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One of the distinctive features of hole-doped cuprate superconductors is the onset of a ‘pseudogap’
below a temperature T ∗. Recent experiments suggest that there may be a connection between the
existence of the pseudogap and the topology of the Fermi surface. Here, we address this issue
by studying the two-dimensional Hubbard model with two distinct numerical methods. We find
that the pseudogap only exists when the Fermi surface is hole-like and that, for a broad range
of parameters, its opening is concomitant with a Fermi surface topology change from electron-
to hole-like. We identify a common link between these observations: the pole-like feature of the
electronic self-energy associated with the formation of the pseudogap is found to also control the
degree of particle-hole asymmetry, and hence the Fermi surface topology transition. We interpret
our results in the framework of an SU(2) gauge theory of fluctuating antiferromagnetism. We show
that a mean-field treatment of this theory in a metallic state with U(1) topological order provides
an explanation of this pole-like feature, and a good description of our numerical results. We discuss
the relevance of our results to experiments on cuprates

I. INTRODUCTION

A very debated topic in the physics of high-
temperature superconductors is the nature of the ’pseu-
dogap’1,2 in their phase diagram. Below a tempera-
ture T ∗(p) which is a decreasing function of the hole-
doping level p, a pseudogap develops, corresponding
to a suppression of low-energy excitations apparent
in many experimental probes. Extrapolated to zero-
temperature, T ∗(p) defines a critical hole doping p∗

above which the pseudogap disappears as doping is in-
creased. Another important critical value of the dop-
ing, denoted here pFS, is that at which the Fermi sur-
face topology changes from hole-like to electron-like,
corresponding to a Lifshitz transition. Recent exper-
iments on Bi2Sr2CaCu2O8+δ (Bi2212) have suggested
that the pseudogap may be very sensitive to the Fermi
surface (FS) topology and that p∗ ' pFS in this com-
pound3,4. In a simultaneous and independent manner
from the present theoretical work, Doiron-Leyraud et al.5

recently performed a systematic experimental study us-
ing hydrostatic pressure as a control parameter in the
La1.6−xNd0.4SrxCuO4 (Nd-LSCO) system, and an unam-
biguous connection between FS topology and the pseu-
dogap was found.

In this work, we investigate this interplay by study-
ing the two-dimensional Hubbard model. In the weak-
coupling scenarios of pseudogap physics, there is a nat-
ural connection between the FS topology and the co-
herence of low-energy quasiparticles. Indeed, for a hole-
like FS, coherence is suppressed at the ‘hot spots’ where
the FS intersects the antiferromagnetic zone boundary.

When the FS turns electron-like, increased quasiparticle
coherence is restored all along the FS (see Appendix for
a more detailed analysis)6–11. At stronger coupling, sev-
eral methods9,12–28 have established that the Hubbard
model displays a pseudogap which originates from an-
tiferromagnetic correlations. These correlations become
short-range as the coupling strength or doping level are
increased, as found in experiments29. The FS topology,
on the other hand, is an issue which has to do with low-
energy, long-distance physics. Hence, it is an intrigu-
ing and fundamentally important question to understand
how the short-range correlations responsible for the pseu-
dogap can be sensitive to FS changes.

Here, we study the Hubbard model for a broad range
of parameters, and analyze the pseudogap and Fermi
surface topology, and their interplay. We show that,
at strong coupling, interactions can strongly modify the
Fermi surface, making it more hole-like as compared to
its non-interacting shape16,30–33. We find that a pseudo-
gap only exists when the FS is hole-like, so that p∗ ≤ pFS.
We identify an extended parameter regime in which these
two critical doping levels are very close to one another:
p∗ ' pFS, so that the FS turns electron-like only when
the pseudogap collapses. Moreover we show that, when
considering the relation between the pseudogap and FS
topology, hole-doped cuprates can be separated into two
families: materials for which p∗ ' pFS and materials
which have p∗ < pFS . These two families differ mostly
by the relative magnitude of the next nearest-neighbor
hopping. These findings are shown to be consistent with
a large body of experiments on cuprates.

We reveal that a common link between these observa-
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tions is the pole-like feature22,23,30,32,34–36 displayed by
the electronic self-energy at the antinodal point, k =
(π, 0). The large imaginary part of the antinodal self-
energy associated with this pole is responsible for the
pseudogap, while the large particle-hole asymmetry asso-
ciated with its real part controls the interaction-induced
deformation of the Fermi surface and the location of the
Fermi surface topology transition. We investigate the
evolution of this particle-hole asymmetry as a function
of doping and nearest-neighbor hopping t′, and show
that the line in (p, t′) space where particle-hole symme-
try is approximately obeyed at low energy is pushed, at
strong coupling, to very low values of p and very nega-
tive values of t′. This is in stark contrast to the results of
weak-coupling theories where this line is close to the Lif-
shitz transition of the non-interacting system. This also
explains why interactions drive the Fermi surface more
hole-like for hole-doping.

In order to understand these results from a more ana-
lytic standpoint, we consider a recently developed SU(2)
gauge theory of fluctuating antiferromagnetic order37,38;
additional results on the SU(2) gauge theory appear in a
companion paper, Ref. 39. We focus on a metallic phase
of this theory, characterized by U(1) topological order,
which does not break spin or translational symmetries.
We show that a mean-field treatment of this gauge the-
ory provides a good description of our numerical results.
In particular, the self-energy of the charge-carrying field
(chargon) in this theory displays a pole which provides
an explanation for the quasi-pole of the physical electron
self-energy. The latter is calculated and compares well to
our numerical results, as do the trends in the evolution of
the pseudogap and particle-hole asymmetry as a function
of p and t′.

This paper is organized as follows. In Sec. II, we briefly
introduce the model and the numerical methods used in
this article. In Sec. III, we study the interplay between
the pseudogap and FS topology and analyze the mech-
anisms controlling this interplay. The comparison and
interpretation of our results in terms of the SU(2) gauge
theory is presented at the end of this section. In Sec.
IV we discuss the relevance of our results to experiments
on hole-doped cuprates. Sec.V provides a conclusion and
outlook. Finally, details about the employed methods
and various supporting materials can be found in the
Appendices.

II. MODEL AND METHOD

We consider the Hubbard model defined by the Hamil-
tonian:

H = −
∑
ij,σ

tijc
†
i,σcj,σ + U

∑
i

ni↑ni↓ − µ
∑
i,σ

niσ, (1)

where U is the onsite Coulomb repulsion and µ the chem-
ical potential. The hopping amplitudes tij ’s are chosen
to be non-zero between nearest-neighbor sites (tij = t)

and next-nearest-neighbor ones (tij = t′). These hop-
ping amplitudes define a non-interacting dispersion re-
lation εk = −2t(cos kx + cos ky) − 4t′ cos kx cos ky. In
the following, t = 1 will be our unit of energy. We
solve this model using two distinct methods: the dy-
namical cluster approximation (DCA15) and determinant
quantum Monte Carlo (DQMC40), see the Appendix
for details. Cluster extensions of dynamical mean-field
theory (DMFT) have shown that the Hubbard model
is able to capture many features of cuprate supercon-
ductors, such as the superconducting dome and the
pseudogap9,14–18,20–23,26,32,41–43. They have also estab-
lished that the pseudogap originates from antiferromag-
netic correlations, which become short-range as the cou-
pling strength or doping level are increased. This was
also recently corroborated by exact diagrammatic Monte
Carlo simulations28. While cluster extensions of DMFT
have shown that hole doping can drive a Lifshitz tran-
sition30–32 no general relationship between the pseudo-
gap and FS topology has been established. We therefore
carry out a systematic study for a broad range of param-
eters in order to investigate this issue.

