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We engineer a microscopic model of two-dimensional conduction electrons locally and randomly

scattering o↵ impurity sites which are described by Sachdev-Ye-Kitaev (SYK) models. For a par-

ticular choice of the scattering interaction, this model realizes a controlled description of a di↵usive

marginal-Fermi liquid (MFL) without momentum conservation, which has a linear-in-T resistivity

and a T lnT specific heat as T ! 0. By tuning the strength of the scattering interaction relative

to the bandwidth of the conduction electrons, we can additionally obtain a finite-T crossover to a

fully incoherent regime that also has a linear-in-T resistivity. We describe the magnetotransport

properties of this model. We then consider a macroscopically disordered sample with domains of

such MFLs with varying electron and impurity densities. Using an e↵ective-medium approximation,

we obtain a macroscopic electrical resistance that scales linearly in the magnetic field B applied per-

pendicular to the plane of the sample, at large B. The resistance also scales linearly in T at small

B, and as Tf(B/T ) at intermediate B. We consider implications for recent experiments reporting

linear transverse magnetoresistance in the strange metal phases of the pnictides and cuprates.

I. INTRODUCTION

Essentially all correlated electron high temperature superconductors display an anomalous metallic state at

temperatures above the superconducting critical temperature at optimal doping [1–3]. This metallic state has

a ‘strange’ linearly-increasing dependence of the resistivity, ⇢, on temperature, T ; it can also exhibit bad metal

behavior with a resistivity much larger than the quantum unit ⇢ � h/e2 (in two spatial dimensions) [4]. More

recently, strange metals have also been demonstrated to have a remarkable linear-in-B magnetoresistance, with the

crossover between the linear-in-T and linear-in-B behavior occurring at µBB ⇠ kBT [5, 6].

This paper will present a model of a strange metal which exhibits the above linear-in-T and linear-in-B behavior.

The model builds on a lattice array of ‘quantum dots’, each of which is described by a Sachdev-Ye-Kitaev (SYK)

model of fermions with random all-to-all interactions [7, 8]. A single SYK site is a 0+1 dimensional non-Fermi

liquid in which the imaginary-time (⌧) fermion Green’s function has the low T ‘conformal’ form [7, 9–11]

G(⌧) ⇠
✓

T

sin(⇡T ⌧)

◆
1/2

e�2⇡ET⌧ , 0 < ⌧ < 1/T , (1.1)

where E is a parameter controlling the particle-hole asymmetry. As was recognized early on [7], such a Green’s

function implies a ‘marginal’ [12] susceptibility, �, with a real part which diverges logarithmically with vanishing

frequency (!) or T . Specifically, in the all-to-all limit of the SYK model, vertex corrections are sub-dominant, and

�(⌧) = �G(⌧)G(�⌧) leads to the spectral density

Im�(!) ⇠ tanh
⇣ !
2T

⌘
, (1.2)
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FIG. 1: (a) A cartoon of our microscopic model. Conduction electrons (green) hop around on a lattice (black). At each lattice

site, they interact locally and randomly with SYK impurities (blue) through an interaction (orange) that independently

conserves the numbers of conduction and impurity electrons. (b) Finite-temperature regimes of the model. When the

conduction electron bandwidth is large enough, it realizes a disordered marginal-Fermi liquid (MFL) for the conduction

electrons for all temperatures T ⌧ J (Sec. III A). For a finite bandwidth, there can be a finite-temperature crossover to an

‘incoherent metal’ (IM), in which all notion of electron momentum is lost, if the coupling g is large enough (Sec. III B). Note

that we always have J � T and J & g.

whose Hilbert transform leads to the noted logarithmic divergence. The form (1.2) is consistent with recent electron

scattering observations [13]. A linear-in-T resistivity now follows upon considering itinerant fermions scattering o↵

such a local susceptibility, and the itinerant fermions realize a marginal Fermi liquid (MFL) with a ! ln! self energy

[7, 12, 14, 15].

A specific model for a bulk strange metal was provided by Parcollet and Georges [9]. They considered a doped

Mott insulator described by a random t-J model at hole density �, where t is the root-mean-square (r.m.s.) electron

hopping, and J is the r.m.s. exchange interaction. At low doping with �t ⌧ J , they found strange metal behavior

in the intermediate T regime Ec < T < J , where the coherence energy Ec = (�t)2/J . This strange metal is more

properly identified as an ‘incoherent metal’ (IM) (rather than a MFL), because the electron Green’s function has

the local form in Eq. (1.1). Bad metal behavior was found with a resistivity ⇢ ⇠ (h/e2)(T/Ec).

Another model of an IM appeared in the recent work of Song et al. [16]. They considered a lattice of SYK

sites, with r.m.s. on-site interaction U , and r.m.s. inter-site hopping t. As in Ref. 9, they found an IM in the

intermediate regime Ec < T < U , with a local electron Green’s function as in Eq. (1.1), and a bad metal resistivity

⇢ ⇠ (h/e2)(T/Ec). Their coherence scale was Ec = t2/U . (This lattice SYK model should be contrasted from

earlier studies [17, 18], which only had fermion interaction terms between neighboring SYK sites: the latter models

realize disordered metallic states without quasiparticle excitations as T ! 0, but have a T -independent resistivity.)

In this paper, we consider a lattice of ‘impurity’ SYK sites coupled to a separate band of itinerant electrons.

Our model is in the spirit of e↵ective Kondo lattice models which have been proposed as models of the physics of

the disordered, single-band Hubbard model [19–21]. Other two band models of itinerant electrons coupled to SYK

excitations have been considered in Refs. 22, 23. Our model exhibits MFL behavior as T ! 0, with a linear-in-T

resistivity, and a T lnT specific heat. For an appropriate range of parameters, there is a crossover at higher T to an

IM regime, also with a linear-in-T resistivity. The itinerant electrons have a non-random hopping t, the SYK sites

have a random interaction with r.m.s. strength J , and these two sub-systems interact with a random Kondo-like

exchange of r.m.s. strength g: see Fig. 1a for a schematic illustration. Fig. 1b illustrates the regimes of MFL and
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IM behavior in our model.

The magnetotransport properties of this model will be a significant focus of our analysis. In the MFL regime,

we find that the longitudinal and Hall conductivities can be written as scaling functions of B/T , as shown in

Eq. (4.12); in contrast, the B dependence is much less singular in the IM regime. We then consider a macroscopically

disordered sample with domains of MFLs with varying electron and impurity densities; employing earlier work

on classical electrical transport in inhomogeneous ohmic conductors [24–29], we obtain the observed linear-in-B

magnetoresistance with a crossover scale at B ⇠ T .

This paper is organized as follows: In Sec. II, we introduce our basic microscopic model of a disordered MFL,

and determine its single-electron properties and finite-temperature crossovers in Sec. III. In Sec. IV, we solve for

transport and magnetotransport properties of this basic model exactly in various analytically-tractable regimes.

In Sec. V, we introduce the e↵ective-medium approximation and apply it to a macroscopically disordered sample

containing domains of the basic model, obtaining analytical results for the global magnetotransport properties for

certain simplified considerations of macroscopic disorder. We summarize our results and place them in the context

of recent experiments in Sec. VI.

II. MICROSCOPIC MODEL

We consider M flavors of conduction electrons, c, hopping on a lattice that are coupled locally and randomly to

impurities on each lattice site (Fig. 1a). The impurities contain N flavors of valence electrons, f , which interact

among themselves in such a way that they realize SYK models. The hamiltonian for our system is given by

H = �t

MX
hrr0i; i=1

(c†ricr0i + h.c.)� µc

MX
r; i=1

c†ricri � µ

NX
r; i=1

f†
rifri

+
1

NM1/2

NX
r; i,j=1

MX
k,l=1

grijklf
†
rifrjc

†
rkcrl +

1

N3/2

NX
r; i,j,k,l=1

Jr
ijklf

†
rif

†
rjfrkfrl. (2.1)

We will take the limits of M = 1 and N = 1, but we will be interested in values of M/N that are at most O(1).

We choose Jr
ijkl and grijkl as independent complex Gaussian random variables, with ⌧ Jr

ijklJ
r0

lkij �= (J2/8)�rr0

and ⌧ grijklg
r0

jilk �= g2�rr0 and all other ⌧ .. �’s being zero, where ⌧ .. � denotes disorder-averaging. The

disorder-averaged action then is

S =

Z �

0

d⌧

24 MX
r; i=1

c†ri(⌧)(@⌧ � µc)cri(⌧)� t

MX
hrr0i; i=1

(c†ri(⌧)cr0i(⌧) + h.c.) +
NX

r; i=1

f†
ri(⌧)(@⌧ � µ)fri(⌧

0)

35
�M

g2

2

X
r

Z �

0

d⌧d⌧ 0Gc
r(⌧ � ⌧ 0)Gc

r(⌧
0 � ⌧)Gr(⌧ � ⌧ 0)Gr(⌧

0 � ⌧)

�N
J2

4

X
r

Z �

0

d⌧d⌧ 0G2

r(⌧ � ⌧ 0)G2

r(⌧
0 � ⌧)�N

X
r

Z �

0

d⌧d⌧ 0⌃r(⌧ � ⌧ 0)

 
Gr(⌧

0 � ⌧) +
1

N

NX
i=1

f†
ri(⌧)fri(⌧

0)

!

