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In most materials, transport can be described by the motion of distinct species of 

quasiparticles, such as electrons and phonons.1 Strong interactions between 

quasiparticles, however, can lead to collective behaviour, including the possibility of 

viscous hydrodynamic flow.2,3 In the case of electrons and phonons, an electron-phonon 

fluid is expected to exhibit strong phonon-drag transport signatures4 and an anomalously 

low thermal conductivity.5,6 The Dirac semi-metal PtSn4 has a very low resistivity at low 

temperatures7 and shows a pronounced phonon drag peak in the low temperature 

thermopower7; it is therefore an excellent candidate for hosting a hydrodynamic electron-

phonon fluid. Here we report measurements of the temperature and magnetic field 

dependence of the longitudinal and Hall electrical resistivities, the thermopower and the 

thermal conductivity of PtSn4. We confirm a phonon drag peak in the thermopower near 

14 K and observe a concurrent breakdown of the Lorenz ratio below the Sommerfeld 

value. Both of these facts are expected for an electron-phonon fluid with a quasi-conserved 

total momentum5,6,8. A hierarchy between momentum-conserving and momentum-

relaxing scattering timescales is corroborated through measurements of the magnetic 

field dependence of the electrical and Hall resistivity and of the thermal conductivity. 

These results show that PtSn4 exhibits key features of hydrodynamic transport. 

Conventional transport in condensed matter systems relies on the existence of two species of 

quasi-particles, electrons and phonons.1 Heat is carried by both electrons and phonons, while 

charge is only transported by electrons. The charge current can only be relaxed by processes 

that degrade the total momentum of the electrons. The simplest example is electron-impurity 

scattering which instantly releases momentum to the environment. The case of electron-phonon 

scattering is more subtle: in this case, the electron momentum is transferred to the phonons and 

could be transferred back to the electrons at a later scattering event. This kind of process is 

usually negligible because phonons quickly lose momentum to the environment (ex. via 

phonon-phonon Umklapp scattering), therefore acting effectively as a momentum sink. We 



consider instead the case where phonons lose their momentum to the environment more slowly 

than the electron-phonon scattering rate. In this case, electrons and phonons effectively form 

one single fluid since the rate of collision between them is the fastest process.2  The electron-

phonon fluid can then have a long-lived total momentum if impurity and Umklapp scattering 

are suppressed. This leads to a hydrodynamic description of transport in terms of a velocity 

field, including viscous effects due to the transverse diffusion of momentum density.3 

Recently, signatures of hydrodynamic electronic transport have, in fact, been observed in 

graphene,9–11 GaAs,12 PdCoO2
13 and WP2.

14 Thermal and electrical transport experiments in 

these materials and others have revealed a variety of electron hydrodynamic properties, such as 

a size-dependent electrical resistance,12–14 the violation of the Wiedemann-Franz law,9,14,15 

super-ballistic flow,11 and the formation of whirlpools in non-local measurements.10 Moreover, 

signatures of hydrodynamic phonon transport have been observed for phonon systems as the 

second sound phenomenon in solid helium16 and have recently been shown to play a major role 

in the thermal transport of graphite.17 This article departs from previous work by studying a 

system in which the strongly coupled electron-phonon fluid exhibits features characteristic of a 

hydrodynamic regime. Interest in experimental signatures of electron-phonon hydrodynamics 

has been accelerated by the recent proposal that hydrodynamic effects play a role in the T-linear 

resistivity of unconventional metals such as high-temperature superconductors above their 

critical temperature.18–20 It is therefore essential to establish key signatures of hydrodynamic 

flow in strongly interacting electron-phonon systems. 