III. RESULTS

A. Pseudogap and Fermi surface topology

In Fig. 1, we display the pseudogap onset tempera-
ture T ∗(p), and the temperature TFS(p) at which the
Fermi surface changes its topology, as a function of dop-
ing level p, for several values of the next-nearest-neighbor
hopping t′. T ∗ is identified as follows: we calculate the
zero-frequency extrapolated value of the spectral func-
tion at the antinodal point (π, 0); we find that its tem-
perature dependence displays a maximum which we iden-
tify as T ∗. Below this scale, the antinodal spectral in-
tensity decreases, signaling the opening of a pseudogap.
TFS is identified as the temperature where the Fermi sur-
face crosses the (π, 0) point, and turns from hole-like to
electron-like as temperature decreases (see below). Note
that our definition of a Fermi surface is a pragmatic one:
strictly speaking a Fermi surface only exists at zero tem-
perature. At finite temperatures, we define the Fermi
surface as the surface in momentum-space corresponding
to the maximum of the spectral intensity as it would
be observed, e.g. in an angle-resolved photoemission
(ARPES) experiment44.

When extrapolated to zero temperature, these data
define two critical doping levels: p∗ such that the pseu-
dogap disappears for p > p∗, and pFS that marks the
transition from a hole-like FS (p < pFS) to an electron-
like FS (p > pFS). Strikingly, the two curves in Fig. 1
suggest that the pseudogap can only exist when the Fermi
surface is hole-like, i.e. that p∗ ≤ pFS. It appears that for
values of t′ ≥ −0.1 both transitions happen at the same
doping p∗ = pFS within our error bars. For more negative
values of t′ the Fermi surface first becomes hole-like as p
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(c)(b)(a)

Hole-like FS

Electron-like FS

Figure 1. Pseudogap and Lifshitz transition temperatures. Evolution of the pseudogap onset temperature T ∗ (black)
and the Lifshitz transition temperature TFS (blue) as a function of the hole doping p, for several values of t′ and U = 7. The
finite temperature data points are extrapolated to zero temperature and yield two critical dopings p∗ and pFS. It is apparent
that p∗ ' pFS for t′ = 0 and t′ = −0.1, while p∗ < pFS for t′ = −0.2. The solid lines are linear (for T ∗) and quadratic (for TFS)
least squares fits to the data points, except the TFS line of t′ = 0 where TFS collapses to zero close to p∗ . Error bars estimate
all uncertainties in finding T ∗ and TFS with DCA (see also Appendix). Note that the change of topology of the Fermi surface
for the interacting system occurs at a larger doping than that of the non-interacting system (indicated by a light-blue arrow).

is reduced, and the pseudogap opens at a lower doping,
i.e. p∗ < pFS. We never observe a pseudogap with an
electron-like Fermi surface, which would correspond to
p∗ > pFS.

This can be documented further by repeating this anal-
ysis for several doping levels p and t′ values. The result-
ing map in the (p, t′) parameter space is displayed in
Fig. 2. A first observation is that the topological tran-
sition of the FS (blue line) that separates the regions
with hole-like and electron-like Fermi surfaces is strongly
renormalized with respect to its non-interacting (U = 0)
location (dashed line in Fig. 2 and arrows in Fig. 1). The
black line defines the onset of the pseudogap. These lines
define three regions: at large doping above the blue line,
the FS is electron-like and no pseudogap is present. In
the intermediate region between the two lines, the FS
is hole-like but without a pseudogap. The topological
transition and pseudogap opening coincide for a range
of t′, while for more negative t′ the two lines split apart
and, as doping is reduced, the pseudogap only opens af-
ter the FS has already turned hole-like at higher doping
level (p∗ < pFS). The pseudogap and FS topology tran-
sition lines are dependent on the value of U . As detailed
in the Appendix, a larger value of U yields a more ex-
tended regime of parameters for which p∗ ' pFS, with
the ‘branching point’ where the two lines merge mov-
ing towards more negative values of t′ and larger doping
level. This observation is important when comparing to
experimental observations (see below).

Ⓐ

Ⓑ

Ⓒ

Ⓓ

Figure 2. Zero-temperature Fermi surface topology
and pseudogap in the p−t′ plane. The black line separates
a region with no pseudogap (no PG) from a region where
a pseudogap exists (PG). The blue line indicates where the
interacting Fermi surface changes its topology from electron-
like (e-FS) to hole-like (h-FS). The dashed blue line signals
the same transition in the non-interacting case. The red curve
locates the change in particle-hole asymmetry at the antinode:
above the red-line the real-part of the self-energy modifies the
FS towards a more hole-like shape. On the red line, the self-
energy pole crosses zero-energy and approximate particle-hole
symmetry is restored, corresponding also to a maximum of the
low-energy scattering rate as t′ is varied for fixed p. Points
A-D label a set of parameters which are discussed further in
Fig. 4.
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(a) (b)

Figure 3. Antinodal quasiparticle dispersion and
Fermi surface topology (a) Antinodal quasiparticle energy
ε̃(π,0) for different doping levels, as a function of temperature.
The pseudogap onset temperature T ∗ and the Lifshitz tran-
sition temperature TFS are indicated by arrows. Below the
pseudogap temperature, ε̃(π,0) rapidly becomes very negative,
driving the FS hole-like. Only when no pseudogap is present
(here for p > 0.12) does ε̃(π,0) increase at low temperature and
eventually becomes positive to yield an electron-like Fermi
surface. (b) Illustration of the relation between the sign of
ε̃(π,0) and the Fermi surface topology.

B. Change of Fermi surface topology due to
correlation effects

The Fermi surface topology at the antinode is con-
trolled by the renormalized quasiparticle energy

ε̃(π,0) = ε(π,0) − µ+ ReΣ(π,0)(ω = 0)

= 4t′ − µ+ ReΣ(π,0)(ω = 0) (2)

For negative values of ε̃(π,0) the Fermi surface is hole-
like, while it is electron-like for ε̃(π,0) > 0. In order
to gain insight in the mechanisms driving the Lifshitz
transition, Fig. 3 displays ε̃(π,0) as a function of temper-
ature for various doping levels, with arrows indicating
T ∗ and TFS. Interestingly, even at the highest temper-
ature T = 0.2 displayed there, ε̃(π,0) is negative for all
doping levels, yielding a hole-like Fermi surface while the
non-interacting Fermi surface would be electron-like for
p & 9%. This temperature is above the pseudogap tem-
perature T ∗, and hence the renormalization of the FS
would be visible on a full Fermi surface in an ARPES
experiment. In this high-temperature range, only local
correlations are responsible for this effect, as already cap-
tured in a single-site DMFT calculation (see Fig. 12 in the
Appendix). As temperature is decreased, ε̃(π,0) first in-
creases slightly but then suddenly drops to very negative
values, pushing the Fermi surface to be very hole-like at
low temperatures. This starts happening just above the
pseudogap temperature and both effects can be traced
back to non-local electronic correlations. For this value
of t′ = −0.1 the connection between the disappearance of
the pseudogap and the recovery of an electron-like sur-
face is clear. Indeed, when no pseudogap is present as
e.g. for p = 0.15, ε̃(π,0) keeps on increasing and crosses
zero, and an electron-like FS is recovered at low-T .

C. Particle-hole asymmetry and pole-like structure
in the self-energy

From the definition of ε̃(π,0) it is clear that it is the real
part of the self-energy at the antinode that drives the
renormalization of the FS. In Fig. 4a, we consider a fixed

doping level p = 5% and display ReΣ
(2)
(π,0)(ω = 0) as a

function of t′, in which Σ(2) ≡ Σ−Up/2 is the self-energy
from which the Hartree (infinite frequency) contribution

has been subtracted out. It is seen that ReΣ
(2)
(π,0)(ω = 0)

changes sign around t′ ' −0.2 and becomes negative and
fairly large for larger values of t′. This pushes the Fermi
surface topology transition to higher values of t′: for 5%
doping it remains hole-like up to t′ ' +0.2 whereas the
Lifshitz transition of the non-interacting system occurs
at t′ ' −0.05 (see also Fig. 2).

The real part of the self-energy is related to its imagi-
nary part through the Kramers-Kronig relation

ReΣ
(2)
k (ω = 0) =

1

π

∫ ∞
0+

ImΣk(ω′)− ImΣk(−ω′)
ω′

dω′.