�M
X
r

Z �

0

d⌧d⌧ 0⌃c
r(⌧ � ⌧ 0)

 
Gc

r(⌧
0 � ⌧) +

1

M

MX
i=1

c†ri(⌧)cri(⌧
0)

!
, (2.2)

where we have followed the usual strategy for SYK models [11, 18] and introduced the auxiliary fields G,⌃, Gc,⌃c

corresponding to Green’s functions and self-energies of the f and c fermions respectively at each lattice site. In the

M,N = 1 limit, the integrals over the ⌃,⌃c fields enforce the definitions of G,Gc at each lattice site r. The large
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M , N saddle-point equations are obtained by varying the action with respect to these G and ⌃ fields

⌃r(⌧ � ⌧ 0) = ⌃(⌧ � ⌧ 0) = �J2G2

r(⌧ � ⌧ 0)Gr(⌧
0 � ⌧)� M

N
g2Gr(⌧ � ⌧ 0)Gc

r(⌧ � ⌧ 0)Gc
r(⌧

0 � ⌧)

= �J2G2(⌧ � ⌧ 0)G(⌧ 0 � ⌧)� M

N
g2G(⌧ � ⌧ 0)Gc(⌧ � ⌧ 0)Gc(⌧ 0 � ⌧),

G(i!n) =
1

i!n + µ� ⌃(i!n)
,

⌃c
r(⌧ � ⌧ 0) = ⌃c(⌧ � ⌧ 0) = �g2Gc

r(⌧ � ⌧ 0)Gr(⌧ � ⌧ 0)Gr(⌧
0 � ⌧) = �g2Gc(⌧ � ⌧ 0)G(⌧ � ⌧ 0)G(⌧ 0 � ⌧),

Gc(i!n) =
X
k

1

i!n � ✏k + µc � ⌃c(i!n)
. (2.3)

We define chemical potentials such that half-filling occurs when µ = µc = 0. The impurities are not capable of

exchanging electrons with the Fermi sea, so there is no reason a priori to have µ = µc, or even for impurities at

di↵erent sites to have the same µ. However, for convenience we will keep the µ of all the impurities the same. A

real system operates at fixed densities, and µ and µc will appropriately renormalize as the mutual coupling g is

varied, in order to keep the densities of c and f individually fixed. However, as we shall find, the half-filled case

always corresponds to µ = µc = 0 regardless of g. We will always have J � T in this work, and also J & g, so

whenever an ultraviolet (UV) energy cuto↵ is required, we use J . A sketch of the phases realized by our model as

a function of temperature is shown in Fig. 1b.

III. FATE OF THE CONDUCTION ELECTRONS

A. The case of infinite bandwidth

We first consider the case of infinite bandwidth, or equivalently t � g, J � T . It doesn’t matter then precisely

where µc is as long as its magnitude is not infinite, as the conduction electrons float on an e↵ectively infinitely deep

Fermi sea. Then, we can use the standard trick for evaluating integrals about a Fermi surface, and we have

Gc(i!n) =
X
k

1

i!n � ✏k + µc � ⌃c(i!n)
! ⌫(0)

Z 1

�1

d"

2⇡

1

i!n � "� ⌃c(i!n)
, (3.1)

where ⌫(0) is the density of states at the Fermi energy. Within this approximation, we will also have

sgn(Im[⌃c(i!n)]) = �sgn(!n).

We take the lattice constant a to be 1. This makes k dimensionless by redefining ka to be k. The energy dimension

of ✏k then comes from the inverse band mass. The density of states ⌫(0) then has the dimension of 1/(energy) (on

a lattice ⌫(0) ⇠ 1/t ⇠ 1/⇤, where ⇤ is the bandwidth).

Within this approximation, we will also have sgn(Im[⌃c(i!n)]) = �sgn(!n), so

Gc(i!n) = � i

2
⌫(0)sgn(!n), Gc(⌧) = � ⌫(0)T

2 sin(⇡T ⌧)
, � �  ⌧  �, (3.2)

with other intervals obtained by applying the Kubo-Martin-Schwinger (KMS) condition Gc(⌧ + �) = �Gc(⌧). At

T = 0, we have

Gc(⌧, T = 0) = �⌫(0)
2⇡⌧

. (3.3)

We consider M/N = 0 to begin with. Then, the f electrons are not a↵ected by the c electrons, and their Green’s

functions are exactly those of the SYK model, which, in the low-energy limit, are given by [11]

G(⌧) = �⇡
1/4 cosh1/4(2⇡E)
J1/2

p
1 + e�4⇡E

✓
T

sin(⇡T ⌧)

◆
1/2

e�2⇡ET⌧ , 0  ⌧ < � (3.4)
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where E is a function of µ with E / �µ/J for small µ/J . Other intervals are again obtained by the KMS

condition G(⌧ + �) = �G(⌧). The zero-temperature limit of this, and similar expressions appearing later, can be

straightforwardly taken [11]

G(⌧ > 0, T = 0) = � cosh1/4(2⇡E)
⇡1/4J1/2

p
1 + e�4⇡E

1

⌧1/2
, G(⌧ < 0, T = 0) =

cosh1/4(2⇡E)
⇡1/4J1/2

p
1 + e4⇡E

1

|⌧ |1/2 (3.5)

We have

⌃c(⌧) = �g2Gc(⌧)G(⌧)G(�⌧) = � ⇡1/2g2⌫(0)T 2

4J cosh1/2(2⇡E) sin2(⇡T ⌧) , 0  ⌧ < �. (3.6)

Fourier transforming with a cuto↵ of ⌧ at J�1 ⌧ T�1 and � � J�1 gives

⌃c(i!n) =
ig2⌫(0)T

2J cosh1/2(2⇡E)⇡3/2

✓
!n

T
ln

✓
2⇡Te�E�1

J

◆
+
!n

T
 
⇣ !n

2⇡T

⌘
+ ⇡

◆
, (3.7)

where  is the digamma function and �E is the Euler-Mascheroni constant. This choice of cuto↵ is justified by the

fact that the short-time divergences are generated by the singularities in the conformal form of the SYK Green’s

functions. As foreseen, this satisfies sgn(Im[⌃c(i!n)]) = �sgn(!n) on the fermionic Matsubara frequencies. For

|!n| � T

⌃c(i!n) ! ig2⌫(0)

2J cosh1/2(2⇡E)⇡3/2
!n ln

✓ |!n|e�E�1

J

◆
. (3.8)

Hence we have manufactured a non-translationally-invariant MFL out of the conduction electrons. Since the large

N and M limits are taken at the outset, this is stable even as T ! 0. For finite N and M , the coupling g is

irrelevant in the infrared (IR) [23], and the model reduces to a theory of non-interacting electrons as T ! 0, with

the MFL existing only above a temperature scale whose magnitude is exponentially suppressed in N .

Upon analytically continuing i!n ! ! + i0+, we get the inverse lifetime for the conduction electrons defined by

� ⌘ �2Im[⌃c
R(0)] ⌘ �Im[⌃c(i!n ! 0 + i0+)] =

g2⌫(0)T

J cosh1/2(2⇡E)⇡1/2
. (3.9)

Since the coupling of the conduction electrons to the SYK impurities is spatially disordered, this rate also represents

the transport scattering rate up to a constant numerical factor. The scattering of c electrons o↵ the impurities

requires the f electrons inside the impurities to move between orbitals. Hence � vanishes when the impurities are

flooded or drained by sending E ! ⌥1 respectively, say, by doping them.

If we do not have M/N = 0, the SYK Green’s function will be a↵ected as there is a back-reaction self-energy to

the SYK impurities. To see what this does when we perturbatively turn on M/N , we compute it with the M/N = 0

Green’s functions with a cuto↵ of ⌧ at J�1 and � � J�1

⌃̃(⌧) = �M

N
g2G(⌧)Gc(⌧)Gc(�⌧) ⇡ �M⇡1/4 cosh1/4(2⇡E)g2⌫2(0)T 5/2e�2⇡ET⌧

4NJ1/2
p
1 + e�4⇡E sin5/2(⇡T ⌧)

. (3.10)

If E = 0, then ⌃̃(i!n) / i(M/N)g2⌫2(0)!n as T,!n ! 0, which is sub-leading to ⌃(i!n)|M/N=0

⇠ (J!n)1/2, so the

SYK character of the impurities survives in the IR.