To address the hydrodynamic electron-phonon fluid in a transport experiment, we sought to 

identify a material where momentum-relaxing scattering is supressed and electron-phonon 

interactions are strong. We have chosen the layered Dirac semimetal PtSn4 with a-c planes 

stacked perpendicularly along the b-axis (Fig 1 (a)). Its electrical resistivity behaves like a 

metal with a Debye temperature of D = 210 K.  is remarkably low, with  ≈ 40 n and a 

mean free path mr of the order of microns at 2 K in the a-c plane of the crystal.7 Despite the 



rather complex Fermiology (Extended Data Fig. 5), the effective masses of the electron me
* and 

of the hole pockets mh
* are very similar (me/h

* ≈ (0.2 ± 0.1) m0),
7 where m0 is the free electron 

mass (see methods for details). In previous studies, such low electrical resistivity has been 

proven to be a good indicator for hydrodynamic electron systems, e.g. in PdCoO2
13 and in 

WP2.
14 PtSn4 additionally exhibits a significant phonon-drag peak in the temperature-dependent 

thermopower S at around 14 K,7 indicating strong electron-phonon interactions. This makes the 

material an ideal candidate to search for signatures of the hydrodynamic electron-phonon fluid.  

For our experiments, we use PtSn4 single crystals, grown out of a Sn-rich binary melt.7 

Respective growth-details and chemical and structural characterization can be found in the 

Methods section. The electrical resistivity , the Hall resistivity H, the thermopower S, and the 

thermal conductivity  have been measured from 2 K to 300 K at magnetic fields B up to 9 T. 

Details of the measurement procedure can also be found in the Methods section. All transport 

experiments are conducted within the a-c plane of the crystals and the magnetic field B is 

applied along the b-axis.  

In a first set of transport experiments at zero magnetic field, we establish that the PtSn4 bulk 

crystals exhibit the low electrical resistivity  previously observed. In Fig. 1 (b), the measured 

 is shown as a function of T. In agreement with literature,7 (T) at zero field increases linearly 

with T between 25 K and 300 K, as expected for such semi-metals in which electron-phonon 

scattering is thought to dominate. Below 8 K the resistivity starts to saturate with a residual 

resistivity of 45 ncm at 2 K. Furthermore, a high residual resistance ratio of (300 K) /(2 K) 

≈ 1000 is observed, which together with the non-saturating quadratic magneto-resistivity MR = 

((B) -(0 T))/(0 T) up to 9 T (Fig. 1 (c)) indicates a long mr.  

The transport properties of our PtSn4 samples are further characterized by measurements of the 

Hall resistivity H (Fig. 1 (d)) as a function of B at various T.  Upon cooling from 300 K, H 

exhibits a positive slope as a function of B, indicating the that hole-like carriers dominate the 



transport. At around 50 K, the slope of H(B) reverses its sign. Given that dH(B)/dB changes 

sign at low temperatures, it is tempting to associate this phenomenon with transport 

contributions of both, electron and holes, which has previously been also invoked as an 

explanation for the non-saturated MR.21 This scenario is supported by the non-linear behaviour 

of the H(B) curves in high magnetic field. For a more quantitative analysis of the carrier 

densities, we calculated the Hall conductivity H = H / (H
2 + 2) (Fig. 2 (e)) and employ a 

two-channel model: 

𝜎H(𝐵) = [
𝑝𝜇h

2

1+𝜇h
2𝐵2

−
𝑛𝜇e

2

1+𝜇e
2𝐵2

] 𝑒𝐵     (1) 

  

The model allows us to obtain the temperature-dependent average carrier density n, p and the 

mobility e, h for the electrons and hole pockets, respectively (see methods for details). Best 

fits to our data indeed reveal that our PtSn4 samples exhibit parallel transport of both electrons 

and holes across the full temperature range investigated (Fig. 1 (f)), with a hole-excess above 

50 K and an electron access below. The mobility of the two types of carriers are very similar 

(Fig. 1 (f), inset), indicating that scattering across the whole Fermi surface is dominated by a 

single scattering time. 

Next, we explore whether coupling between the charge carriers and phonons plays a role in the 

transport properties of our PtSn4 crystals. The thermopower S is a sensitive probe for such 

coupling, since it is greatly enhanced by phonon drag, whereby a non-equilibrium distribution 

of phonons and electrons drift jointly. Such phonon drag appears if the momentum exchange 

between electrons and phonons is much faster than momentum-relaxing processes (such as 

phonon-phonon Umklapp).1,22 Lowering the temperature leads to a suppression of Umklapp 

processes, but also to a lowering of electron-phonon scattering. This trade-off leads to a peak 

in the thermopower at intermediate temperatures, with a common theoretical estimate of the 

peak temperature TPD given by D/10.23 Consistent with the Hall data, S(T) is positive at high 



T, signifying that hole-type carriers dominate the thermoelectric transport (Fig. 2 (a)). Upon 

cooling, S exhibits a sign reversal at 50 K followed by a large, negative phonon-drag peak 

centred around TPD = 14 K, which is consistent with the literature.7 The onset of the phonon-

drag peak at around 22 K ≈ 0.1D in our zero-field measurement data matches this theoretical 

estimate excellently and indicates the emergence of a strongly coupled electron-phonon system 

in PtSn4.  