(3)
It is therefore instructive to analyze the behavior of
ImΣ(π,0)(ω) (Fig. 4b) for several values of t′ (as indi-
cated by the points A, B, C and D on Fig. 2) corre-
sponding to positive, vanishing and negative values of

ReΣ
(2)
(π,0)(ω = 0). In all four cases, the imaginary part of

the self-energy displays a prominent peak, corresponding
to a pole-like feature of the self-energy. For t′ = −0.2
(point B), this peak is centered at ω = 0. Because it
is particle-hole symmetric, it leads to a vanishing real
part of the self-energy (see Fig. 4a). For values of t′

just below and above -0.2 (points A and C), the peak in
ImΣ(π,0)(ω) shifts to negative (resp. positive) values of
ω. It has become particle-hole asymmetric and induces
a positive (resp. negative) real part of the self-energy.
There is therefore a direct connection between the ex-
istence of a large particle-hole asymmetric peak in the
imaginary part of the self-energy and the renormaliza-
tion of the Fermi surface to a more hole-like topology.
Note that the largest value of the low-frequency scat-
tering rate as t′ is varied is found when ImΣ(π,0)(ω) is
particle-hole symmetric (e.g. point B in Fig. 4): this de-
fines the location of the red line in Fig. 2 (see also the
Appendix). Anywhere above this line, the self-energy
is particle-hole asymmetric and drives the Fermi surface
topology transition to larger doping p as compared to the
non-interacting case. Note that the system becomes very
incoherent below the red line, at more negative values
of t′ and small doping. The precise nature of the Fermi
surface in this region, and its possible reconstruction, is
difficult to assess with the methods employed here.

This pole-like feature in the self-energy is also respon-
sible for opening the pseudogap, as clearly seen from
the inset of Fig. 4b which displays the antinodal spec-
tral function: the minimum of the spectral intensity is
found to coincide with the frequency of the quasi-pole,
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(a) (b)

Ⓐ

Ⓑ

Ⓒ Ⓓ

Ⓐ

Ⓑ

Ⓒ

Ⓓ

Ⓓ

Figure 4. Evolution of the antinodal self-energy at fixed doping p = 0.05, as a function of t′. (a): Real (Hartree
subtracted, see text) and imaginary parts of the antinodal self-energy at ω = 0. The real part vanishes where the imaginary
part is maximum, corresponding to a particle-hole symmetric low-energy ImΣ(π,0)(ω). (b): Real-frequency scattering rate
ImΣ(π,0)(ω) obtained from the Maximum Entropy method for different values of t′. It displays a pole-like feature that crosses
zero at t′ ' −0.2 (point B) where the low-energy scattering is maximum. When the pole is on the positive energy side,
it induces a negative real part of the self-energy (through the Kramers-Kronig relation) that drives the Fermi surface more
hole-like. Inset: antinodal spectral function at point D at T = 1/30. See Fig. 2 for the locations of points A−D in the (p, t′)
plane.

where ImΣ(π,0)(ω) is largest.

D. Fermi surface topology: numerically exact
DQMC results

These results have been obtained using the DCA ap-
proximation with an 8-site cluster (see Appendix A). We
also cross-checked these results with a different and inde-
pendent method: numerically exact determinant quan-
tum Monte Carlo (DQMC)40 at T = 1/3. The result
is displayed in Fig. 5 (left panel) and clearly shows that
the antinodal self-energy drives the Fermi surface hole-
like over a broad region of the (p, t′) plane, in agreement
with our DCA calculations. One can again observe a

line where ReΣ
(2)
(π,0)(ω) vanishes, mapped out for several

values of U in the right panel. This line compares with
the red line of Fig. 2, and moves closer to half-filling as
U is increased (see also Fig. 11) and towards the non-
interacting Lifshitz transition line as U is reduced.

E. SU(2) gauge theory

Recent numerical work, using a ‘fluctuation diag-
nostics’ analysis of the contributions to the electronic
self-energy in both the DCA26 and lattice diagram-
matic Monte-Carlo28 approaches have established that
the pseudogap is associated with the onset of short-
range antiferromagnetic (AF) correlations. On the an-
alytical side, an SU(2) gauge theory approach has been
introduced37–39 to deal with states in which AF long-
range order is destroyed by orientational fluctuations of
the order parameter. It is thus very natural to attempt
to interpret our numerical results in this framework and
compare them to a mean-field treatment of this gauge

theory.
This approach is based on the following representation

of the physical electron fields on each lattice site i:(
ci↑
ci↓

)
= Ri

(
ψi+
ψi−

)
(4)

In this expression, ψ± are ‘chargons’ - fermions which
carry charge but no spin quantum numbers and Ri’s
are 2 × 2 unitary matrix fields, the bosonic spinons

(RiR
†
i = R†iRi = 1). The Ri matrix can be thought of

as defining the local reference frame associated with the
local AF order (for early work promoting the local ref-
erence frame to a dynamical variable, see Refs. 45–47).
This representation has a local gauge invariance corre-

sponding to Ri → RiV
†
i , ψi → Viψi, with Vi an SU(2)

matrix. The Hubbard interaction can be decoupled us-
ing a vector field Φi conjugate to the local spin-density

c†iασαβciβ/2, and a vector ‘Higgs field’ is introduced such
that:

σ ·Hi = R†iσRi ·Φi . (5)

This identifies the Higgs field, Hi, as the local antiferro-
magnetic moment in the rotated reference frame. Note
thatHi, which transforms under the adjoint of the gauge
SU(2), does not carry any spin since it is invariant under
a global spin rotation.

We can now consider Higgs phases in which 〈Hi〉 6= 0
but 〈Ri〉 = 0. Because of the latter, such phases do not
display long-range AF order, which has been destroyed
by orientational fluctuations. However, 〈Hi〉 6= 0 signals
that the local order has a non-zero amplitude. A non-zero
〈Hi〉 also implies that such a phase has topological order,
corresponding to different possible residual gauge groups
once the SU(2) gauge symmetry has been spontaneously
broken by the Higgs condensate48–51. There are different
possible mean-field solutions for the Higgs condensate,
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U = 5

(2)

= 0
(2)

Figure 5. Particle-hole asymmetry from determinant quantum Monte Carlo (see methods). (a): Real part of

the self-energy in the p − t′ plane for U = 5. For a broad region (indicated in red), ReΣ
(2)

(π,0) is negative, hence driving the

Fermi surface more hole-like, in agreement with our DCA results. (b): The line where ReΣ
(2)

(π,0) = 0 and where the antinodal

scattering rate is largest is indicated for different values of U (to be compared to the red line in Fig. 2). As U is increased the
region where the FS is driven hole-like becomes larger.

corresponding to different topological orders and differ-
ent broken discrete symmetries38. Here we shall focus on
the simplest one with U(1) topological order which pre-
serves all space group, time-reversal, and spin rotations
symmetries; this corresponds to the following configura-
tion of the Higgs field (which resembles AF order):

〈Hi〉 =
(
0, 0, H0 e

iQ·Ri
)
, (6)

in which H0 is the Higgs field amplitude and Q = (π, π).
Solving the gauge theory at the mean-field level, the

Green’s function and self-energy of the chargon field is
easily calculated. Because the chargon field ‘sees’ an
antiferromagnetic environment, it is identical to the ex-
pression obtained for an antiferromagnetic spin-density
wave39. It thus has a matrix form which involves both
components which are diagonal in momentum and off-
diagonal components coupling k to k +Q:

Gψ(ω,k)−1 =

(
ω − ξψk H0

H0 ω − ξψk+Q

)
(7)

Its momentum diagonal component reads

Gψ(ω,k) =
[
ω − ξψk − Σψ(ω,k)

]−1
Σψ(ω,k) =

H2
0

ω − ξψk+Q + i0+
(8)

In this expression, ξψk = −2Ztt(cos kx + cos ky) −
4Zt′t

′ cos kx cos ky − µ is the renormalized dispersion of
the chargons. A quantitative calculation of the renormal-
ization factors Zt and Zt′ requires a full solution of the
mean-field equations. We found typical values Zt ∼ 0.3
and Zt′ ∼ 0.2, weakly dependent on the doping level
p since the chemical potential mainly affects the char-
gon dispersion but not the spinon dispersion. Impor-
tantly, the self-energy (8) of the chargons has a pole at

ωk = ξψk+Q. Hence the mean-field chargon Green’s func-
tion has zeros: these zeros are located at zero energy on

the Brillouin zone contour defined by ξψk+Q = 0, corre-
sponding to a chargon ‘Luttinger surface’. There are two
bands of chargon excitations, corresponding to the solu-

tions of (ω − ξψk )(ω − ξψk+Q)−H2
0 = 0. To summarize, a

crucial aspect of this SU(2) gauge theory description is
to have chargons whose dispersions are identical (at the
mean-field level) to the excitations of a spin-density wave
states, despite the theory having no long-range order or
broken symmetries (i.e. the symmetry is restored by the
fluctuations of the spinon fields).