If E 6= 0 but is small, then for T ! 0, ⌃̃(i!n ! 0) ⇠ �(M/N)g2⌫2(0)JE / (M/N)g2⌫2(0)µ+O(i!n). In contrast

⌃(i!n ! 0)|M/N=0

⇠ µ + O(!1/2
n ). Therefore the frequency-dependent part of ⌃̃ is still subleading. Hence, in

the IR we may still assume that all that happens to the SYK impurities is that their chemical potential µ gets

renormalized. By solving Re[⌃(i!n ! 0, T = 0)] = µ, we obtain the corrected E $ µ relation. At small µ/J , this is

E ⇡ � µ/J

⇡1/4
p
2

✓
1 +

g2⌫2(0)M

6⇡3/2N

◆ . (3.11)
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The total particle number on each impurity, Nr =
P

i f
†
irfir, commutes with H. Since the SYK particle density

Q = N/N is a universal function of E , independent of µ and J , (3.11) just implies a renormalization of the

nonuniversal UV parts of the SYK Green’s function and the impurity chemical potential, while the particle density

remains fixed. Similarly, the vanishing of the zero-frequency real part of (3.7) regardless of E implies that there is

no renormalization of either the density or chemical potential of the conduction electrons in this infinite-bandwidth

limit, since their number is independently conserved as well. For a finite bandwidth, the chemical potential of the

conduction electrons renormalizes in such a way that their density remains fixed.

In Appendix A, we consider the e↵ects of adding a ‘pair-hopping’ term to (2.1),

H ! H +
1

NM1/2

NX
r; i,j=1

MX
k,l=1

h
⌘rijklf

†
rif

†
rjcrkcrl + h.c.

i
, (3.12)

with ⌧ |⌘rijkl|2 �= ⌘2, and J & ⌘. This term has identical power-counting to the f†fc†c term, but can trade

c electrons for f electrons and vice-versa. Since the numbers of c and f electrons are no longer independently

conserved in this case, there is only one chemical potential, and µc = µ. We find that this term also generates an

MFL as long as the bandwidth of the c electrons is large.

As is well known, the marginal-Fermi liquid self-energy we obtained (3.7, 3.8) also leads to the leading low-

temperature contribution to the specific heat scaling as CMFL

V ⇠ Mg2(⌫(0))2(T/J) ln(J/T ) [30]. Note that the

entropy has a non-vanishing T ! 0 limit from the contribution of the SYK impurities [31], but this does not

contribute to the specific heat.

B. The case of a finite bandwidth

If the bandwidth (and hence Fermi energy) of the conduction electrons is sizeable compared to the couplings,

then the local Green’s function Gc is no longer independent of the details of the self energy ⌃c. We consider two

spatial dimensions, with the isotropic dispersion "k = k2/(2m)�⇤/2, and a bandwidth "max

k � "k=0

= ⇤. Since k is

dimensionless, the band mass m has dimensions of 1/(energy). The density of states is then just ⌫(") = ⌫(0) = m,

at all energies ", and we implicitly make use of this fact while simplifying and rewriting certain expressions. On a

lattice, m ⇠ ⌫(0) ⇠ 1/t ⇠ 1/⇤.

The momentum-integrated conduction electron Green’s function is

Gc(i!n) =
⌫(0)

2⇡
[ln(⇤+ 2µc + 2i!n � 2⌃c(i!n))� ln(2µc � ⇤+ 2i!n � 2⌃c(i!n))] . (3.13)

We still expect sgn(Im[⌃c(i!n)]) = �sgn(!n). The chemical potential µc must now take an appropriate value to

reproduce the correct density of conduction electrons. The conduction band filling is given by

Qc =
2⇡Gc(⌧ = 0�)

⌫(0)⇤
, (3.14)

for the exact solution to Gc, which can be found by the MATLAB code ggc.m [32] (The low-energy ‘conformal-limit’

solutions described below are not valid at the short times 0�, and do not display this property).

In general, the Dyson equations can now only be solved numerically, which the MATLAB code ggc.m [32] does, albeit

by holding the chemical potentials µ and µc, rather than densities, fixed. In an extreme limit where |µc �⌃c(i!n)|
far exceeds the bandwidth for all !n, which can happen only at a finite temperature, we have a simplification

Gc(i!n) =
⇤⌫(0)

2⇡(µc � ⌃c(i!n))
. (3.15)
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This then leads to an SYK solution in the low-energy conformal limit for both G and Gc, realizing a fully incoherent

metal. We use the trial solutions

Gc(⌧) = � Ccp
1 + e�4⇡Ec

✓
T

sin(⇡T ⌧)

◆
1/2

e�2⇡EcT⌧ , G(⌧) = � Cp
1 + e�4⇡E

✓
T

sin(⇡T ⌧)

◆
1/2

e�2⇡ET⌧ , 0  ⌧ < �.

(3.16)

Ec is universally related to the conduction band filling, with Ec = 0 at half filling, and Ec ! ⌥1 when the band is

full or empty respectively. When M/N = 0, there is no back-reaction to the impurities, and G is given by (3.4).

We use the conditions Re[⌃c(i!n ! 0, T = 0)] = µc and Gc(i!n ! 0, T = 0) = 1/(µc � ⌃c(i!n ! 0, T = 0)) to

determine Cc, and also µc in terms of the fixed Ec. Cutting o↵ ⌧ integrals in the Fourier transforms at a distance

J�1 from singularities, we have

Cc =
cosh1/4(2⇡E)
21/2⇡1/4J

1/2
IM

, J
IM

=
g2

J⇤⌫(0)
and Ec ⇡ �⇡

1/4 cosh1/4(2⇡E)µc

g⇤1/2⌫1/2(0)
(At small µc/g), (3.17)

with no feedback on the SYK impurities. For (3.15) to derive from (3.13), this requires |µc �⌃c(i!n ! 0)| � ⇤ or

T � T
inc

⌘ ⇤J

⌫(0)g2
. (3.18)

Furthermore, for (3.4) and (3.16) to hold, we also need J � T
inc

and J
IM

� T
inc

, implying g2 � ⇤J . For T ⌧ T
inc

,

we go back to the MFL.

Turning on a small but finite M/N , we have to additionally use the conditions Re[⌃(i!n ! 0, T = 0)] = µ and

G(i!n ! 0, T = 0) = 1/(µ � ⌃(i!n ! 0, T = 0)) simultaneously to determine a renormalized C and renormalized

µ, while keeping E fixed as before. We again cut o↵ ⌧ integrals in the Fourier transforms at a distance J�1 from

singularities. This gives

C = cosh1/4(2⇡E)⇡
1/4

J1/2

✓
1� M

N

⇤⌫(0)

2⇡

cosh(2⇡E)
cosh(2⇡Ec)

◆
1/4

, Cc =
cosh1/2(2⇡E)⇤1/2⌫1/2(0)

21/2Cg
, (3.19)

and we do not show the nonuniversal E , Ec $ µ, µc relations because they are rather uninsightful and the physics

is better described in terms of E , Ec which universally represent the conserved densities.

When M/N � 1, we enter non-universal regimes at finite temperature regardless of the bandwidth, where the

impurity Green’s functions are not given by simple conformally-invariant solutions. However, deep enough in the

IR, we always recover the MFL, due to the back-reaction self energy ⌃̃ being irrelevant, and the conduction electron

self energy ⌃c also vanishing at the lowest energies.

Since ⌫(0) ⇠ 1/⇤ ⇠ 1/t on a lattice, fine-tuning g ⇠ J ⇠ ⇤ � T makes the scattering rate (3.9) ‘Planckian’,

i.e. an O(1) number times T , since it is given by ratios of large quantities. The MFL doesn’t break down if we

do this; In (3.13), |⌃c(i(!n ⇠ T ))| ⇠ T lnT/J ⌧ ⇤, so the infinite-bandwidth result (3.9) is still applicable. The

crossover to the IM doesn’t occur either, since T ⌧ T
inc

, and finally, the part of the back-reaction self-energy to the

SYK impurities that does not renormalize their chemical potentials is |⌃̃(i(!n ⇠ T ))]| ⇠ (M/N)(g⌫(0))2T which is

⌧ |⌃(i(!n ⇠ T ))| ⇠ (JT )1/2, i.e. the part of the internal self-energy of the SYK impurities that doesn’t renormalize

chemical potential, as long as M/N is not � 1, so the SYK character of the impurities also survives.

In the IM regime, since both the conduction and impurity electrons have local SYK Green’s functions, the specific

heat scales as CIM

V ⇠ MT/J
IM

+NT/J , with no logarithmic corrections [18].

IV. TRANSPORT IN A SINGLE DOMAIN

In this section we again consider two spatial dimensions, again with the isotropic dispersion "k = k2/(2m)�⇤/2.

