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The pseudogap metal phase of the hole-doped cuprate superconductors has two seemingly un-
related characteristics: a gap in the electronic spectrum in the ‘anti-nodal’ region of the square
lattice Brillouin zone, and discrete broken symmetries. We present a SU(2) gauge theory of quan-
tum fluctuations of magnetically ordered states which appear in a classical theory of square lattice
antiferromagnets, in a spin density wave mean field theory of the square lattice Hubbard model,
and in a CP1 theory of spinons. This theory leads to metals with an antinodal gap, and topological
order which intertwines with the observed broken symmetries.

A remarkable property of the pseudogap metal of the
hole-doped cuprates is that it does not exhibit a ‘large’
Fermi surface of gapless electron-like quasiparticles exci-
tations, i.e. the size of the Fermi surface is smaller than
expected from the classic Luttinger theorem of Fermi liq-
uid theory [1]. Instead it has a gap in the fermionic spec-
trum near the ‘anti-nodal’ points ((π, 0) and (0, π)) of
the square lattice Brillouin zone. Gapless fermionic ex-
citations appear to be present only along the diagonals
of the Brillouin zone (the ‘nodal’ region). One way to
obtain such a Fermi surface reconstruction is by a bro-
ken translational symmetry. However, there is no sign
of broken translational symmetry over a wide intermedi-
ate temperature range [2], and also at low temperatures
and intermediate doping [3], over which the pseudogap is
present. With full translational symmetry, violations of
the Luttinger theorem require the presence of topological
order [4–6].

A seemingly unrelated property of the pseudogap
metal is that it exhibits discrete broken symmetries,
which preserve translations, over roughly the same re-
gion of the phase diagram over which there is an antin-
odal gap in the fermionic spectrum. The broken sym-
metries include lattice rotations, interpreted in terms of
an Ising-nematic order [7–10], and one or both of inver-
sion and time-reversal symmetry breaking [11–16]. Lut-
tinger’s theorem implies that none of these broken sym-
metries can induce the needed fermionic gap by them-
selves.

The co-existence of the antinodal gap and the broken
symmetries can be explained by intertwining them [17–
19], i.e. by exploiting flavors of topological order which
are tied to specific broken symmetries. Here we show
that broken lattice rotations, inversion, and time-reversal
appear naturally in several models appropriate to the
known cuprate electronic structure.

We consider quantum fluctuations of magnetically or-
dered states found in two different computations: a clas-
sical theory of frustrated, insulating antiferromagnets on
the square lattice, and a spin density wave theory of

metallic states of the square lattice Hubbard model. The
types of magnetically ordered states found are sketched
in Fig. 1a. The quantum fluctuations of these states are
described by a SU(2) gauge theory, and this leads to the
loss of magnetic order, and the appearance of phases with
topological order and an anti-nodal gap in the fermion
spectrum. We find that the topological order intertwines
with precisely the observed broken discrete symmetries,
as shown in Fig. 1b. We further show that the same
phases are also obtained naturally in a CP1 theory of
bosonic spinons supplemented by Higgs fields conjugate
to long-wavelength spinon pairs.
Magnetic order: We examine states in which the elec-
tron spin Ŝi on site i of the square lattice, at position ri,
has the expectation value〈
Ŝi

〉
= N0 [cos (K · ri) cos(θ) êx + sin (K · ri) cos(θ) êy

+ sin(θ) êz] . (1)

The different states we find are (see Fig. 1a) (D′) a
Néel state with collinear antiferromagnetism at wavevec-
tor (π, π), with K = (π, π), θ = 0; (A′) a canted state,
with (π, π) Néel order co-existing with a ferromagnet mo-
ment perpendicular to the Néel order, with K = (π, π),
0 < θ < π/2, (B′) a planar spiral state, in which the
spins precess at an incommensurate wavevector K with
θ = 0; (C′) a conical spiral state, which is a planar spiral
accompanied by a ferromagnetic moment perpendicular
to the plane of the spiral [20] with K incommensurate,
0 < θ < π/2.