At the mean-field level, in the phase associated with
the configuration of the Higgs field considered here, the
spinon excitations are gapped. In order to obtain the
physical electron Green’s function, a convolution of the
chargon and spinon Green’s function over frequency and
momentum must be performed: Gc = GR ? Gψ and the
physical electron self-energy can then be obtained from
Σ = ω+µ−εk−G−1c (with εk the bare dispersion defined
above). For the purpose of the present paper, a detailed
discussion of the spinon dispersion and Green’s function
is not essential, see Appendix F and Ref. 39 for details.
It is sufficient here to emphasize the two following points.
(i) The convolution mainly broadens the pole structure
of Gψ but the location in momentum and frequency of
the most singular structures of the physical self-energy
are still those encoded in the chargon self-energy given
by (8). (ii) The convolution does bring an important ef-
fect however: in contrast to the imaginary part of the
chargon self-energy, which is constant all along the Lut-

tinger surface ξψk+Q = 0, the imaginary part of the phys-
ical electron self-energy obtained from the convolution of
Green’s functions has an imaginary part which is larger
close to the antinodes than close to the nodes, see Fig. 15
in Appendix F. Hence, the gauge theory manages to cap-
ture qualitative aspects of the nodal-antinodal dichotomy
found in our DCA calculations.

The figure also shows that the peak frequency ωp shifts
from negative to positive frequency as t′ is increased. The
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inset of this figure displays the corresponding spectral
function at the antinode, which has a pseudogap caused
by the quasi-pole at ωp. Note that the pseudogap is
particle-hole asymmetric, as expected from the fact that
it does not originate from the particle-particle channel.
These results are in excellent qualitative agreement with
the DCA calculations above (Fig. 4). Note that, for the
sake of comparison to the finite-temperature DCA re-
sults, the gauge theory calculations presented here are
performed at a finite temperature larger than the spinon
gap. How do gapless nodal excitations survive in the
gauge theory description as temperature is lowered be-
low this gap (e.g. by having bound-states of the chargons
and spinon as in an FL* state52) is an important question
which is however beyond the scope of the present paper.

In Fig. 6(a), we summarize important aspects of the
mean-field analysis of the gauge theory39 as a function of
doping level p and t′. As in Fig. 2, the blue line in this
figure is the location of the Lifshitz transition of the phys-
ical electron FS from hole to electron-like (as defined by
the change of sign of the renormalized antinodal disper-
sion, Eq. 2) and the red line indicates where ωp = 0 (i.e.
where particle-hole symmetry is approximately restored
at low energy). In good qualitative agreement with the
DCA results displayed in Fig. 2, one sees that the Lifshitz
transition of the physical FS is pushed to much larger
doping in comparison to that of the non-interacting sys-
tem (dashed line), and that the location of the red line
where the pole is close to zero energy is pushed to much
smaller doping. The latter approximately coincides with
the Lifshitz transition of the chargon Luttinger surface,
given by 4Zt′t

′ = µ. Because the chemical potential µ of
the interacting system takes more negative values than
the non-interacting one and also because Zt′ < 1, the red
line is shifted to lower doping as U increases, in agree-
ment with the result of Fig. 5. This clarifies why the
pole is found at positive energies for most values of (p, t′)
and why the FS id driven hole-like in a wide region of
the (p, t′) plane. A striking consequence of the presence
of the pole is illustrated around the t′ = 0, p = 0 point,
corresponding to the half-filled Hubbard model with only
nearest-neighbor hopping, in which the antinodal scatter-
ing must be particle-hole symmetric by symmetry. When
the system is very slightly hole-doped away from p = 0,
both DCA and the mean-field gauge theory suggest that
the particle-hole symmetric point rapidly shifts to very
negative t′. This is in striking contrast to weak-coupling
theories in which approximate particle-hole symmetry at
the antinode would be restored at the non-interacting
Lifshitz transition (dashed line). We note that there are
quantitative discrepancies in the location of these two
lines between the numerical DCA results and the mean-
field gauge theory results, which are predominantly due
to the assumptions made on the renormalization param-
eters Zt and Zt′ entering the chargon dispersion and on
the Higgs field amplitude H0.

Importantly, the mean-field analysis of the SU(2)
gauge theory provides a physical understanding of the

origin of the pseudogap and of the quasi-pole of the
self-energy as being due to short-range antiferromagnetic
correlations, long-range order being destroyed by orien-
tational fluctuations. The quasi-pole is responsible for
the pseudogap in the physical electron Green’s function,
while the spinon (R) spectrum displays a gap. The char-
gons have a spectrum characteristic of an AF spin-density
wave despite the absence of AF long-range order, and
their self-energy has a sharp pole at mean-field level. The
(red) line where the pole crosses zero energy, correspond-
ing to an approximate restoration of particle-hole sym-
metry at low-energy, can be interpreted39 as the Lifshitz
transition of the chargon Luttinger surface.

IV. DISCUSSION AND EXPERIMENTAL
RELEVANCE

Our results establish that an asymmetric pole-like fea-
ture in the antinodal self-energy is responsible for both
the pseudogap and for the renormalization and topologi-
cal transition of the FS. We note that, in weak-coupling
approaches such as spin-fluctuation theories (see Ap-
pendix E for a detailed discussion) the self-energy be-
comes very large for ω = εk+(π,π) − µ, provided that
the antiferromagnetic correlation length ξ is large enough
and that vF /ξ < T . As a result, hot spots form
on the Fermi surface, at specific k-vectors defined by
εk = εk+(π,π) = µ, corresponding to the intersection of
the antiferromagnetic Brillouin zone with the Fermi sur-
face. Hence, in a weak coupling approach, the change of
sign of the bare dispersion ε(π,0) − µ = 0 controls both
the doping at which the hot spots reach the antinode
and that where the Lifshitz transition occurs. As a re-
sult, the non-interacting FS transition line (blue dashed
line in Fig. 2) controls at the same time the location of
the Lifshitz transition, the symmetry of the self-energy
and the suppression of spectral weight along the Fermi
surface. This is in stark contrast to our strong-coupling
results where these phenomena appear at distinct loca-
tions. In particular, we have demonstrated that the line
in (p, t′) parameter space where particle-hole symmetry is
approximately obeyed at low energy is pushed, at strong
coupling, to very low values of p and very negative values
of t′, see Fig. 2 and Fig. 5 where this line is displayed in
red. This is crucial in explaining why interactions drive
the Fermi surface more hole-like for a wide range of (p, t′)
where the non-interacting (or weak coupling) FS would
actually be electron-like, and why the Lifshitz transition
is pushed to larger values of p in comparison to the non-
interacting system.

In order to put our results in perspective, we note that
the relation between a pole-like feature in the self-energy
and the pseudogap, as well as the implications of the
corresponding zeros of the Green’s function for the re-
construction of the Fermi surface have been previously
discussed in cluster extensions of dynamical mean-field
theory22,23,30,32,34–36 and in phenomenological theories
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(a) (b)

Figure 6. Pseudogap and Fermi surface topology within the SU(2) gauge theory at mean-field level. Color
coding is identical to Fig. 2 (DCA results), to which this figure should be compared. (a) Solid blue line: Lifshitz transition of
the interacting Fermi surface. Along the red line, the self-energy pole is at zero energy and approximate particle-hole symmetry
is restored. This also corresponds to the Lifshitz transition of the chargons. (b) Electronic self-energy at the antinode for two
different values of t′. The quasi-pole in the self-energy moves from negative to positive frequency as t′ is increased, see Fig. 4.
The inset displays the antinodal spectral function for t′ = −0.15, emphasizing that its minimum coincides with the position
of the pole. Here we assumed H0 = 0.3, a spinon gap ∆ = 0.01, and J = 0.1 (the nearest-neighbor coupling of the spin-wave
fluctuations, see Ref. 39). A broadening factor η = 0.04 is used to obtain smooth spectral functions.

such as YRZ53 or other approaches54,55 (see Ref. 56 for a
gauge-theory perspective on the YRZ phenomenology).
The existence of a Lifshitz transition as the hole doping
is increased was also discussed in some previous cluster
DMFT or DCA studies30–32. However, the role played
by the particle-hole asymmetry associated with the self-
energy pole in determining the FS topology, and the sys-
tematic dependence of this asymmetry on (p, t′) were not
unraveled and studied, and hence the key interplay be-
tween FS topology and the pseudogap was not previously
revealed.