In our double large N and M limit, if M/N = 0, the only vertex corrections to the uniform conductivities that



8

FIG. 2: (a) The uniform current-current correlation bubble used to compute conductivities. The current vertices are black

squares and the black lines are conduction electron (c) propagators. (b) and (c) Additional diagrams forming ladder series,

with ladder units of up to 3 loops, that contribute to the conductivities and are not immediately suppressed by the large N

and M limits. The red lines are impurity fermion (f) propagators that do not carry momentum. The dashed blue lines carry

momentum and come from disorder averaging of the non-translationally invariant coupling gxijkl. These diagrams however

vanish upon momentum integration in the loops containing the current vertices, for reasons mentioned in the main text.

aren’t trivially killed by this limit are the ones that involve uncrossed vertical ladders of f†
i fj propagators in the

current-current correlator bubbles (First diagram of Fig. 2b). However, since the f propagators are purely local and

independent of momentum, these diagrams vanish due to averaging of the vector velocity in the current vertices

over the closed fixed-energy contours in momentum space, as the scattering of the conduction electrons is isotropic,

just like in the textbook problem of the non-interacting disordered metal [33]. Unlike the non-interacting disordered

metal, there is no localization in two dimensions as the crossed-ladder ‘Cooperon’ diagrams are suppressed by the

large M limit. Hence, the relaxation-time-like approximation of keeping only self-energy corrections is valid.

If M/N is nonzero but O(1) or smaller, then certain 3-loop and higher order ladder insertions (Such as Fig. 2c)

also contribute extensively in M to the current-current correlation. However, these diagrams again vanish due to

the averaging of the vector velocity mentioned above. All this happens regardless of the values of g, J,⇤, µc, and

for both energy and electrical currents.

A. Marginal-Fermi liquid

We first discuss the MFL regime. For simplicity, we consider infinite bandwidth and an infinitely deep Fermi sea.

The uniform current-current correlation bubble (Fig. 2a) is given by, for an isotropic Fermi surface,

hIxIxi(i⌦m) = �M
v2F
2
⌫(0)T

X
!n

Z 1

�1

d"

2⇡

1

i!n � "� ⌃c(i!n)

1

i!n + i⌦m � "� ⌃c(i!n + i⌦m)
, (4.1)

where vF = kF /m is the Fermi velocity (on a lattice vF ⇠ t, since the lattice constant a is set to 1). Using the

spectral representation, this can be converted to give the DC conductivity

�MFL

0

= M
v2F ⌫(0)

16T

Z 1

�1

dE
1

2⇡
sech2

✓
E

1

2T

◆
1

|Im⌃c
R(E1

)| . (4.2)

Inserting the self energy, we can scale out T and numerically evaluate the integral, giving

�MFL

0

= 0.120251⇥MT�1J ⇥
✓
v2F
g2

◆
cosh1/2(2⇡E). (4.3)
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If we want �MFL

0

⌧ 1, we must have T � T
inc

, implying a crossover into the IM regime. Thus the MFL is never a

true bad metal, but its resistivity can still numerically exceed the quantum unit h/e2, depending on parameters.

The ‘open-circuit’ thermal conductivity MFL

0

, which is defined under conditions where no electrical current flows,

is given by

MFL

0

= ̄MFL

0

� (↵MFL

0

)2T

�MFL

0

, (4.4)

where ̄MFL

0

is the ‘closed-circuit’ thermal conductivity in the presence of electrical current, and ↵MFL

0

is the

thermoelectric conductivity. The thermoelectric conductivity vanishes when the temperature is much smaller than

the bandwidth and Fermi energy, due to e↵ective particle-hole symmetry about the Fermi surface, so MFL

0

= ̄MFL

0

.

The Lorenz ratio is then given by

LMFL =
MFL

0

�MFL

0

T
=

̄MFL

0

�MFL

0

T
=

R1
�1

dE1
2⇡ E2

1

sech2
�
E1
2

�
1

|Im[E1 (�iE1/(2⇡))+i⇡]|R1
�1

dE1
2⇡ sech2

�
E1
2

�
1

|Im[E1 (�iE1/(2⇡))+i⇡]|
= 0.713063⇥ L

0

, (4.5)

which smaller than L
0

= ⇡2/3 for a Fermi liquid.

In the presence of a uniform transverse magnetic field, we can use the following improved relaxation-time linearized

Boltzmann equation (which incorporates an o↵-shell distribution function) for a temporally slowly-varying and

spatially uniform applied electric field [34, 35], since there are no Cooperons in the large-M limit, and hence none of

the typical localization-related corrections [36] to the conductivity tensor. The Boltzmann equation reads (here, t is

time, not the hopping amplitude, and B is a dimensionless version of the magnetic field B which shall be explained

below)

(1� @!Re[⌃
c
R(!)])@t�n(t, k,!) + vF k̂ ·E(t) n0

f (!) + vF (k̂ ⇥ Bẑ) ·rk�n(t, k,!) = 2�n(t, k,!)Im[⌃c
R(!)], (4.6)

where nf (!) = 1/
�
e!/T + 1

�
is the Fermi distribution, �n is the change in the distribution due to the applied

electric field, the conduction electrons are negatively charged, and the magnetic field points out of the plane of the

system. This equation is derived in Appendix B from the Dyson equation on the Keldysh contour, and can be

solved by the ansatz �n(t, k,!) = k · '(t,!) = ki'i(t,!).

In the DC limit, the e↵ective mass enhancement (1 � @!Re[⌃R(!)]) does not matter [35] (the e↵ective mass

enhancement is important for AC magnetotransport and a↵ects the frequency at which the cyclotron resonance

occurs; it shifts the cyclotron resonance from the cyclotron frequency defined by the bare mass to the one defined

by the e↵ective mass. The enhanced e↵ective mass also appears in the specific heat [30] and Lifshitz-Kosevich

formula [37] of MFLs). We then have

vF k̂ ·E n0
f (!) + vF (k̂ ⇥ Bẑ) ·rk�n(k,!) = 2�n(k,!)Im[⌃c

R(!)], (4.7)

We note that in (4.7), B is dimensionless in our choice of units. Since the quantities we set to 1 were the magnitude

of the electron charge e, the lattice constant a, and ~ and kB , we have

B =
eBa2

~ , (4.8)

i.e. the flux per unit cell in units of ~/e.
Substituting �n(k,!) = ki'i(!) into (4.7), we obtain

'i(!) =
vF
kF

n0
f (!)

✓
2Im[⌃c

R(!)]�ij + ✏ijB vF
kF

◆�1

ij

Ej . (4.9)
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Using the current density

Ii = �M⌫(0)

Z
2⇡

0

d✓

2⇡

Z 1

�1

d!

2⇡
vF k̂i�n(kF k̂,!), (4.10)

we get the longitudinal and Hall conductivities

�MFL

L = M
v2F ⌫(0)

16T

Z 1

�1

dE
1

2⇡
sech2

✓
E

1

2T

◆ �Im[⌃c
R(E1

)]

Im[⌃c
R(E1

)]2 + (vF /(2kF ))2B2

,

�MFL

H = �M
v2F ⌫(0)

16T

Z 1

�1

dE
1

2⇡
sech2

✓
E

1

2T

◆
(vF /(2kF ))B

Im[⌃c
R(E1

)]2 + (vF /(2kF ))2B2

. (4.11)

Note that these can be immediately written as

�MFL

L ⇠ T�1sL((vF /kF )(B/T )), �MFL

H ⇠ �BT�2sH((vF /kF )(B/T )). (4.12)

The asymptotic forms of the functions sL and sH are

sL,H(x ! 1) / 1/x2, sL,H(x ! 0) / x0. (4.13)

This scaling between magnetic field and temperature in the orbital magnetotransport of the MFL at a microscopic

level translates into a scaling between magnetic field and temperature in the global magnetoresistance of a sample

with additional macroscopic disorder as discussed in Sec. V.

In (4.11), for the ‘Planckian’ choice of parameters described at the end of Sec. III B, B becomes ‘large’ (i.e., the

cyclotron term in the denominators overwhelms Im[⌃c
R(E1

)] for |E
1

| . T , causing �MFL

H to start decreasing with

increasing B), when eBa2/~ & kBT/t. Using reasonable values of the lattice constant a = 3.82 Å and the hopping

t = 0.25 eV, the above inequality can also roughly be written as µBB & kBT , where µB is the Bohr magneton,

since a2et/~ ⇡ 0.96µB for these parameters.

In the analysis of the IM regime to follow, there is no such notion of ‘large’ magnetic fields; regardless of the

value of B, the field-dependent corrections to the conductivity tensor remain much smaller than its zero-field value.

B. Incoherent metal

In the IM regime we have

�IM

0

=
M⇤2

32⇡T

Z 1

�1

dE
1

2⇡
sech2

✓
E

1

2T

◆
(Ac(k,E

1

))2. (4.14)

The spectral function is independent of k in the IM, and we decoupled the momentum integral implicit in the above

equation, generating a prefactor of ⇤⌫(0)/(2⇡). For simplicity we consider M/N = 0. The results for a small finite

M/N are not qualitatively any di↵erent. We have

Ac(k,E
1

) ⌘ 2⇡

⇤⌫(0)
Ac(E

1

) ⌘ � 4⇡

⇤⌫(0)
Im[Gc(i!n ! E

1

+ i0+)]

= �2Im

"
i(�1)3/4⇡1/4(i+ e2⇡Ec)J1/2 cosh1/4(2⇡E)

gT 1/2⇤1/2⌫1/2(0)
p
1 + e4⇡Ec

�
⇣

1

4

� i(!�2⇡EcT )

2⇡T

⌘
�
⇣

3

4

� i(!�2⇡EcT )

2⇡T

⌘#, (4.15)

and we get

�IM

0

= (⇡1/2/8)⇥MT�1J ⇥
✓

⇤

⌫(0)g2

◆
cosh1/2(2⇡E)
cosh(2⇡Ec) . (4.16)
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Due to the IM existing only at temperatures above T
inc

, given by (3.18), we always have �IM

0

⌧ 1, which makes

the IM a bad metal.