This notion is supported by the magnetic field dependence of the thermopower at low 

temperatures (Fig. 2 (a)). While above 22 K, S depends only weakly on B, around the phonon-

drag peak, however, the magneto-thermopower MS = (S(B) - S(0 T)) / S(0 T) becomes 

significant at higher fields (B > 3 T), following a linear relation in B (Fig. 2 (b)). The peak 

position remains located near TPD as the magnetic field increases. The linear relation at high 

magnetic fields can be understood by the increase of the electron-phonon scattering rate with 

B,24 yielding MS ≈ ℏc/kBT for ℏc > kBT, where ℏ and kB are the reduced Planck and the 

Boltzmann constants, respectively. c = eB/me/h
* denotes the cyclotron frequency with the 

elementary charge e.  Employing the average effective mass me/h
* = 0.2 m0, the linear relation 

between MS and B at above 3 T is expected for T < 22 K, which matches the experiments 

excellently. In hydrodynamics, the increasing electron-phonon coupling leads to a greater 

entropy per charge carrier in the electron-phonon fluid, which increases the magnitude of the 

thermopower. This B-dependence of the thermopower is weaker than that of the low 

temperature resistivity (Fig. 1 (c)), which varies over several orders of magnitude. 

To determine whether this coupled electron-phonon state exhibits fluid characteristics, we 

explore the Lorenz ratio L = e/T, where e is the electronic thermal conductivity and the 

electrical conductivity. The Wiedemann-Franz (WF) law states that the Lorenz ratio is a 

constant given by the Sommerfeld value L0 = 2.44×10-8 WK-2.1 Central to this statement is 

that scattering affects the relaxation of both charge and heat currents in the same way. As a 



robust prediction of Fermi liquid transport theory, the WF law has been verified in numerous 

metals.1,22 A breakdown of the Lorenz ratio L/L0 < 1 is typically an indication of inelastic 

electron-phonon scattering22 or unconventional phases of matter, such as in incoherent diffusive 

metals,15 Luttinger liquids,25 and metallic ferromagnets26. For finite-electron density 

hydrodynamical systems, L/L0 can become arbitrarily small: The electrical conductivity is large 

due to slow momentum-relaxing processes, whereas the thermal conductivity is instead 

dominated by faster momentum-conserving collisions. This happens because the momentum-

relaxing contribution to the thermal conductivity is proportional to the entropy density that is 

small at low temperatures9 and furthermore the measurement of  with open circuit boundary 

conditions projects out the long-lived momentum mode.5  

Thus, we measured the thermal conductivity  of our samples as a function of temperature (see 

Fig. 2 (c)). The experiments were performed with open electrical contacts, prohibiting electric 

current flow.  exhibits the T-dependence of a metal, consistent with measurements of  and 

S. Upon warming from 2 K, (T) linearly increases with T due to dominant impurity scattering. 

Near 8 K, (T) reaches a maximum and then starts to decreases as e,0T
-2, obeying the Debye 

model1 until it saturates above D at a T-independent value of e,s = 25 Wm-1K-1. The pre-factor 

e,0 includes band structure details. 

Using  and the total thermal conductivity , we calculate the Lorenz number L= 

/T9,15,27,28 (see Fig. 2 (d)) at zero magnetic field. At temperatures above 30 K and below 7 K, 

where phonon-phonon Umklapp and impurity scattering dominate the transport, respectively, 

no Wiedemann-Franz law violation can be established, (L/L0 > 1), as expected. The ratio is 

consistent with an excess phonon contribution to the thermal conductivity. However, in the 

intermediate range between 7 K and 30 K, where phonon-drag is dominant, we find L/L0 < 1.  