We now discuss the relevance of our results to exper-
iments on hole-doped cuprates. We first note that, in-
deed, a pseudogap is not found when the FS is electron-
like and hence that the relation p∗ ≤ pFS is apparently
obeyed in all compounds. In the single-layer compound
La2−xSrxCuO4 (LSCO), with a small value57 of |t′/t|, the
in-plane resistivity in high magnetic fields58 suggests that
p∗ ' 0.18. Currently available ARPES experiments59–61

allow to ascertain that 0.17 < pFS . 0.20. In the Nd-
LSCO compound, high-field transport62 finds p∗ ' 0.23,
while ARPES63 has 0.20 < pFS < 0.24.

In another single-layer compound
(Bi,Pb)2(Sr,La)2CuO6+δ (Bi2201)64–67, it is found
that p∗ ' pFS. An ARPES experiment on the bilayer
Bi2212 material68 has shown that the antibonding FS
crosses the antinode at pFS ' 0.22 and suggested that
it may be connected to the onset of the pseudogap.
This was further confirmed in a recent electronic Raman
experiment3,4 that found the pseudogap end-point at
p∗ ' 0.22. Note that the Raman response is believed to
be predominantly sensitive to the antibonding band since
it is close to a density of states singularity3 and does
not give information about the possible existence of a
pseudogap in the bonding band (which remains hole-like
for all dopings). In compounds with larger values57 of
|t′/t|, such as YBa2Cu3O7−δ

69,70, Tl2Ba2CuO6+δ
71,72 or

HgBa2CuO4+δ
73, it is generally believed that pFS and

p∗ are distinct with p∗ < pFS. This is in qualitative
agreement with our finding that the FS and pseudogap
critical doping coincide for smaller values of |t′/t|, and
are distinct for larger ones. Hence, we conclude on the
basis of our results and experimental observations that
there are two families of hole-doped cuprates: materials
with smaller values of |t′/t| for which the collapse of
the pseudogap and change of FS topology coincide
(p∗ ' pFS), and materials with larger values of |t′/t| for
which these are distinct phenomena (p∗ < pFS).

Finally, a very recent study on Nd-LSCO using hydro-
static pressure to tune the band structure finds that both
pFS and p∗ decrease by the same amount.5 This provides
a compelling experimental demonstration that p∗ cannot
exceed pFS.

We finally comment on the predicted renormalization
of the FS by strong correlations. In view of Fig. 2, the
materials for which this effect is expected to be strongest
are the ones with smaller values of |t′/t|, hence we turn
to LSCO. We note that, in order to fit the ARPES FS
using a single-band tight binding model, the effective pa-
rameter t′ has to be tuned systematically more negative
(corresponding to a more negative ε̃(π,0)) as doping is re-
duced, i.e., from t′/t = −0.12 for p = 0.3 to t′/t = −0.2
for p = 0.0360. Moreover, electronic structure calcula-
tions based on DFT-LDA yield pFS ' 0.15 while ARPES
finds 0.17 < pFS . 0.20, as mentioned above. These
two observations suggest that correlation effects indeed
generally drive the FS more hole-like.

V. CONCLUSION AND OUTLOOK

To conclude, we have investigated the interplay be-
tween the pseudogap and the Fermi surface topology
in the two-dimensional Hubbard model. In the weak-



9

coupling regime these issues are directly connected: hot-
spots can only form when the FS is hole-like and inter-
sects the antiferromagnetic zone boundary. At stronger
coupling, the antiferromagnetic correlations responsible
for the pseudogap become short-ranged, and it becomes
a fundamental puzzle to understand whether there is
any connection to FS topology, which is in essence long-
distance physics. We provide an answer to this puzzle by
showing that a common pole-like feature in the electronic
self-energy controls both issues. This pole induces a large
low-energy scattering rate responsible for the onset of the
pseudogap, and its asymmetry leads to significant mod-
ifications of the Fermi surface with respect to its non-
interacting shape and controls the location of the Lifshitz
transition. As a consequence, we find that the pseudogap
only appears on hole-like Fermi surfaces, i.e. p∗ ≤ pFS
and that p∗ ' pFS for an extended range of doping levels
and values of t′. These findings are in good agreement
with available experimental data. We have also shown
that our results can be interpreted in the framework of
an SU(2) gauge theory of fluctuating antiferromagnetism
with topological order. This provides an explanation for
the origin of the pole in the self-energy and establishes the
connection between the pseudogap and the Fermi surface
topology through the chargon Luttinger surface. This ef-
fort to bridge the gap between numerical results obtained
within cluster extensions of DMFT and low-energy effec-
tive field theories is pursued and detailed in a companion
publication39.

Let us emphasize that in most of the parameter range
relevant to hole-doped cuprates, the self-energy pole is
found at a positive energy. Hence, the strongest sup-
pression of the antinodal spectral weight is predicted to
occur at energies above the Fermi level, which is not di-
rectly accessible to ARPES experiments. While a strong
particle-hole asymmetry is indeed observed by STM74,75,
this emphasizes again76 the importance of developing
momentum-resolved spectroscopies able to probe the
‘dark side’ of the FS. Finally, an outstanding question
is to explore whether the topological order, associated
with the pseudogap regime in the gauge theory descrip-
tion, can be revealed more directly in numerical studies
of Hubbard-like models.
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Appendix A: Methods

Our results for the two-dimensional Hubbard model
are obtained using two methods: unbiased determinant
quantum Monte Carlo (DQMC40) and the dynamical
cluster approximation (DCA15,77), a cluster extension
of dynamical mean-field theory (DMFT78) that captures
the physics of short-range spatial correlations. We per-
form DQMC on a 16× 16 lattice with periodic boundary
conditions at a temperature T = 1/3. Since the inverse
temperature β = T−1 = 3 is significantly smaller than
the linear size of the lattice L = 16, the finite size effects
are negligible in the DQMC calculation. The imaginary
time step was set to ∆τ = 3/64 which is small enough to
avoid artifacts due to the discretization errors. We use
5.12 × 105 Monte Carlo sweeps to collect the data after
1000 warmup sweeps.

The DCA calculation is performed with an eight-site
cluster. In the DCA approach, the lattice self-energy is
approximated by a patchwise-constant self-energy ΣK in
the Brillouin zone. We solved the DCA equations with
an eight-site auxiliary quantum impurity cluster. In the
geometry we used, the Brillouin zone is divided in eight
sectors where the self-energy is constant, as shown in
Fig. 7. Note that there are clearly distinct patches for
the antinodal and the nodal region of the Brillouin zone.

We use both the the Hirsch-Fye77 and the continuous-
time quantum Monte Carlo79 method to solve the aux-
iliary cluster impurity problem. A comparison of both
methods shows that the imaginary-time step ∆τ = 1/21

(0,0)
(π,0)

(π,π)
(0,π)

Figure 7. The patches in momentum space of the eight-site
DCA method. The self-energy is constant over each patch.
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( π, 0 ) ( ω = 0) i s n e g ati v e,

w hil e it i s p o siti v e  w h e n t h e p ol e i s o n t h e n e g ati v e si d e.
We c a n t h er ef or e l o c at e t h e c u r v e b y fi n di n g, at fi x e d t ,
t h e v al u e of t h e d o pi n g p c a t  w hi c h t h e z e r o-t e m p er at u r e

e xt r a p ol ati o n of  R e Σ
( 2 )
( π, 0 ) ( ω = 0) c h a n g e s si g n s e e  Fi g. 1 0.

