis

so far, and this fixes the form of I2,eff to that in Eq. (4.11). The situation changes at

T > 0, because the computations in Sections 2.1 and 3 assumed a fixedQ and a variable

T > 0, and this required the T -dependent change in chemical potential in Eq. (2.22).

In contrast, in Section 4 so far, we are considering the effective action at fixed µ and

variable T . In terms of boundary conditions in the AdS/CFT context, these situations

correspond to whether we fix the co-efficient of r0 term in Eq. (2.4) (as in Section 4)

or the co-efficient of the r1−d term (as in Sections 2.1 and 3) as we vary T .

Therefore, we need to supplement the fixed Q action in Eq. (3.11), with a fixed

µ action. It is useful to motivate the required action by considering the relationship

between the corresponding thermodynamic derivatives. We saw in Eq. (3.13) that

the Schwarzian action computed (∂2F/∂T 2)Q. Correspondingly, we wish to extend

Eq. (4.11) to compute (∂2Ω/∂T 2)µ. But the difference between these two derivatives

is specified by thermodynamics:(
∂2Ω

∂T 2

)
µ

=

(
∂2F

∂T 2

)
Q

+

(
∂2Ω

∂µ2

)
T

[(
∂µ

∂T

)
Q

]2

=

(
∂2F

∂T 2

)
Q
−K

[(
∂µ

∂T

)
Q

]2

, T → 0 . (4.12)

We can now assume that both free energies are time integrals of their respective ac-

tions, and as above Eq. (4.11), we momentarily ignore the frequency dependence of the
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actions. Then we can carry out the mapping in Eq. (4.12) between the fixed Q and

fixed µ situations at the level of local effective actions. At order T 2, such an analysis

amounts to replacing (∂µ/∂T )Q by the difference in the chemical potential between the

two approaches divided by T . So we need to take the difference between the chem-

ical potential in the fixed µ case, i.e. µ0 + i∂τφ, from that in the fixed Q case, i.e.

µ0 − 2πET as in Eq. (2.22). Their difference is i∂τφ + 2πET , and this identifies the

required modification of I2,eff :

I3,eff =
K

2

∫
dτ (∂τφ− i2πET )2 . (4.13)

Now at leading order, ignoring phase fluctuations, we obtain a contribution from

Eq. (4.13) to the grand potential of −2π2KE2T 2. By Eq. (4.12) this has to be added

to the contribution in Eq. (3.13), to yield the total order T 2 contribution to the grand

potential

∆Ω = −(γ + 4π2KE2)
T 2

2
. (4.14)

It can now be verified that Eqs. (4.14) and (3.13) are consistent with Eq. (4.12), and

also with the explicit value of (∂2Ω/∂T 2)µ in Eq. (2.21), after using the values of γ, K,

and E in Section 2.

4.2 Coupling to the diffeomorphism mode

This section considers the modification of the phase action in Eq. (4.13) from the

boundary time diffeomorphism mode of Section 3.

An important observation, following from the analysis above Eq. (4.13), is that any

coupling of Eq. (4.13) to a diffeomorphism mode should vanish at T = 0. There can be

no corrections to Eq. (4.11) at T = 0, apart from a renormalization of the coupling K,

and the effective action can only depend upon the combination µ + i∂τφ independent

of the metric.

In Section 4.1, we argued that we need the chemical potential which keeps Q fixed

at variable T for the computation in Section 3. In the absence of diffeomorphisms in

time, this was given by Eq. (2.22). We will now compute the correction to Eq. (2.22)

in the presence of the time diffeomorphism of the boundary theory.

For this computation, we focus on the AdS2 region (A) of Fig. 2. The vector

potential is given by Eq. (2.35), which we write as

Aτ = −i2πET + i
E
ζ
. (4.15)

We apply the usual rules of the AdS/CFT correspondence [40] at the AdS2 boundary,

which is ζ → 0 here (but with ζ � Rh, see Fig 2). We identify the ζ0 term in Eq. (4.15)
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with the chemical potential at the AdS2 boundary, while the coefficient of the ζ−1 is

proportional to the conjugate charge density. Notice also that the form in Eq. (4.15)

is asymptotically consistent with the form in Eq. (2.4) for AdSd+2 with d = 0 (after

mapping from r to ζ via Eq. (2.28)).

Now let us consider quantum fluctuations on the boundary theory (realized by

the complex SYK model), represented by the boundary time diffeomorphism f(τ).

The chemical potential of the boundary, −iAbτ , transforms like the time component

of a vector potential: Abτdτ = Abfdf , and so Abτ = Abf (∂τf). The boundary chemical

potential in the original time is −iAbf = −2πET , and so the chemical potential in the

theory with time τ is −iAbτ = −(2πET )∂τf .

Having computed the chemical potential at the AdS2 boundary, we need to deter-

mine the chemical potential at the AdSd+2 boundary, r → ∞. In the absence of time

diffeomorphisms, these two chemical potentials are connected by Eq. (2.22). We have

already argued that there can be no T -independent coupling to the diffeomorphism

f(τ). Furthermore, leading T -dependent renormalization to µ in Eq. (2.22) arises en-

tirely from the AdS2 region. So we conclude that the generalization of Eq. (2.22) is

µ = µ0 − (2πET )∂τf , T → 0, fixed Q. (4.16)

Using this renormalized chemical potential in the reasoning above Eq. (4.13), we obtain

the updated action for phase fluctuations

I4,eff =
K

2

∫
dτ (∂τφ− i(2πET )∂τf)2 . (4.17)

The full action is therefore I1,eff + I4,eff , which yields Eq. (1.6) from Eq. (3.11).