Remarkably, despite the full phonon contribution to thermal conduction being included in , 

the WF law is not obeyed, resulting in an upper bound on L/L0 of 0.6 at TPD = 14 K. The phonon 



drag-peak and the concurrent observation of L/L0 < 1 at 14 K together give clear signatures of 

the presence of an electron-phonon fluid in PtSn4.  

To gain more quantitative information on the electron-phonon fluid in PtSn4, we extract the 

mean free paths associated with charge currents (mr) and thermal currents (th), based on the 

extracted values of e/h and on the measured  To obtain the momentum-relaxing mean 

free path mr,e/h of the electron and holes, we use the expression of the mobility e/h = evF,e/hmr,e/h 

/ me/h
*, with the Fermi velocity vF,e/h and the effective mass me/h

*. Not only are the effective 

masses of the electron and hole pockets in PtSn4 very similar, but the Fermi velocities of the 

individual pockets are too. Therefore, the average Fermi velocity vF = (4 ± 1)×105 m/s is used 

for the extraction of mr,e/h (see methods for details), yielding similar mr(T)  for the electron and 

hole pockets of up to 3.2 m at 2 K. In accordance with the small deviations of vF and mr(T) 

for all Fermi pockets,7 the MR obeys Kohler’s rule MR = F[B/(0 T)], approximately 

proportional to B2 (Fig. 2 (e)). This implies that the momentum-relaxing scattering time is the 

same at all points on the Fermi surface and therefore MR α (mrB)2. In a hydrodynamic regime, 

the momentum conserving timescale is faster than the momentum relaxing timescale, but this 

is irrelevant for Kohler’s rule because the resistivity is dominated by momentum-relaxing 

scattering alone. The long mean free path mr, combined with Kohler’s rule, leads to the strong 

magnetoresistance observed in this material as well as other hydrodynamic materials.21,29 We 

note, however, that the Fermi surface of PtSn4 consists of multiple small pockets (Extended 

Data Figure 5) and that the above analysis gives only a rough estimate of mr.  

The magnetic field-dependent thermal conductivity30 (Fig. 3 (a)) allows for a direct extraction 

of the relaxation length of the thermal current th, using the expression:  = 0 + 

B0/(1+(cth/vF)2).1,22 For conventional semimetals, this method has previously been very 

successful in separating the B-independent phonon contribution 0 = ph from the B-dependent 



electron contribution el = B0/(1+(cth/vF)2), where B0 is the value at zero-field. By fitting 

our data to this formula, we extract th as a function of T and compare it to mr(T) in Fig. 3 (b).  

Above 100 K, we find that th/mr ≈ 1, and that the dominant electron-phonon scattering 

processes are highly effective at relaxing currents, as both scattering lengths are tied to the 

relaxation length scale th ≈ mr ≈ planck = vFℏ/(𝑘𝐵𝑇) associated with the quantum limit of 

dissipation.31 Below 100 K, however, the relaxation of currents becomes less effective and mr 

,planck > planck. Concurrently, th becomes shorter than mr, exhibiting their largest deviation at 

around TPD with a minimum of th/mr ≈ 0.4 (see inset in Fig. 3 (b)). In the limit of T → 0 K, 

the scattering time ratio recovers the high-temperature value th/mr ≈ 1. The observed T-

dependence of the th/mr ratio is in full agreement with the T-dependence of L, confirming our 

analysis and interpretation above. 

In the electron-phonon fluid regime, L is expected to increase with magnetic field strength, as 

the magnetic field dependence of (thB)2 is weaker than (mrB)2, providing an important cross-

check for our results. We therefore calculate the Magneto-Lorenz number ML = (L(B) - L(B = 

0 T)) / L(B = 0 T) at various temperatures, using the measured (B) and longitudinal component 

of the electrical conductivity tensor (B) = /(2+H2). In agreement with the 

electron-phonon fluid picture, we find the maximum ML around TPD as shown in Fig. 3 (c). The 

linear increase of ML with B near TD is consistent with the linear increase of MS with B. That 

is, the increasing electron-phonon coupling is linearly increasing the entropy of the fluid by 

dragging more phonons.  

As explained above, th is reduced in comparison to mr at intermediate T due to the presence 

of scattering processes which conserve the total momentum of the electron-phonon fluid but 

relax thermal currents. As such, to a first approximation the scattering length associated with 

these momentum-conserving processes (mc) can be obtained by using 1/th = 1/mc + 1/mr. 