3. U d e p e n d e n c e  of t h e c o n n e c ti o n  b e t w e e n p ∗ a n d
p F S

I n t h e  m ai n t e xt, all c al c ul ati o n s h a v e u s e d U = 7.
F or t hi s v al u e,  w e h a v e s h o w n t h at, p ∗ p F S f o r v al u e s
of t g r e at er t h a n − 0 .1.  F or  m or e n e g ati v e v al u e s of
t t h e p ∗ a n d p F S li n e s s plit a p art.  W h e n U i s l ar g er,
t hi s b r a n c hi n g p oi nt g o e s t o l o w er v al u e s of t .  T hi s i s
s h o w n i n  Fi g. 1 1  w h er e  w e c o m p ut e T ∗ a n d T F S f o r b ot h
U = 7 a n d U = 7 .5. It i s cl e ar f r o m t h e fi g u r e, t h at f or
U = 7 .5 p ∗ a n d p F S a r e  m u c h cl o s er t h a n f or U = 7.  T hi s
c a n b e u n d er st o o d b e c a u s e a l ar g er v al u e of U e xt e n d s
t h e p s e u d o g a p r e gi o n t o l ar g er d o pi n g s,  w hil e t h e  Fe r mi
s u rf a c e t o p ol o g y i s n ot i n fl u e n c e d  m u c h b y c or r el ati o n s
b ef or e  w e a ct u all y h a v e a p s e u d o g a p a n d h e n c e p ∗ p F S .

A p p e n di x  C:  T e m p e r a t u r e e v ol u ti o n  of ˜ k a n d r ol e  of
n o n -l o c al c o r r el a ti o n s

I n  Fi g. 1 2,  w e i n v e sti g at e t h e r ol e of n o n-l o c al c or-
r el ati o n s b y c o m p ari n g t h e r e s ult s o bt ai n e d b y  D C A,
a s i n t h e  m ai n t e xt, a n d si n gl e- sit e d y n a mi c al  m e a n-
fi el d ( D M F T) t h at o nl y a c c o u nt s f or l o c al c or r el ati o n s.

0 .0 0 0 .0 5 0 .1 0 0 .1 5 0 .2 0
p

0 .0

0 .1

0 .2

0 .3

T

U = 7 .0

U = 7 .5

t = − 0 .2

T ∗

T F S

Fi g u r e 1 1. T ∗ a n d T F S a s a f u n c ti o n of d o pi n g p a t t = − 0 .2,
U = 7 ( d a s h e d li n e s ), a n d U = 7 .5 ( s oli d li n e s ).  N o t e t h a t
h e r e t h e i m a gi n a r y- ti m e di s c r e ti z a ti o n s t e p i s  ∆ τ = 1 / 2 U .

T h e bl a c k li n e s h o w ˜ ( π, 0 ) a s c o m p ut e d b y  D M F T f or
t = − 0 .1 a n d p = 0 .1.  F or t h e s e p ar a m et er s, t h e n o n-
i nt er a cti n g  Fer mi s u rf a c e i s el e ct r o n-li k e. It i s s e e n t h at
at l o w t e m p er at u r e t h e  D M F T r e s ult s al s o p r e di ct a n
el e ct r o n-li k e  Fer mi s u rf a c e.  T hi s i s n ot s u r p ri si n g a s
D M F T p r e s er v e s t h e  L utti n g er t h e or e m a n d t h e i nt er-
a cti n g  Fer mi s u rf a c e i s t h e s a m e a s t h e n o n-i nt er a cti n g
o n e  w h e n T → 0.  H o w e v er, a s t e m p er at u r e i s i n cr e a s e d,
˜ ( π, 0 ) d e c r e a s e s si g ni fi c a ntl y a n d b e c o m e s n e g ati v e.  T hi s
yi el d s a h ol e-li k e i nt er a cti n g  Fer mi s urf a c e at hi g h t e m-
p er at ur e t h at b r e a k s  L utti n g er’ s t h e or e m 8 3, 8 4 wi t h a v ol-
u m e l ar g er t h a n i n t h e n o n-i nt er a cti n g c a s e.

T h e r e d a n d bl u e li n e s s h o w ˜ ( π, 0 ) a n d ˜ ( π
2 , π

2 ) r e s p e c-
ti v el y a s o bt ai n e d b y  D C A. ˜( π

2 , π
2 ) h a s b e e n s hift e d b y

a c o n st a nt 4 t = − 0 .4 t h at c or r e s p o n d s t o t h e e n e r g y
di ff er e n c e of t h e n o n-i nt er a cti n g di s p er si o n at ( π, 0) a n d
( π

2 , π
2 ).  At hi g h t e m p er at u r e s all c u r v e s yi el d t h e s a m e

v al u e, c o m p ati bl e  wit h a s elf- e n e r g y t h at i s e s s e nti all y
l o c al.  A s t e m p er at u r e i s d e cr e a s e d t h e n o d al (̃ π

2 , π
2 ) b e-

h a v e s li k e t h e  D M F T s ol uti o n i n di c ati n g t h at t h e  Fer mi
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Fi g u r e 1 2.  Te m p e r a t u r e d e p e n d e n c e of ˜ k a s o b t ai n e d b y
D C A a n d  D M F T a t 1 0 % h ol e d o pi n g a n d t = − 0 .1.

s u rf a c e at t h e n o d e i s v er y cl o s e t o it s n o n-i nt er a cti n g
s h a p e.  T h e  D C A ˜( π, 0 ) h a s a di ff e r e nt b e h a vi or.  A s t e m-
p er at u r e i s l o w e r e d it q ui c kl y d e p art s f r o m ˜ ( π

2 , π
2 ) s h o w-

i n g t h e o n s et of n o d al / a nti n o d al di ff er e nti ati o n.  At a
t e m p er at u r e sli g htl y a b o v e T ∗ , n o n-l o c al c or r el ati o n s b e-
c o m e l ar g e a n d i n d u c e a v er y n e g ati v e ˜ ( π, 0 ) a s di s c u s s e d
i n t h e  m ai n t e xt.

A p p e n di x  D:  P s e u d o g a p a n d  F e r mi s u rf a c e t o p ol o g y
t r a n si ti o n a s a f u n c ti o n  of U

O u r r e s ult s f or U = 7 s h o w t h at, f or a b r o a d r a n g e of
p ar a m et er s, t h e p s e u d o g a p di s a p p e ar s at t h e s a m e c riti-
c al d o pi n g  w h e r e t h e  Fer mi s u rf a c e u n d er g o e s a  Lif s hit z
t r a n siti o n. I n  Fi g. 1 3,  w e i n v e sti g at e h o w o ur r e s ult s
d e p e n d o n t h e c or r el ati o n st r e n gt h U . It i s s h o w n t h at
f or v al u e s of U 5 c or r el ati o n s h a v e littl e e ff e ct o n t h e
Fer mi s u rf a c e t o p ol o g y a n d t h e l o w- e n e r g y s c att eri n g r at e
I m Σ( π, 0 ) i s v e r y s m all.  A b o v e U 5 c or r el ati o n e ff e ct s
s et i n q ui c kl y a s s h o w n b y a f a st i n cr e a s e i n t h e v al u e
of I m Σ ( π, 0 ) .  T hi s i n d u c e s a p s e u d o g a p at U = 5 .6.  At
t h e s a m e ti m e t h e e ff e cti v e q u a si p arti cl e di s p er si o n ˜( π, 0 )

c r o s s e s z e r o a n d b e c o m e s v er y n e g ati v e f or l ar g er v al u e s
of U .  T hi s s u d d e n i n cr e a s e of t h e c or r el ati o n e ff e ct s f or
U > 5  mi g ht e x pl ai n  w h y t h e p s e u d o g a p a n d t h e  Fer mi
s u rf a c e t o p ol o g y h a p p e n at t h e s a m e ti m e.