The Lorenz ratio in the IM is (here, the thermoelectric conductivity ↵IM

0

does not vanish, so IM
0

and ̄IM
0

are

distinct quantities)

LIM =

R1
�1

dE1
2⇡ E2

1

sech2
�
E1
2

�
(Ac(E

1

))2 � [

R 1
�1

dE1
2⇡ E1sech

2(E1
2 )(Ac

(E1))
2
]

2

R 1
�1

dE1
2⇡ sech

2(E1
2 )(Ac

(E1))
2R1

�1
dE1
2⇡ sech2

�
E1
2

�
(Ac(E

1

))2
=

3

8
⇥ L

0

, regardless of E , Ec. (4.17)

This result was also obtained by a di↵erent method for the IM of Ref. 16, although they only analyzed the particle-

hole symmetric case equivalent to Ec = 0.

Another dimensionless ratio that is interesting is the thermopower, i.e. the ratio of the thermoelectric to electrical

conductivities,

SIM

0

=
↵IM

0

�IM

0

=

R1
�1

dE1
2⇡ E

1

sech2
�
E1
2

�
(Ac(E

1

))2R1
�1

dE1
2⇡ sech2

�
E1
2

�
(Ac(E

1

))2
= 2⇡Ec. (4.18)

This relationship between the thermopower and the spectral asymmetry Ec was also found in a di↵erent IM realized

in Ref. 18. The ratios (4.17), (4.18) hold even for a finite small M/N , due to the e↵ect of the finite small M/N

simply being a rescaling of the Green’s function Gc, as in (3.19).

Let us describe the fate of magnetotransport in the IM regime. On a lattice, we have ⇤⌫(0) ⇠ 1. Then J
IM

= g2/J ,

and the conduction electron self-energy is ⇠ p
J
IM

T . We have J
IM

T � t2 ⇠ ⇤2, so, to leading order we can neglect

the dispersion in Fermion propagators. Then, there is nothing for the magnetic field to couple to, and consequently

no magnetotransport.

To illustrate this, let us compute the correlator of currents in perependicular directions in real space on a square

lattice. The uniform current operators are

Ix(⌧) ⌘ 1

V 1/2

X
r

Irx(⌧) ⌘ � it

2V 1/2

MX
r,i=1

c†r+x̂,i(⌧)cri(⌧) + h.c.,

Iy(⌧) ⌘ 1

V 1/2

X
r

Iry(⌧) ⌘ � it

2V 1/2

MX
r,i=1

c†r+ŷ,i(⌧)cri(⌧)e
i�(r) + h.c., (4.19)

where we have used a gauge with the magnetic vector potential Ar pointing along the y direction, giving rise to

the phase factors ei�(r) on bonds in the y direction. The system volume in units of the unit cell volume is V . We

then have

T⌧ hIx(⌧)Iy(⌧ 0)i = �M
t2

4V

X
rr0

h
T⌧ hc†r+x̂(⌧)cr(⌧)c

†
r0+ŷ(⌧

0)c0r(⌧
0)ei�(r

0
)i � T⌧ hc†r+x̂(⌧)cr(⌧)c

†
r0(⌧

0)cr0+ŷ(⌧
0)e�i�(r0)i

� T⌧ hc†r(⌧)cr+x̂(⌧)c
†
r0+ŷ(⌧

0)cr0(⌧
0)ei�(r

0
)i+ T⌧ hc†r(⌧)cr+x̂(⌧)c

†
r0(⌧

0)cr0+ŷ(⌧
0)e�i�(r0)i

i
, (4.20)

where we have dropped the sum over flavor indices in favor of a global factor of M , and T denotes time-ordering.

To leading order in t, since the c Green’s functions are completely local,

T⌧ hcr(⌧)c†r0(⌧ 0)i = �rr0G
c(⌧ � ⌧ 0), (4.21)

none of the terms in (4.20) can be nonzero. Similarly, at O(t2), there is no field-dependent correction to the hIxIxi
correlator.

Perturbing in t, In order for (4.20) to be nonzero, we need to insert hopping vertices in order to close the 4-point

correlation functions of the c’s. To lowest order in t, this requires insertion of two hopping vertices into each of
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the 4-point correlation functions in (4.20), so that the connected contractions of c’s and c†’s into local c Green’s

functions go around a single plaquette of the lattice. Again, due to our choice of gauge, hopping vertices along

bonds in the y direction come with phase factors. But we obtain, as we should, a gauge-invariant answer for the

connected part, which is of interest to us here (the electrons are negatively charged, and B is defined in terms of B

as in Sec. IVA)

hIxIyi(i⌦m) = �iM sin(B)t4T
X
!n

[(Gc(i!n))
3(Gc(i!n + i⌦m)�Gc(i!n � i⌦m))]. (4.22)

At O(t4), vertex corrections from the coupling g to this leading contribution vanish due to the non-correlation of g

between distinct lattice sites, i.e. ⌧ grijklg
r0

jilk �= g2�rr0 .

The DC Hall conductivity follows,

�IM

H = � lim
!!0

1

i!

⇥hIxIyi(i⌦m ! ! + i0+)� hIxIyi(i⌦m ! 0 + i0+)
⇤

= 2M sin(B)t4P
Z 1

�1

dE
1

2⇡

dE
2

2⇡
Ac

3

(E
1

)Ac(E
2

)
nf (E2

)� nf (E1

)

(E
2

� E
1

)2
, (4.23)

where P denotes the Cauchy principal value, and

Ac
3

(E
1

) ⌘ �2Im[(Gc(i!n ! E
1

+ i0+))3] = Im

24 (i� 1)(i+ e2⇡Ec)3 cosh3/4(2⇡E)
25/2⇡9/4J

3/2
IM

T 3/2(1 + e4⇡Ec)3/2

�3

⇣
1

4

� i(!�2⇡EcT )

2⇡T

⌘
�3

⇣
3

4

� i(!�2⇡EcT )

2⇡T

⌘
35 , (4.24)

is the spectral function of (Gc(i!n))3. If Ec = 0, then the Hall conductivity vanishes due to the evenness of the

spectral functions Ac and Ac
3

. This corresponds to half-filling the square lattice, so this is expected. Scaling out T

and evaluating the integral numerically gives

�IM

H = �M sin(B) t
4 cosh(2⇡E)
J2

IM

T 2

⌅IM

H (Ec), (4.25)

where ⌅IM

H (Ec) is odd in Ec, positive for positive Ec, and vanishes when Ec = 0,±1. This is a very small contribution

regardless of B; the already small flux per unit cell B is further multiplied by a small parameter t4/(J2

IM

T 2). Note

that we consider cosh(2⇡E) to be O(1). If |E| is very large, then the conduction electrons do not scatter e↵ectively

o↵ the impurities, as discussed before, and our perturbative expansion in hopping is no longer valid, and in that

case the system is once again described by the MFL. For the Hall conductivity to be comparable to the longitudinal

conductivity �IM

0

⇠ t2/(J
IM

T ), we need sin(B) ⇠ J
IM

T/t2 � 1, which is not even mathematically possible.

Similarly, the field-dependent correction to the Ix-Ix correlator is

�B [hIxIxi(i⌦m)] = �Mt4 cos(B)T
X
!n

(Gc(i!n))
2(Gc(i!n + i⌦m))2, (4.26)

leading to the field-dependent correction to the longitudinal conductivity

�B [�
IM

L ] =
M

8

t4

T
cos(B)

Z
dE

1

2⇡
Ac

2

(E
1

)sech2
✓
E

1

2T

◆
, (4.27)

where

Ac
2

(E
1

) ⌘ �2Im[(Gc(i!n ! E
1

+ i0+))2] = �Im

24i (i+ e2⇡Ec)2 cosh1/2(2⇡E)
2⇡3/2J

IM

T (1 + e4⇡Ec)

�2

⇣
1

4

� i(!�2⇡EcT )

2⇡T

⌘
�2

⇣
3

4

� i(!�2⇡EcT )

2⇡T

⌘
35 , (4.28)
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FIG. 3: Plots of (a) ⌅IM
H (Ec) and (b) ⌅IM

L (Ec). Both functions vanish in the limits of the fully filled and empty lattice

(Ec = ⌥1 respectively), as they should.

is the spectral function of (Gc(i!n))2. Scaling out T and evaluating the integral numerically gives

�B [�
IM

L ] = M
t4 cosh(2⇡E)

J2

IM

T 2

cos(B)⌅IM

L (Ec), (4.29)

where ⌅IM

L (Ec) is even in Ec, positive, nonzero for Ec = 0, and vanishes as Ec ! ±1. The longitudinal conductivity

is thus reduced when a field is applied, as is usually the case.