This leads to mc < mr at around TPD with a minimum of mc ≈ 0.6 mr.  These results are 



consistent with the emergence of an electron-phonon fluid, where momentum-conserving 

scattering provides the smallest length scale in the system.  

The shear viscosity in such systems is expected to be3 = vF mc/5, leading to an estimate of  

≈ 8 × 10-2 m2s-1 at the mimimum th/mr -ratio. This value is of the same order as the kinematic 

shear viscosities measured in graphene,10,32 PdCoO2
13 and WP2.

14 However, we emphasise that 

mc is only 40 % smaller than mr, which means the system is roughly between a purely 

hydrodynamic (mc  << mr ) and purely Ohmic (mc  >> mr ) regime, which becomes important 

when analysing results in restricted geometries, such as channel flow-resistance33,34 and non-

local- probe experiments.  The observation of such classic signatures of viscous electron flow 

in this material may also be complicated by the presence of potential long-lived charge 

imbalance modes due to the presence of both electron and hole pockets.20,35 

Our work provides a foundation for the study of electron-phonon fluid hydrodynamical 

transport in PtSn4 and other materials. An interesting candidate is PdCoO2, a material know to 

exhibit viscous electrical flow resistance in narrow channels,13 where thermoelectric 

signatures36 similar to those observed for PtSn4 were independently measured. In general, every 

material that shows phonon-drag is a potential host of an electron-phonon fluid if momentum-

relaxation can be sufficiently suppressed. Much of our analysis – in particular of the field 

dependence of the electrical resistivity, thermal conductivity and the Hall resistivity– relies on 

the existence of well-defined quasiparticles and a corresponding small . Thus, the electron-

phonon fluid in PtSn4 is distinct from the recently observed incoherent, highly resistive, 

electron-phonon soup in underdoped YBa2Cu3O6+x.
37 Nonetheless a hydrodynamic analysis 

may pertain for such case also.20  

In conclusion, we observed a phonon-drag-peak in the T-dependent thermopower Sthat arises 

concurrently with the breakdown of the WF law near 14 K in the Dirac semimetal PtSn4, despite 

the full phonon contribution to the thermal conductivity being included. These coincident 



observations give evidence for the existence of an electron-phonon fluid in PtSn4. Magneto-

transport experiments allow the momentum-relaxing and thermal mean free paths to be 

extracted, corroborating the hydrodynamic picture and leading to an estimate of the viscosity 

of the electron-phonon fluid.  
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FIGURES 

 

 
 

Figure 1 | Electrical transport in a PtSn4 single crystal. a, Crystal structure of PtSn4 at 100 

K. The chemical bonds are drawn to denote the 8-fold Sn-coordinated Pt atoms. b, The electrical 

resistivity as a function of temperature T at various magnetic fields B. c. Magentoresistivity  

|MR| = |((B) - (0 T)) / (0 T)| and d, Hall resistivity H(B)at various T. e, Hall conductivity 

H = H / (H
2 + 2) at various temperatures. The symbols denote the measurement data. The 

dotted lines are fits according to a two-carrier model. f, Carrier concentration n, p and mobility 

e, h as a function of T for the electrons and holes, respectively. The lines are a guide to the 

eyes. The error bars represent the error from the fits. 

 

 

 

 



 

 

 

Figure 2 | Thermoelectric and thermal transport in a PtSn4 single crystal. a, The 

thermopower S as a function of T at various B. The error bars represent the measurement error. 

At around TPD ≈ 14 K (marked by the dotted line) a phonon-drag peak evolves in S. Lines are 

guides to the eyes. The light red area marks the region, where the Wiedemann-Franz law is 

violated. b, Absolute magneto-thermopower |MS| = |(S(B) - S(0 T)) / S(0 T)| at various T. The 

data is extracted from (a). At high fields (B > 3 T), |M S| can be well represented by linear fits 

(dotted lines), as expected by phonon-drag theory. c, The total thermal conductivity as a 

function of T at various magnetic fields B.  d, The Lorenz ratio at zero magnetic field 𝐿/L0 = 

/TL0 as a function of T, where L0 = 2.44×10-8 WK-2 is the Sommerfeld value. The error 

bars represent the measurement error. At around TPD, 𝐿/L0 violates the Wiedemann-Franz 

(indicated by light red region). e, The electrical resistivity obeys Kohler’s rule MR = F[B/(0 

T)] ≈ B2, indicating a single relaxation time at all points of the Fermi surface. 