A p p e n di x  E:  C o m p a ri s o n  wi t h  w e a k - c o u pli n g
a p p r o a c h e s

L et u s i n v e sti g at e h o w o u r r e s ult s di ff er f r o m  w e a k-
c o u pli n g a p p r o a c h e s, s u c h a s s pi n- fl u ct u ati o n t h e or y or
t h e t w o- p arti cl e s elf- c o n si st e nt a p p r o a c h ( T P S C) of  Vil k
a n d  Tr e m bl a y 8 5 .  T h e l att e r h a s b e e n s h o w n t o b e q uit e
a c c u r at e i n t h e  w e a k t o i nt er m e di at e c o u pli n g r e gi m e of
t h e t w o- di m e n si o n al  H u b b ar d  m o d el, a n d t hi s a p p e n di x

2 3 4 5 6 7

U

− 0 .5

0 .0

0 .5
t = 0 , p = 0 .0 5

T = 0 .0 2 5

El e ct r o n-li k e  F S

H ol e-li k e  F S
Wit h o ut  P s e u d o g a p

Wit h  P s e u d o g a p

∆ ˜A (π ,0) (ω = 0) |T 2 = 0 .0 3 3
T 1 = 0 .0 2 5

˜ (π ,0)

I m Σ (π ,0)

Fi g u r e 1 3.  C o r r el a ti o n e ff e c t s s h o w n a s a f u n c ti o n of U f o r
t h r e e q u a nti ti e s: t h e q u a si p a r ti cl e e ff e c ti v e di s p e r si o n ˜( π , 0 ) ,
t h e i m a gi n a r y p a r t of t h e a nti n o d al s elf- e n e r g y a t z e r o e n e r g y
I m Σ( π , 0 ) ( ω = 0 ) a n d t h e di ff e r e n c e i n s p e c t r al i nt e n si t y a t
t h e  Fe r mi l e v el f o r t h e t w o l o w e s t c al c ul a t e d t e m p e r a t u r e s
i n di c a ti n g  w h e t h e r a p s e u d o g a p h a s f o r m e d.

cl o s el y f oll o w s t h e a n al y si s i n  R ef. 8 5.
I n t h o s e a p p r o a c h e s, t h e s elf- e n er g y i s o bt ai n e d a s

Σ( k , i ωn ) = g 2 T
p

1

V B Z q

G 0 ( k + q , i ωn + i νp ) χ (q , i νp ) ,

( E 1)
w h e r e G 0 i s t h e n o n-i nt er a cti n g  G r e e n’ s f u n cti o n, χ i s
t h e s pi n s u s c e pti bilit y, a n d g i s a c o u pli n g c o n st a nt  wit h
t h e di m e n si o n of e n er g y.  W h e n t h e  m a g n eti c c or r el ati o n
l e n gt h ξ i s l ar g e, χ c a n b e a p p r o xi m at e d b y: 8 6

χ ( q , i νp ) ∝
1

(q − Q ) 2 + ξ − 2 ν p / ω s p + ξ − 2
, ( E 2)

wit h Q = ( π,  π ) t h e a ntif er r o m a g n eti c  w a v e- v e ct or.  T h e
s elf- e n er g y t h u s r e a d s

Σ( k , i ωn ) ∝ T
p

1

V B Z q

1

i ωn + i νp + µ − k + q

×
1

( q − Q ) 2 + ξ − 2 ν p / ω s p + ξ − 2
.

( E 3)

I n t h e r e gi m e of i nt er e st h er e (l ar g e e n o u g h ξ , r e n or m al-
i z e d cl a s si c al r e gi m e), t h e a b o v e s u m i s d o mi n at e d b y
t h e s m all e st  M at s u b ar a f r e q u e n c y ( n ot e t h at ω s p ∼ ξ − 2 )
a n d o n e o bt ai n s t h e i m a gi n ar y p art of t h e r et ar d e d r e al-
f r e q u e n c y s elf- e n er g y i n t h e f or m:

−
1

π
I m  Σr e t ( k , ω) ∝ T d 2 q δ (ω − ξ k + q )

1

( q − Q ) 2 + ξ − 2

( E 4)
T h e i m p o rt a nt p oi nt i s t h at i n t w o di m e n si o n s, t hi s i n-
t e gr al di v er g e s a s t h e c or r el ati o n l e n gt h b e c o m e s l ar g e,
w hi c h l e a d s t o t h e f or m ati o n of ‘ h ot s p ot s’ at  w hi c h a



1 3

p s e u d o g a p o p e n s.  T hi s i nt e gr al c a n a ct u all y b e p er-
f or m e d a n al yti c all y, a n d o n e fi n all y o bt ai n s:

−
1

π
I m  Σr e t ( k , ω) = g̃

T

( ω − ξ k + Q ) 2 + ( v F / ξ ) 2
+ r e g .

( E 5)
w h e r e ‘ r e g.’ d e n ot e s a n o n- si n g ul ar c o nt ri b uti o n.  T h e
p h y si c s a s s o ci at e d  wit h a  w e a k- c o u pli n g d e s cri pti o n of
s pi n fl u ct u ati o n s c a n b e e ntir el y d e s cri b e d o n t h e b a si s
of t hi s e x p r e s si o n 8 5 .  L et u s f o c u s fi r st o n t h e  Fer mi s u r-
f a c e pr o p erti e s, c orr e s p o n di n g t o ω = 0 a n d  m o m e nt a
s u c h t h at ξ k = 0.  A s cl e a r f r o m ( E 5), t h e s elf- e n er g y i s
r e g ul ar o n t h e  Fer mi s u rf a c e e x c e pt at t h e ‘ h ot s p ot s’ s at-
i sf yi n g al s o ξ k + Q = 0, c o r r e s p o n di n g t o t h e i nt er s e cti o n
of t h e  Fer mi s urf a c e  wit h t h e a ntif er r o m a g n eti c  Brill o ui n
z o n e.  At t h e s e h ot- s p ot s, t h e s elf- e n er g y i s si n g ul ar: it s
i m a gi n ar y p art i s of or d er:

−
1

π
I m  Σ|h o t ∝

T ξ

v F
( E 6)

T hi s i s l ar g e o nl y  w h e n t h e c or r el ati o n l e n gt h i s l ar g e:
ξ > v F / T . I n t hi s r e gi m e, s p e ct r al  w ei g ht i s st r o n gl y
d e pl et e d at t h e h ot s p ot s, c or r e s p o n di n g t o t h e  w e a k-
c o u pli n g d e s c ri pti o n of t h e p s e u d o g a p.  W h e n t h e c or-
r el ati o n l e n gt h r e m ai n s fi nit e a s t e m p er at u r e i s l o w e r e d
( s h ort-r a n g e or d er), t h e h ot s p ot s a n d c or r e s p o n di n g
p s e u d o g a p di s a p p e ar f or T  < v F / ξ a n d c o n v e nti o n al
Fer mi li q ui d b e h a vi or i s r e c o v er e d at l o w t e m p er at ur e.

L et u s e m p h a si z e t h e cr u ci al di ff er e n c e s t h at e xi st b e-
t w e e n t h e  w e a k- c o u pli n g e x p r e s si o n of t h e s elf- e n er g y
( E 5) a n d b ot h t h e s elf- e n er g y t h at  w e o bt ai n f r o m  D C A
at st r o n g c o u pli n g, a s  w ell a s t h e s elf- e n er g y o bt ai n e d
f r o m t h e S U( 2) g a u g e t h e or y.  A s cl e ar fr o m ( E 5), t h e
i m a gi n ar y p art of t h e  w e a k- c o u pli n g s elf- e n er g y d o e s di s-
pl a y a p e a k, b ut (i) t h e h ei g ht of t hi s p e a k i s pr o p or-
ti o n al t o T ξ (T ) a n d t h u s e v e nt u all y t h e p e a k a n d t h e
h ot s p ot s di s a p p e ar at l o w- T if ξ r e m ai n s fi nit e (ii) t h e
wi dt h of t hi s p e a k i s p r o p orti o n al t o v F / ξ  <  T ,  w hi c h
i n t h e r e gi m e  w h er e t h e p e a k e xi st s i s s m all er t h a n t e m-
p er at ur e. I n c o nt r a st, i n t h e st r o n g- c o u pli n g  D C A c al-
c ul ati o n s t h e p e a k i s n ot s u p p r e s s e d a s T i s r e d u c e d,
a n d it s  wi dt h i s l ar g er t h a n T .  F u rt h er m or e, t h e c or-
r el ati o n l e n gt h t h at  w e c a n e sti m at e i n o ur  D C A r e s ult s
f r o m t h e st ati c st a g g er e d s u s c e pti bilit y χ A F ∝ ξ 2 i s q uit e
s m all at st r o n g c o u pli n g:  w e fi n d f or e x a m pl e: ξ / a 2 .7
f or U = 7 , t = − 0 .2 , p = 0 .1 at T = 1 / 3 0.  T h e  w e a k-
c o u pli n g e x p r e s si o n al s o h a s a di ff er e nt st r u ct u r e t h a n t h e
si n g ul ar d elt a-f u n cti o n f or m of t h e c h ar g o n s elf- e n er g y i n
t h e S U( 2) g a u g e t h e or y: t h e l att er, i m p ort a ntl y, d o e s n ot
i n v ol v e t h e c or r el ati o n l e n gt h ( s et b y t h e s pi n o n s) a n d i s
si mil ar t o t h at of a n S D W i n t h e or d er e d p h a s e.