It is similarly thus not possible to get a field-dependent correction to �IM

L that is comparable to its zero-field

value. Thus we shall no more consider the IM regime for studying magnetotransport, as there is no qualitative

di↵erence between the regimes of ‘large’ and small B unlike in the MFL regime. For completeness, the plots of

⌅IM

H,L(Ec) are shown in Fig. 3.

Before we close this section, let us comment on the controllability of the hopping expansion used to compute the

nonzero field-dependent conductivity corrections. Clearly, this hopping expansion must break down when t is large

enough, as the MFL has a very di↵erent conductivity tensor. Going from (4.20) to (4.22) and (4.26), we only kept

those r0 relative to r that resulted in O(t4) corrections for the shortest closed paths from r to r0 and back. For

arbitrary r0, one can draw infinitely many paths that go from r to r0 and back. These paths may also intersect

themselves in general. For a path length l, there are < 4l paths for large l, as at each step, one has 4 choices of

direction, and not all possibilities will result in a formation of the closed path from r to r0 and back. Each step

involves mulitplying an additional local Green’s function and factor of t, or roughly a factor of ⇠ t/(J
IM

T )1/2 ⌧ 1

into the amplitude. Therefore, the total weight of paths of length l should be < (4t/(J
IM

T )1/2)l. The total weight

of all paths between r, r0 then is <
P1

l=lmin
(4t/(J

IM

T )1/2)l = (4t/(J
IM

T )1/2)lmin/(1 � 4t/(J
IM

T )1/2), where l
min

is the length of the shortest closed path between r, r0, which scales as the lattice distance between r, r0. Thus,

for t/(J
IM

T )1/2 ⌧ 1, the expansion is well behaved: as r0 gets further away from r, the terms are exponentially

suppressed in the distance between r and r0, whereas the number of r0’s a given distance away from r grows only

linearly in that distance in two dimensions. Unsurprisingly, this is just the condition T � T
inc

we obtained earlier

for the crossover into the IM regime.
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V. MACROSCOPIC TRANSPORT VIA EFFECTIVE-MEDIUM/RANDOM-RESISTOR THEORY

A. Setup

We seek to understand the e↵ects of additional macroscopic disorder on the transport of charge in the MFL at

‘large’ magnetic fields B. This additional macroscopic disorder leads to the variation of the local conductivity tensor

�(x) across the sample. Since the conduction electrons in our model interact with valence electrons in the impurities

through a non-translationally invariant interaction microscopically, the Navier-Stokes equation of hydrodynamics

that describes dynamics of a nearly-conserved macroscopic momentum [38] is not applicable to us, since this

requires microscopic equilibriation of the electron fluid through momentum-conserving interactions (the e↵ects of

weak disorder on the magnetoresistance of a generic electron fluid with macroscopic momentum were studied in

Ref. 39; they did not find any regimes of linear magnetoresistance, instead finding that the magnetoresistance was

quadratic with a prefactor controlled by the fluid viscosity). Thus, at the coarse-grained level, we just have the

equation for charge conservation, and Ohm’s law

r · I(x) = 0, I(x) = �(x) ·E(x), E(x) = �r�(x). (5.1)

The e↵ective local electric field E(x) (which includes the e↵ects of Coulomb potentials generated due to charge

inhomogeneities [40]) fluctuates spatially due to the macroscopic disorder, but equals an applied external electric

field E

0

= hE(x)i ⌘ 1

V

R
d2x E(x) on spatial average. We define the global conductivity tensor �e through the

relation hI(x)i = �e · E
0

, and parameterize the deviation �(x) � �e = ��(x). The condition hI(x) � hI(x)ii = 0

then gives h�(x) ·E
0

⌘ ��(x) ·E(x)i = 0.

Following Ref. 24, without making any additional approximations, the solution of these equations can be formally

cast in the form

�(x) = �E

0

· x+

Z
d2x0 G(x,x0)r0 · (��(x0) ·r0�(x0)), (5.2)

where the Green’s function satisfies r · (�e ·rG(x,x0)) = ��(x� x

0), G(x,x0) = G(x0,x), and G(x,x0 2 @V ) = 0,

for the system boundary @V , which we take to infinity. Taking a gradient on both sides, we get

E(x) = E

0

�
Z

d2x0 [(��(x0) ·E(x0)) ·r0] ·rG(x,x0), or

�(x) = ��(x)� ��(x) ·
Z

d2x0 K(x,x0) · �(x0), (5.3)

where the second line follows from the first by left-multiplying both sides by ��(x), and then demanding it that it

hold for any E

0

, and Kij(x,x0) = @i@
0
jG(x,x0).

We now assume that the disorder divides the sample into macroscopic domains whose size is much smaller than

the sample size, but much bigger than the smaller of the electron mean-free path and electron cyclotron radius, and

the tensors � and �� take on constant values in a given domain. For a given domain p, we can write

�p = ��p � ��p ·
Z
p

d2x0 K(x 2 p,x0) · �p � ��p ·
X
p0 6=p

·
Z
p0
d2x0 K(x 2 p,x0) · �p0

. (5.4)

For the second integral over domains other than the given domain, we replace �n with its spatial average h�i. This
is the ‘e↵ective-medium’ approximation [24]: The equivalent conductivity of each domain is controlled in part by a

‘mean-field’ of domains surrounding it. However, since our conventions are set up so that h�i = 0, this second term

drops out. Then, spatially averaging both sides, we obtainX
p

V p�p = 0 )
X
p

V p(I+ ��p · Mp)�1 · ��p = 0, (5.5)
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where V p is the volume fraction of domain p and Mp
ij =

H
@0p

@iG(x,x0)n̂0p
j , where the integral is over the primed

coordinate, and n̂

0p is the outward-pointing unit normal vector on the boundary of p, varying with the primed

coordinate.

If the local conductivity tensor �(x) is known in all domains, (5.5) can then be solved for �e. In our two-

dimensional electron problem, we expect �e
ij = �ij�

e
L � ✏ij�

e
H , where �e

L is even in B and �e
H is odd in B because

of Onsager reciprocity, so we obtain the Green’s function G(x,x0) = � ln(|x � x

0|0+)/(2⇡�e
L). Then, for circular

domains, Mp
ij = �ij/(2�e

L) is indeed independent of x. This makes (5.4) and (5.5) self-consistent [24]. For other

domain shapes, there are corrections when x is near the domain boundary.

For an analytically solvable toy model, we assume that the �(x) can take either of two possible values �a and �b

in circular domains that are spatially randomly distributed over the sample [25] (Fig 4a). As far as the asymptotic

low and high-field magnetoresistance goes, this already yields the same qualitative behavior at large and small fields

as a more complicated model with a distribution of di↵erent types of domains [29]. Furthermore, the ‘mean-field’

like e↵ective-medium approximation has also been shown to produce results for the magnetoresistance equivalent

to exact numerical solutions of (5.1) in random-resistor network models [26, 27, 29]. In the simplified two-type

scenario (5.5) then simplifies to [25]

V a

✓
I+ �a � �e

2�e
L

◆�1

· (�a � �e) + (1� V a)

✓
I+ �b � �e

2�e
L

◆�1

· (�b � �e) = 0. (5.6)

If V a = 1/2, this yields an unsaturating high-field magnetoresistance [25]. For the model with a distribution of

domains, the equivalent condition is that the distribution is symmetric about its mean [29]. For V a detuned from

1/2, the magnetoresistance saturates, but there is an intermediate regime of fields in which the magnetoresistance

is approximately linear, and the saturation field becomes arbitrarily large as V a approaches 1/2 [25]. The rough

reasoning behind the saturation appears to be that, if one type of domain is far more common than the other, the

current flowing through the sample mainly finds paths involving only one type of domain, and hence the global

magnetoresistance behaves like that of a single domain, which saturates at high fields [27]. We will do our analysis

with the symmetric distribution V a = 1� V a = 1/2.

B. Application

We note that in (4.11), the sech is strongly peaked near E
1

= 0, whereas for a finite temperature, Im[⌃c
R(E1

)]

does not vary drastically with E
1

near E
1

= 0 over the range which the sech is appreciable. We can thus replace

Im[⌃c
R(E1

)] with �/2 from (3.9). Regardless of this approximation, we note from (4.11) that �MFL

L ⇠ T/B2 and

�MFL

H ⇠ 1/B at large B, which is what the e↵ective-medium theory needs to produce linear magnetoresistance at

large B. This asymptotic scaling holds even if we had multiple MFL bands, thus adding their conductivity tensors

to get the appropriate local conductivity tensor.