 

 

Figure 3 | Relaxation length of the electrical mr and thermal current th. a,  as a function 

of B for various T. The data (dots) is extracted from Fig. 2 (b). The dotted lines represent fits of 

 = 0 + B0/(1+(cth/vF)2) to the data, where 0 includes all phonons that are not coupled to 

the electron system, B0 is the zero-field value of the B-dependent contribution of electrons and 

phonons and th is the relaxation length of the thermal currents. c = eB/m* is the cyclotron 

frequency with the elementary charge e, the effective mass m* and the Fermi velocity vF. b, 

Relaxation length of the electrical mr and thermal current th as a function of T. mr,e/h is 

calculated using the mobility e/h = evF,e/hmr,e/h / me/h
*. th is extracted from the fits of the data 

plotted in (a). The error bars are the errors obtained from the fits. planck = vF ℏ/(𝑘𝐵𝑇) denotes 

the shortest possible relaxation length, sometimes called the “Planckian” limit of dissipation. c, 

Magneto-Lorenz number |ML| = |(L(B) - L(0 T)) / L(0 T)| as a function of T for various B. 

 

  



METHODS 

PtSn4 single-crystal growth 

Single Crystals of PtSn4 were grown out of a Sn-rich binary melt, as described in the references 

34 and 35. High-purity starting elements Pt (shot, 99.99%) and Sn (shot, 99.999%) were mixed 

together with an initial stoichiometry of Pt4Sn96, and afterward the mixture was placed in an 

alumina crucible and sealed in a quartz tube under a partial Ar pressure. The quartz tube was 

heated up to 600 °C over a period of 5h, and then kept for 20 h. After that, it was slowly cooled 

down to 350 °C over 60 h.35 The excess Sn flux was removed by using a centrifuge at 400 °C. 

After the centrifugation process, the remaining flux on the surface was removed by 

mechanically polishing.  

 

Chemical and structural characterization of the PtSn4 single-crystals 

Powder X-ray diffraction measurement of PtSn4 was performed with Cu Kα radiation at room 

temperature to identify the phase purity and crystal structure, using an image-plate Huber G670 

Guinier camera, diffraction range from 10° ≤ 2θ ≤ 100° in step of 0.005°. Single crystal X-ray 

diffraction measurements were performed using a Bruker D8 Venture diffractometer equipped 

with a Triumph monochromator and a Photon100 area detector, operating with Mo Kα 

radiation. The crystals were mounted on a 0.2 mm nylon loop using cryo-oil. The crystals were 

cooled with a nitrogen flow from an Oxford Cryosystems Cryostream Plus. Data processing 

was done using the Bruker Apex III software, the structures were solved using direct methods 

and the SHELX97 software38 was used for structure refinement. A scanning electron 

microscope (SEM) with an attached energy-dispersive X-ray spectrometer (EDX) was used for 

elemental analysis.  

The single crystal X-ray diffraction measurements of PtSn4 shows that its crystal structure is 

described by the centrosymmetric space group Ccca, in agreement with previous reports.39 Fig. 

1 (a) shows the layered crystal structure of PtSn4, consisting of PtSn4 slabs that are constructed 



from 8-fold Sn-coordinated Pt atoms. The layered structure can be observed from the SEM 

results as shown Extended Data Fig. 1. Note that the layered nature of PtSn4 allows for a slight 

disorder in the ac-plane, i.e. a small misalignment between consecutive PtSn4 layers. Therefore, 

the overall quality of the single-crystal data is slightly compromised by the presence of 

aspherical spots. We have tested for twinning, but no twin model fitted our solution. Extended 

Data Table 1 shows the crystallographic and refinement parameters of PtSn4. The highest 

residual peaks are relatively large (around 4 electrons at a distance of less than 1 Å from Pt), in 

close agreement with previous reports.7 Extended Data Table 2 further shows the fractional 

atomic coordinates of the asymmetric unit and equivalent thermal displacement parameters. 