T h e r e al p art of t h e s elf- e n er g y c or r e s p o n di n g t o ( E 5)
c a n b e o bt ai n e d u si n g  K r a m er s- K r o ni g r el ati o n s a s:

R e  Σ r e t ( k , ω) ∝
T

Ω 2
k + ( v F / ξ ) 2

× l n |
Ω k + Ω 2

k + ( v F / ξ ) 2

Ω k − Ω 2
k + ( v F / ξ ) 2

|

( E 7)

0 .0 0 .1 0 .2

p

− 0 .3

− 0 .2

− 0 .1

0 .0

0 .1

0 .2

t

1 6 × 1 6 D Q M C,  T = 1/ 3

U = 4

U = 6

U = 8

(π , π ) S D W

Fi g u r e 1 4.  T h e li n e s i n t h e t − p pl a n e s h o w  w h e r e
t h e l o w- e n e r g y i m a gi n a r y p a r t of t h e a nti n o d al s elf- e n e r g y
I m Σ( π , 0 ) ( ω ) h a s i t s p ol e-li k e f e a t u r e c e nt e r e d a r o u n d ω = 0
a n d a n e s s e nti all y p a r ti cl e- h ol e s y m m e t ri c l o w- e n e r g y s p e c-
t r u m.  O n t h e s e c u r v e s  R e Σ ( π , 0 ) ( ω = 0 ) v a ni s h e s.  T h e s oli d
li n e s a r e o b t ai n e d b y  D Q M C f o r di ff e r e nt v al u e s of U ,  w hil e
t h e d a s h e d li n e i s t h e r e s ul t f r o m t h e S D W  w e a k- c o u pli n g a p-
p r o a c h.  T h e d a s h e d li n e c oi n ci d e s  wi t h t h e n o n-i nt e r a c ti n g
Lif s hi t z t r a n si ti o n.

i n  w hi c h  w e h a v e u s e d t h e s h ort- h a n d n ot ati o n  Ωk ≡
ω − ξ k + Q . I n t h e t e m p er at u r e r e gi m e  w h er e h ot s p ot s
ar e p r e s e nt T  > v F / ξ , o n e c a n di sti n g ui s h t w o r e gi m e s
of f r e q u e n ci e s.  F or  Ω k > v F / ξ ,  R e Σ i s of or d er
(T / Ω k ) l n( Ω k ξ / v F ),  w hil e at l o w f r e q u e n ci e s  Ω k < v F / ξ ,
t h e s elf- e n e r g y i s r e g ul ar  R e Σ ∝ T Ω k ( ξ / v F ) 2 .  H e n c e, t h e
r e g ul ar p art of t h e s elf- e n er g y i s r e g ul ar at l o w-f r e q u e n c y
e v e n cl o s e t o t h e h ot s p ot s  w h e n ξ r e m ai n s fi nit e.  A s
a r e s ult, h ot s p ot s e xi st at t h e i nt er s e cti o n b et w e e n t h e
Fer mi s u rf a c e a n d t h e a ntif er r o m a g n eti c  Brill o ui n z o n e
f or T  > v F / ξ , b ut t h e r e i s n o r e c o n st r u cti o n of t h e  Fer mi
s u rf a c e ot h er wi s e.  H e n c e, f or a d o pi n g v al u e l ar g er t h a n
t h e v al u e c or r e s p o n di n g t o t h e n o n-i nt er a cti n g  Lif s hit z
t r a n siti o n, t h er e ar e n o h ot s p ot s a n d t h e  Fer mi s u rf a c e
i s  w e a kl y r e n or m ali z e d a n d el e ct r o n-li k e.  H e n c e, i n  w e a k-
c o u pli n g t h e n o n-i nt er a cti n g  Lif s hit z t r a n siti o n c o nt r ol s
b ot h t h e l o c ati o n of t h e s elf- e n er g y si n g ul ariti e s a n d t h e
t o p ol o gi c al t r a n siti o n of t h e  Fer mi s u rf a c e.  T hi s i s v er y
di ff er e nt f r o m o u r r e s ult s i n t h e st r o n g c o u pli n g r e gi m e
U = 7  w h er e t h e s e p h e n o m e n a ar e c o nt r oll e d b y t h r e e
di ff er e nt li n e s.

B y v ar yi n g U o n e c a n o b s er v e h o w t h e t r a n siti o n f r o m
w e a k t o st r o n g c o u pli n g h a p p e n s.  Fi g. 1 4 s h o w s t h e
D Q M C r e s ult s f or s e v er al v al u e s of U .  T h e li n e s s h o w
w h er e t h e r e al p art of t h e s elf- e n er g y v a ni s h e s. It s e p a-
r at e s a r e gi o n  w h er e t h e p ol e i n t h e s elf- e n er g y i s at n e g-
ati v e e n er gi e s a n d o n e  w h er e it i s o n t h e p o siti v e si d e.
It i s s e e n t h at a s U b e c o m e s s m all er t h e li n e s sl o wl y
a p p r o a c h t h e n o n-i nt er a cti n g  Lif s hit z t r a n siti o n, a s e x-
p e ct e d i n  w e a k- c o u pli n g.
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Figure 15. Scattering rate of the electrons −ImΣk(ω = 0)

and chargons −ImΣchargonk (ω = 0) in momentum space. The
parameters used here are: H0 = 0.2, J = 0.1;T = 1/30, t′ =
−0.3, Zt = 0.31, Zt′ = 0.19,∆ = 0.01, p = 0.05. Left panel:
The physical electron self-energy has clear nodal/antinodal
differentiation with a stronger scattering at the antinode than
at the node. Right panel: The chargon self-energy is given
by Eq. 8 and has no momentum differentiation. The broad-
ening in the chargon self-energy is η = 0.04.

Appendix F: Comparison of the chargon and
electron self-energy in the SU(2) gauge theory

Here we illustrate in more details the role of the convo-
lution that allows to recover the electronic Green’s func-
tion in the SU(2) theory. As we have discussed above,
see e.g. Fig. 6, the location in momentum and fre-
quency of the most singular structures of the physical
self-energy are not affected by the convolution and they
are already encoded in the chargon self-energy given by
Eq. 8. The convolution mainly smears Gψ and the elec-
tron self-energy is a broadened counterpart of the char-
gon self-energy. A more detailed inspection shows that
the convolution also redistributes spectral weight over
the Brillouin zone. As a result, the physical electron self-
energy displays nodal/antinodal differentiation, which is
absent in the chargon self-energy. This is illustrated in
Fig. 15 where it is clearly seen that the imaginary part of
the electronic self-energy is larger close to the antinode
than at the node. This differentiation is not present in
the chargon self-energy.
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Beauseéjour, F. F. Tafti, F. Laliberté, M. Matusiak,
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Peter Wölfle, “Fermi-liquid instabilities at magnetic quan-

tum phase transitions,” Rev. Mod. Phys. 79, 1015–1075
(2007).

9 A.-M. S. Tremblay, B. Kyung, and D. Sénéchal, “Pseu-
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