We thus input the following conductivity tensors into the e↵ective-medium calculation (we take the band mass

m = kF /vF to be the same in both types of electron-like domains a and b):

�a,b
ij =

�MFL

0a,b

1 + B2/(m�a,b)2

✓
�ij + ✏ij

B
m�a,b

◆
. (5.7)

The scattering rate � can fluctuate across domains due to fluctuations in g, induced by fluctuations in the densities

of impurities, and the base conductivity �MFL

0a,b can fluctuate across domains due to fluctuations in both g and in

the electron density. Then, solving (5.6) for V a = 1�V a = 1/2, we get the global longitudinal and Hall resistances
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FIG. 4: (a) A cartoon of a sample with a random distribution of approximately equal fractions of two types of domains, for

which an exact analytic solution of the e↵ective-medium equations for magnetotransport is possible. The magnetic field B

points out of the plane of the sample. (b) Plots of the normalized change in global longitudinal resistance due to dimensionless

magnetic field B (orange) and due to temperature T (blue), obtained from (5.9). We use EF
b /EF

a = 0.8 and �b/�a = 0.8.

The dimensionless magnetic field B is the flux per unit cell Ba2 in units of ~/e (4.8). We use m = 0.005 ⇠ 1/EF
a,b. The

orange (B) curve is evaluated at T = 1.0 and �a = 0.1 and the blue (T ) curve is evaluated at B = 0.0025 and �a = 0.1T . The

curves are slightly o↵set for visualization, but actually lie on top of each other, demonstrating a scaling between magnetic

field and temperature. Both the B and T dependencies are quadratic at small fields (temperatures) and cross over to linear

at large fields (temperatures).

respectively,

⇢eL ⌘ �e
L

�e2
L + �e2

H

=

q
(B/m)2

�
�a�MFL

0a � �b�MFL

0b

�
2

+ �2a�
2

b

�
�MFL

0a + �MFL

0b

�
2

�a�b(�MFL

0a �MFL

0b )1/2
�
�MFL

0a + �MFL

0b

� ,

⇢eH ⌘ � �e
H/B

�e2
L + �e2

H

=
�a + �b

m�a�b
�
�MFL

0a + �MFL

0b

� . (5.8)

The magnetoresistance ⇢eL(B)� ⇢eL(0) is thus linear as promised at high fields, and is quadratic at low fields.

Considering the isotropic parabolic dispersion "k = k2/(2m)�⇤/2, and using (4.3), (3.9), and ⌫(0) = m, we can

write �MFL

0a,b = Mw�E
a,b
F /�a,b, where w� = 0.135689 and Ea,b

F = mv2Fa,b/2 are the Fermi energies. We can then

rewrite (5.8) as

w�⇢
e
L =

✓
�2a +

� B
m

�
2 (1�EF

b /EF
a )

2

(�b/�a+EF
b /EF

a )
2

◆
1/2

M(�a/�b)1/2(EF
a EF

b )1/2
, w�⇢

e
H =

(1 + �b/�a)

MmEF
a (EF

b /EF
a + �b/�a)

. (5.9)

Plots of the normalized change in ⇢eL due to B and T are shown in Fig. 4b.

The Hall resistance is ⇢eH is sensitive to the disorder distribution and thus is not trivially controlled by the average

carrier density/ Mm(EF
b +EF

a )/2 even for the isotropic Fermi surfaces we consider, unless �a = �b. In this simplified

version of the problem, ⇢eH is independent of temperature. However, we expect that more complicated disorder

distributions generically give rise to some temperature dependence of ⇢eH , which would depend on the disorder

distribution even at a qualitative level. A detailed analysis of such e↵ects is beyond the scope of the present work,

and will be considered in the future.
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Since �a,b / T , the crossover from quadratic to linear magnetoresistance occurs at a field scale proportional to

temperature. Additionally, if we use the ‘Planckian’ choice of parameters, and if the disorder distribution is such

that |1 � EF
b /EF

a |/(�b/�a + EF
b /EF

a ) is an O(1) number, the crossover occurs at a field scale given by µBB ⇠
kBT , as discussed at the end of Sec. IVA. While this is most definitely a fine-tuned situation, and would require

substantial variation in the charge densities between domains, it is within the scope of our theory. Alternatively,

if �a(�b/�a + EF
b /EF

a )/(kBT |1 � EF
b /EF

a |) is an O(1) quantity (but �a / T is much smaller than kBT ), then ⇢eL
can still be controlled by the approximate scaling function

p
1 + (µBB)2/(kBT )2 for much smaller variations in the

charge densities between domains.

The e↵ective-medium theory is applicable when the domain sizes are much greater than the smaller of the electron

mean free path and electron cyclotron radius in a single domain. At low temperatures and weak fields, electrons

can move through a domain without significant loss or deflection of momentum, and the e↵ects of scattering o↵ the

boundaries between domains then become important, adding a temperature-independent residual resistivity to the

result of the above computation.

In our analysis, we have neglected the e↵ects of the feedback of heat currents on charge transport. In general, one

would have an additional analogous set of equations to (5.1) for heat currents and temperature gradients in place

of charge currents and electric fields. Since there is no concept of bulk fluid motion due to translational symmetry

breaking at the microscopic level, the equations for heat currents and charge currents would only be coupled if the

local thermoelectric tensor ↵(x) were nonzero. However, in the MFL, with T ⌧ EF
a,b, ↵(x) is negligible as discussed

in Sec. IVA, and our decoupled analysis of charge currents is hence still applicable. Somewhere in the crossover

region between the MFL and the IM, a regime may exist where both ↵(x) and the e↵ects of magnetic fields on the

local conductivity tensors are simultaneously significant, and there may be a significant feedback of thermoelectric

e↵ects on the charge magnetotransport. We leave a detailed study of such e↵ects for future work.

VI. DISCUSSION

The strange metal phases of the cuprate and pnictide high-Tc superconductors occur at finite dopings, and

consequently display significant amounts of disorder. Experimentally, there is direct evidence for disorder at (i)

microscopic levels, due to irregular placements of dopant atoms [41], and (ii) meso- and macroscopic levels, due to

a variety of factors ranging from crystalline imperfections to charge puddles caused by impurities and non-isovalent

dopants [42, 43]. Additionally, due to these materials being layered, with relatively poor interlayer conductivities,

imperfections in a layer may further induce heterogeneities in the charge distributions of adjacent layers through

Coulomb forces.

We have attempted to paint an impressionist picture of transport and magnetotransport in a strange metal

by developing a solvable model that incorporates disorder at both microscopic and macroscopic levels. At the

microscopic level, we built o↵ remarkable recent developments [16–18, 23, 44, 45] in realizing field-theoretically

honest descriptions of extended non-Fermi liquid phases using SYK models. By locally and randomly coupling

mobile conduction electrons to immobile impurities described by SYK models in a particular way, we realized a

disordered MFL phase with a linear-in-T resistivity. We determined the two-point functions, conductivities, and

magnetotransport properties of this phase exactly, finding a scaling between magnetic field and temperature in

the conductivity tensor. Additionally, we showed that the nearly-local ‘incoherent-metal’ phases, which are also

realized in our model in certain parameter regimes and which can also have linear-in-T resistivities, have very weak

e↵ects of magnetic fields on their charge transport properties, making them unlikely candidates for a description

of the strange metals seen in experiments at lower temperatures where linear-in-B magnetoresistances are also
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observed. However, the IMs may still be the correct concept at high temperatures, due to strong bad-metallic

behavior displayed through their large resistivities.

To model the e↵ects of additional macroscopic disorder on magnetotransport, we applied the e↵ective-medium

approximation to a sample containing domains of our disordered linear-in-T MFLs with varying charge and impu-

rity densities, since the presence of microscopic disorder precludes the applicability of nearly-momentum-conserving

hydrodynamics on a macroscopic level. While the e↵ective-medium approximation is a mean-field theory at the

level of Kirchho↵’s and Ohm’s laws for current flow, it has shown to be equivalent to exact numerical simulations of

random-resistor networks for magnetotransport [29], and has also had remarkable successes in describing experimen-

tally observed magnetoresistances in other two-dimensional disordered materials [29, 46, 47]. For certain simplified

disorder distributions, the e↵ective-medium equations for magnetotransport are analytically solvable. These exactly

solvable equations yield, in our case, a magnetoresistance that is quadratic in field at low fields, crosses over to

linear in field at high fields, and is controlled by a scaling function between field and temperature, as seen in recent

experiments on the cuprate and pnictide strange metals [5, 6].

On the experimental front, the anomalous high-field linear magnetoresistance in the cuprate and pnictide strange

metals is already known to be dependent on the component of the magnetic field perpendicular to the sample

plane [48], a feature that our model reproduces, since it is based on orbital e↵ects of the magnetic field on charge

transport. Furthermore, a strong linear component of the high-field magnetoresistance is seen even away from the

critical doping at which the zero-field resistance is almost exactly linear-in-T [5, 6]. The disorder based mechanism

considered by us would be consistent with this observation, as the zero-field linear-in-T behavior is not a prerequisite

for high-field disorder-induced linear magnetoresistance; all that is required is that the local conductivity tensor

behaves like (5.7) as a function of magnetic field.