Power X-ray diffraction pattern of PtSn4 is shown Extended Data Fig. 2. The diffraction peaks 

can be well indexed to the orthorhombic structure, giving a good agreement with single crystal 

x-ray diffraction measurement. No obvious other phases are observed. The actual composition 

of PtSn4 single crystal is determined by energy dispersive x-ray (EDX) spectroscopy at 7 

randomly selected positions, which is in agreement with the nominal one, considering the 

instrument error, as shown in Extended Data Table S3.  

High resolution transmission electron microscopy (HRTEM) (Extended Data Fig. 3) on a 6.7 

m × 4.4m large lamella showing the crystallinity of the PtSn4 samples (Extended Data Fig. 

4). However, dislocation lines with an area density of 0.07 m-2 were found. 

 

Thermoelectric transport measurements 

Temperature dependent thermal conductivity and thermopower under magnetic field were 

jointly measured by the one-heat and two-thermometer configuration using the thermal 

transport option (TTO) of the PPMS (Quantum Design) in which the sample was placed in an 

orientation where the magnetic field was perpendicular to the heat flow. The thermometers were 

calibrated under magnetic field by using the PPMS magneto-resistance calibration wizard 

before doing the thermal transport measurement. To make sure a uniform heat flow through the 



bar-shaped sample, two gold-plated copper leads were attached to the entire ends of the sample 

by using silver epoxy and then connected to the heater and sink, respectively. Another two 

copper leads were surrounded to the sample with silver epoxy and connected to the 

thermometers for detecting ΔV and ΔT. The applied temperature gradients were around 1% - 

3% of the base temperature. We now address the potential influence of thermal contact 

resistances. and demonstrated the necessity of a careful contact preparation. After careful 

contact preparation, as described above, we investigated samples with different length from 4.5 

mm to 7 mm, keeping the sample cross-section and the contact area similar. We obtained the 

same results at all samples for any magnetic field or temperature investigated and therefore did 

not observe any indication of diminished thermal conductivity due to contact.  

Both longitudinal and Hall resistivities were measured by a standard four-probe method using 

the AC transport option in a PPMS system with an AC current of 16 mA applied. Point contacts 

were made by spot-welding Platinum wires for Hall voltage probes. While for the current and 

longitudinal voltage probes, linear contacts were made by using silver paint and 25 μm Platinum 

wires. To correct for contact misalignment, the measured Hall resistivity was field anti-

symmetrized. For all the transport measurements, the magnetic field was applied along b-axis, 

which is perpendicular to the a-c plane. 

 

Extraction of the transport parameters 

Employing fits of a two-channel model to the Hall conductivity H = H / (H
2 + 2) (Fig. 2 (e)), 

we obtain the temperature (T)-dependent average carrier densities n for electron n and hole 

pockets p as well as the mobility for the electron e and hole pockets h. For the fits we use the 

common expressions20  

𝜎H(𝐵) = [
𝑝𝜇h

2

1+𝜇h
2𝐵2 −

𝑛𝜇e
2

1+𝜇e
2𝐵2] 𝑒𝐵    (1) 

 



The results are shown in Fig. 3 (c) and (d). 

To obtain the momentum-relaxing mean free path mr,e/h of the electron and holes, we use the 

mobility e/h = evF,e/hmr,e/h / me/h
*, with the Fermi velocity vF,e/h and the effective mass me/h

*. 

Despite the complex Fermiology, the effective masses of the electron and hole pockets in PtSn4 

are very similar as shown in Table 1 of reference 19. We therefore calculate the harmonic mean 

of all bands i, giving the average effective mass 𝑚∗ = 𝑖(∑ 1/𝑚𝑖
∗)𝑖

−1
= (0.2 ± 0.1) m0, where m0 

is the free electron mass. Using the Shubnikov-de Haas frequencies fi from the same table in 

reference 19, we determine the size of the Fermi surface cross sections from the Onsager 

relation AFi = 22fi /0 with 0 as the magnetic flux quantum and apply the standard circular 

approximation to obtain the momentum-vectors kFi = (AFi/)1/2, from which the corresponding 

Fermi velocities can be calculated vFi = ℏkFi /mi, resulting in the average Fermi velocity vF = 

(∑vFi)/i = (4 ± 1)×105 m/s. ℏ is the reduced Planck constant. 