5 Discussion

The Reissner-Nördstrom-AdS charged black hole has been extensively used as a holo-

graphic model of strongly interacting quantum matter at non-zero density [40]. Near

the boundary, the geometry is AdSD, and so the conventional rules of the AdS/CFT

correspondence apply, and they can be used to relate bulk properties to the correlations

of the boundary quantum theory in D−1 spacetime dimensions. It was also recognized

[25] that (for D > 3) the low temperature correlations are linked to the near-horizon

AdS2 geometry. But it had not seemed possible to express the physics in terms of the

2-dimensional bulk alone, without embedding it in a higher-dimensional geometry.

Maldacena et al. [12] recently proposed a novel formulation of the 2-dimensional

bulk quantum physics. Following the example of the SYK model, they argued that the
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strong back reaction of the AdS2 geometry to external perturbations [7, 8] could be

accounted for by integrating over a time diffeomorphism (f(τ)) in the quantum theory

on the boundary of AdS2. After fixing the induced metric on the boundary of AdS2, the

time diffeomorphism determines the shape of the AdS2 boundary. They also obtained

a 0+1 dimensional Schwarzian action for the time diffeomorphisms. For the case of a

charged black hole, the bulk U(1) gauge field implies that the Schwarzian action has

to be supplemented [17] by that of a scalar phase field (φ(τ)), leading to the action in

Eq. (1.6). The path integral over this action can be exactly computed [16, 31, 32], and

this allows computation of quantum properties beyond what has been possible from

the AdSD approach above.

These advances result in two approaches to determining the low temperature cor-

relations of the quantum system holographically equivalent to a charged black hole:

we can use the conventional AdS/CFT correspondence at the AdSD boundary, or the

Schwarzian theory at the AdS2 boundary (see Fig. 1). Earlier works [5, 9, 10, 12–

14, 17, 20] established the equivalence of the two approaches by comparing thermody-

namics and correlation functions. Here, we have derived the effective 0+1 dimensional

action as a low energy limit of the Einstein-Maxwell theory of charged black holes in

asymptotically AdSD space, and confirmed that the tree-level predictions of the two

actions are in precise quantitative agreement. The quantum fluctuation corrections

from the 0+1 dimensional effective action can now be applied to the D-dimensional

Einstein-Maxwell theory. The mapping to the effective theory is valid at temperatures

T � 1/Rh, where Rh is the radius of the black hole. However, we do not assume any

particular relation between Rh and the AdSD radius L, and our analysis can approach

asymptotically Minkowski space for large L/Rh.
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A Extrinsic curvature and the Schwarzian

We consider a general metric of a two-dimensional space with co-ordinates (f, ζ)

ds2 = hf (ζ)df 2 + hζ(ζ)dζ2 . (A.1)

We are interested in the extrinsic curvature of a curve C parameterized by τ : (f(τ), ζ(τ)).

Let us transform to new co-ordinates (τ, λ) so that the curve C is at λ = 0. For

small λ we choose the co-ordinate transformation

f = f(τ) + λ

ζ = ζ(τ)− λhf (ζ(τ))f ′(τ)

hζ(ζ(τ))ζ ′(τ)
+O(λ2) . (A.2)

This insures that the metric in the new co-ordinates is of the Gaussian normal form

ds2 = hλ(τ, λ)dλ2 + hb(τ, λ)dτ 2 (A.3)

with

hλ(τ, λ) = hf (ζ(τ)) +O(λ)

hb(τ, λ) = hf (ζ(τ))[f ′(τ)]2 + hζ(ζ(τ))[ζ ′(τ)]2 − 2λhζ(ζ(τ))ζ ′(τ)
d

dτ

(
hf (ζ(τ))f ′(τ)

hζ(ζ(τ))ζ ′(τ)

)
−λ

hf (ζ(τ))f ′(τ){[f ′(τ)]2h′f (ζ(τ)) + [ζ ′(τ)]2h′ζ(ζ(τ))}
hζ(ζ(τ))ζ ′(τ)

+O(λ2) . (A.4)

The induced metric on C is hb(τ, 0), and the extrinsic curvature of C is

K1 =
1

2hb(τ, 0)
√
hλ(τ, 0)

dhb(τ, λ)

dλ

∣∣∣∣
λ=0

. (A.5)

From Eq. (3.6), we now use

hf (ζ) =
R2

2R
d−1
h

ζ2
(1− 4π2T 2ζ2) , hζ(ζ) =

R2
2R

d−1
h

ζ2

1

(1− 4π2T 2ζ2)
, (A.6)

and fix the curve C by Eq. (3.10) which sets hb(τ, 0) = R2
2R

d−1
h /ζ2

b . Then we evaluate the

extrinsic curvature of C, expand in powers of ζb, and insert in Eq. (3.2) with Φd → Φ1/ζb,

to obtain Eq. (3.11). Note (i) all the powers of the metric prefactor R2
2R

d−1
h cancel out;

(ii) in the evaluation of K1 (but not for other quantities), it turns out we only need to

keep the leading term of order ζ1
b in Eq. (3.10).
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