On the theoretical front, we have been able to analytically calculate non-trivial magnetotransport properties

in a contrived but solvable model of a disordered non-Fermi liquid. We hope that our study motivates further

investigations into the interplay of disorder and strong interactions in the transport properties of the strange metal

phases of the cuprates and pnictides.
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Appendix A: ‘Pair-hopping’ terms and the marginal-Fermi liquid

In this appendix we consider the e↵ects of the ‘pair-hopping’ term (3.12) on the MFL as T ! 0. With the

Hamiltonian given by (3.12), the Dyson equations are given by

⌃(⌧) = �J2G2(⌧)G(�⌧)� M

N
g2G(⌧)Gc(⌧)Gc(�⌧)� M

N
⌘2G(�⌧)(Gc(⌧))2,

G(i!n) =
1

i!n + µ� ⌃(i!n)
,

⌃c(⌧) = �g2Gc(⌧)G(⌧)G(�⌧)� ⌘2Gc(�⌧)(G(⌧))2,

Gc(i!n) =
X
k

1

i!n � ✏k + µ� ⌃c(i!n)
. (A1)

If µ = 0, the exact relations G(⌧) = �G(�⌧) and Gc(⌧) = �Gc(�⌧) imply that the only e↵ect of the pair-hopping

term on the physics considered in the main text in all regimes is just a redefinition of g, with g ! (g2 + ⌘2)1/2.

As long as the bandwidth is large, i.e. t � g, ⌘, J , (3.3) is still valid. Following the same procedure as we did in

Sec. III A, and using G(⌧) given by (3.5), we obtain

⌃c(i!n ! 0) =
ig2⌫(0)

2J cosh1/2(2⇡E)⇡3/2
!n ln

✓ |!n|e�E�1

J

◆
+
⌘2⌫(0) cosh1/2(2⇡E)

2⇡3/2

✓
i
!n

J
ln

✓ |!n|e�E�1

J

◆
� tanh(2⇡E)

◆
+O(!n). (A2)

This is clearly a marginal-Fermi liquid with an additional chemical potential correction

�µ =
⌘2⌫(0) cosh1/2(2⇡E)

2⇡3/2
tanh(2⇡E) ⌧ ⇤, (A3)

which leads to a harmless small change in the size of the conduction electron Fermi surface, as the numbers of c

and f electrons are no longer independently conserved (but their sum is conserved).

There is also a back-reaction to the SYK dots

⌃̃(⌧) = �M

N
g2G(⌧)Gc(⌧)Gc(�⌧)� M

N
⌘2G(�⌧)(Gc(⌧))2, (A4)

⌃̃(i!n ! 0) =
Mg2(⌫(0))2J sinh(⇡E)
3
p
2N⇡9/4 cosh1/4(2⇡E) +O(!n), (A5)

which is again a chemical potential correction plus irrelevant frequency-dependent corrections. This chemical

potential correction actually changes E , which is no longer a conserved quantity, and is determined by the condition

Re[⌃(i!n ! 0)] = µ+ �µ.

Appendix B: Boltzmann equation for the marginal-Fermi liquid

We provide a derivation of (4.6). We follow the notation, style, and mehcanics of Chapter 5 of Ref. 34. The

general o↵-shell Boltzmann equation for modes close to the isotropic Fermi surface (|p| ⇡ pF ; we do not use boldface

for momentum-space vectors) is given by

� [(i@t + vF |r+AE +AB |) �, F ] = ⌃c
K � (⌃c

R � F � F � ⌃c
A), (B1)

where F (t, r, p,!) = 1�2(nf (!)+�n(t, r, p,!)) is a parameterization of the distribution function, AE(t) and AB(r)

are parts of the electromagnetic vector potential giving rise to the uniform electric and magnetic fields respectively,
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with �dAE(t)/dt = E(t) and r⇥AB(r) = Bẑ (r denotes the spatial gradient). ⌃c
R,A,K are the retarded, advanced,

and Keldysh components of the conduction electron self-energy respectively. The equation (B1) follows from the

Dyson equation for two-point functions on the Keldysh contour [34], and hence is exact due to the large M,N

limits. The � denotes the convolution

Z = X � Y ) Z(t
1

, r
1

, t
2

, r
2

) =

Z
dt

3

d2r
3

X(t
1

, r
1

, t
3

, r
3

)Y (t
3

, r
3

, t
2

, r
2

), (B2)

in the two-coordinate representation, and the [. , .] denotes a commutator. We will however mostly use the

central-relative coordinate representation instead, with p,! being Fourier transforms of the relative coordinate

r

1

� r

2

, t
1

� t
2

, and t, r denoting the central coordinate (r
1

+ r

2

)/2, (t
1

+ t
2

)/2; this convolution can then be

appropriately re-expressed in this representation following Ref. 34.

We then use a coordinate remapping k = p+AB(r) [50, 51] to redefine F (t, r, p,!) = 1�2(nf (!)+�n(t, r, p,!)) )
F (t, k,!) = 1� 2(nf (!) + �n(t, k,!)). This is valid as long as the Fermi energy is large enough to make e↵ects of

Landau quantization insignificant at the fields in question. The only r dependence in F then is fictitious, coming

from the r dependence of AB , and should not a↵ect physical results for spatially uniform transport quantities due

to gauge-invariance. It is now absorbed into an implicit r dependence in k.

We consider the part of (B1) proportional to the infinitesimal E(t). Because of the isotropy of the Fermi surface

and the scattering, we then use the ansatz �n(t, k,!) = k ·'(t,!). We use a first-order gradient expansion in spatial

and time derivatives with respect to the central coordinate, which is justified by the spatial uniformity of E(t) and

B, and the slow temporal variation of E(t). The change in the momentum-integrated Keldysh conduction electron

Green’s function caused by E(t) through �n then is [34]

�Gc
K(t,!) ⌘

Z
d2k �Gc

K(t, k,!) = �2

Z
d2k (Gc

R(|k|,!)�Gc
A(|k|,!)) �n(t, k,!)

� 2i

Z
d2k @!Re[G

c
R(|k|,!)]@t�n(t, k,!) + 2i

Z
d2k @kRe[G

c
R(|k|,!)] ·rAB(r) · @k�n(t, k,!) = 0, (B3)

as GR,A
f are isotropic. We have used r�n(t, k,!) = rAB(r) · @k�n(t, k,!), due to the implicit r dependence in

k. The retarded and advanced conduction electron Green’s functions are not changed by the applied electric field,

as they are only influenced by the change in the distribution �n through the self-energies [34], which as we show

below, are una↵ected by the applied electric field.

On the Keldysh contour, the conduction electron self-energy is given by, analogous to (2.3),

⌃c(t
1

, t
2

) = �g2Gc(t
1

, t
2

)G(t
1

, t
2

)G(t
2

, t
1

), or ⌃c
>,<(t1, t2) = �g2Gc

>,<(t1, t2)G>,<(t1, t2)G<,>(t2, t1). (B4)

Using the standard relations between the >,< representation and the R,A,K representation [34, 52], the changes

in the conduction electron self-energies due to �n are then given by

�⌃c
R(t1, t2) = �g2

4
✓(t

1

� t
2

)�Gc
K(t

1

, t
2

)(GK(t
1

, t
2

)GA(t2, t1) +GK(t
2

, t
1

)GR(t1, t2)),
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A(t1, t2) = �g2

4
✓(t

2

� t
1
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)(GK(t
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1

)GA(t1, t2)),

�⌃c
K(t

1

, t
2
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1
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) = �g2

4
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1
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)(GK(t
1
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)GK(t
2
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1

) +GA(t1, t2)GR(t2, t1)), (t
1

< t
2

), (B5)

which vanish due to (B3). Here, GR,A,K denote the impurity electron Green’s functions at equilibrium. Similarly,

for the impurities, we also get �⌃R,A,K = 0, for the same reason.
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The O(E) part of the RHS of (B1) then is 2(⌃c
R ��n��n�⌃c

A). Using the p, k, r-independence of the by definition

t-independent equilibrium self-energies ⌃c
R,A,K , and a first-order gradient expansion in central time derivatives, the

RHS of (B1) reduces to [34]

4iIm[⌃c
R(!)]�n(t, k,!) + 2i@!Re[⌃

c
R(!)]@t�n(t, k,!). (B6)

We now turn to the part of the LHS of (B1) proportional to E(t). Following Sec. 5.7 of Ref. 34, and noting that

the Wigner transform of r+AB(r) is k, it reduces in the first-order gradient expansion in central spatial and time

derivatives to

2i@t�n(t, k,!) + 2i
��vF@t|k +AE(t)|n0

f (!) + vFr|k| · @k�n(t, k,!)� vF@k|k| ·rAB(r) · @k�n(t, k,!)
�
, (B7)

After some algebra, this further reduces to

2i@t�n(t, k,!) + 2ivFE(t) · k̂n0
f (!) + 2ivFB(k̂ ⇥ ẑ) · @k�n(t, k,!). (B8)

Then, combining this with (B6), we recover (4.6). The solution to (4.6) then shows our ansatz �n(t, k,!) = k ·'(t,!)
to be self-consistent.
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