 

 
38.  Sheldrick, G. M. SHELX97, Program for Crystal Structure Refinement; 
University of Göttingen: Göttingen, 1997. 
 
39. Künnen,B.; Niepmann, D. ; Jeitschko, W. Journal of Alloys and Compounds 1, 
309 (2000). 
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EXTENDED DATA 

 

 

 

Extended Data Figure 1 | a. SEM back scattering and b. secondary electron images for the 

PtSn4 single crystal. 

 

Extended Data Figure 2 | Power X-ray diffraction pattern of PtSn4. 

 

 



 

 

Extended Data Figure 3 | Preparation of samples for transmission electron microscopy 

(TEM). a. Scanning-transmission electron microscopy image showing the sample prepared by 

Focussed Ion Beam technique (FIB). The dimensions of the thin slice are inserted. b. 

Corresponding TEM micrograph of the thin area. “Diffraction contrast technique” was applied, 

which allows the identification of crystal defects. c. The magnified area shows to parallel dark 

lines, which were identified as dislocation. 

 

 

Extended Data Figure 4 | Structure analysis by TEM. a. Electron diffraction pattern received 

from the thin sample area. It correlates to a [010] crystal orientation. The corresponding 

reflections are indicated. b. TEM overview image. c. High-resolution TEM image showing the 

crystal lattice structure by {002} lattice planes with a distance d of 0.32 nanometer.  



 

 

Extended Data Figure 5 | Fermi surface of PtSn4. The Fermi surface of PtSn4 is calculated 

using Density Functional Theory. a, Side view of the whole Fermi surface. b, Top view of the 

whole Fermi surface. c, Individual hole (upper row) and electron (lower row) pockets. 

 

 



 

PtSn4  

Crystal size 0.12 × 0.06 × 0.02 mm3 

Wavelength 0.71073 Å (Mo Kα radiation) 

Refinement method full matrix least squares on F2, anisotropic 

displacement parameters 

Absorption correction multi-scan 

crystal system orthorhombic min / max transmission 

factor 

0.1225 / 0.3706 

space group Ccca (no. 68) θ range (degrees) 3.60 – 36.97 

symmetry centrosymmetric index ranges -8 < h < 8 

-14 < k < 14 

-8 < l < 8 

Z 4 data / restraints / 

parameters 

287 / 0 / 13 

D (calculated) 

(g/cm3) 

9.652 GooF on F2 1.197 

F(000) 556 no. total reflections 4675 

a (Å) 6.4045(7) no. unique reflections  287 

b (Å) 11.3087(15) no. obs Fo > 4σ(Fo) 240 

c (Å) 6.3646(7) R1 [Fo > 4σ(Fo)] 0.0289 

α (°) 90.0 R1 [all data] 0.0367 

β (°) 90.0 wR2 [Fo > 4σ(Fo)] 0.0634 

γ (°) 90.0 wR2 [all data] 0.0666 

volume (Å3) 460.97(9) largest peak and hole 

(eÅ-3) 

4.13 and -1.48 

absorption 

coefficient (mm-1) 

51.405   

 

Extended Data Table 1 | Crystallographic and refinement parameters of PtSn4, measured at 

100 K. 

 

     

Atom x y z Ueq (Å
2) 

Pt 0.00000 0.25000 0.25000 0.0068(2) 

Sn 0.33436(13) 0.12338(7) 0.08470(13) 0.0073(2) 

 

Extended Data Table 2 | Fractional atomic coordinates of the asymmetric unit and equivalent 

thermal displacement parameters. 

 



 

 Positio

n 1 

Positio

n 2 

Positio

n 3 

Positio

n 4 

Positio

n 5 

Positio

n 6 

Positio

n 7 

Averag

e  

Pt 22.11% 21.58% 21.89% 21.00% 22.18% 20.87% 21.16% 21.54% 

Sn4 77.89% 78.42% 78.11% 79.00% 77.82% 79.13% 78.84% 78.46% 

 

Extended Data Table 3 | Atomic percentage of PtSn4 single crystal at 7 randomly selected 

positions detected by EDX. 
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