First, we study the square lattice spin Hamiltonian
with near-neighbor antiferromagnetic exchange interac-
tions Jp > 0, and ring exchange K [21–25]:

HJ =
∑
i<j

Jij Ŝi · Ŝj + 2K
∑

ij

k `

[
(Ŝi · Ŝj)(Ŝk · Ŝ`)

+ (Ŝi · Ŝ`)(Ŝk · Ŝj)− (Ŝi · Ŝk)(Ŝj · Ŝ`)
]
. (2)

Jij = Jp when i, j are p’th nearest neighbors, and we
only allow Jp with p = 1, 2, 3, 4 non-zero. The classical
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(C0) Conical spiral (B0) Planar spiral

s1

s2

I

p
2I

I

I

I

p
2I

or or

or

hP i 6= 0 , hQai = 0 hP i = 0 , hQai = 0

hP i = 0 , hQai 6= 0hP i 6= 0 , hQai 6= 0

(A) Z2 topological order
and all symmetries preserved

(C) Z2 topological
and current loop order

(D) Valence Bond Solid (VBS)

(B) Z2 topological
and Ising-nematic order

(a) (b)

FIG. 1. (a) Schematics of the magnetically ordered states obtained in the classical antiferromagnet, and in the spin density wave
theory of the Hubbard model. (b) Corresponding states obtained after quantum fluctuations restore spin rotation symmetry.
Phase D has U(1) topological order in the metal, but is unstable to the appearance of VBS order in the insulator. The crossed
circles in phase C′ indicate a canting of the spins into the plane. The labels s1, s2, P , Qa refer to the CP1 theory: the phases
in (a) are obtained for small g, and those in (b) for large g.

ground states are obtained by minimizing HJ over the
set of states in Eq. (1); results are shown in Fig. 2a-
c. We find the states A′, B′, C′, D′, all of which meet
at a multicritical point, just as in the schematic phase
diagram in Fig. 1a. A semiclassical theory of quantum
fluctuations about these states, starting from the Néel
state, appears in Appendix A.

For metallic states with spin density wave order, we
study the Hubbard model

HU = −
∑
i<j,α

tijc
†
i,αcj,α − µ

∑
i,α

c†i,αci,α + U
∑
i

n̂i,↑n̂i,↓

(3)
of electrons ci,α, with α =↑, ↓ a spin index, tij = tp
when i, j are p’th nearest neighbors, and we take tp
with p = 1, 2, 3, 4 non-zero. U is the on-site Coulomb
repulsion, and µ is the chemical potential. The elec-

tron density, n̂i,α ≡ c†i,αci,α, while the electron spin

Ŝi ≡ (1/2)c†i,ασαβci,β , with σ the Pauli matrices. We
minimized HU over the set of free fermion Slater deter-
minant states obeying Eq. (1), while maintaining uni-
form charge and current densities; results are illustrated
in Fig. 2d-f, and details appear in Appendix B. Again,
note the appearance of the magnetic orders A′, B′, C′,
D′, although now these co-exist with Fermi surfaces and
metallic conduction.
SU(2) gauge theory: We describe quantum fluctua-
tions about states of HU obeying Eq. (1) by transform-
ing the electrons to a rotating reference frame by a SU(2)
matrix Ri [26](

ci,↑
ci,↓

)
= Ri

(
ψi,+
ψi,−

)
, R†iRi = RiR

†
i = 1. (4)

The fermions in the rotating reference frame are spinless
‘chargons’ ψs, with s = ±, carrying the electromagnetic
charge. In the same manner, the transformation of the
electron spin operator Ŝi to the rotating reference frame
is proportional to the ‘Higgs’ field Hi [26],

σ ·Hi ∝ R†i σ · ŜiRi. (5)

The new variables, ψ, R, and H provide a formally re-
dundant description of the physics of HU as all observ-
ables are invariant under a SU(2) gauge transformation
Vi under which

Ri → Ri V
†
i

σ ·Hi → Vi σ ·Hi V
†
i

(
ψi,+
ψi,−

)
→ Vi

(
ψi,+
ψi,−

)
, (6)

while ci and Ŝi are gauge invariant. The action of the
SU(2) gauge transformation Vi, should be distinguished
from the action of global SU(2) spin rotations Ω under
which

Ri → ΩRi
σ · Ŝi → Ωσ · Ŝi Ω†

(
ci↑
ci↓

)
→ Ω

(
ci↑
ci↓

)
, (7)

while ψ and H are invariant.
In the language of this SU(2) gauge theory [26, 27],

the phases with magnetic order obtained above appear
when both R and H are condensed. We may choose a
gauge in which 〈R〉 ∝ 1, and so the orientation of the H
condensate is the same as that in Eq. (1),

〈Hi〉 = H0

[
cos (K · ri) cos(θ) êx + sin (K · ri) cos(θ) êy

+ sin(θ) êz

]
. (8)
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FIG. 2. (a) Phase diagram of HJ , for a spin S model in the classical limit S → ∞, exhibiting all phases of Fig. 1a. The
subscript of the labels (B′) and (C′) indicates the wavevector K = (Kx,Ky) of the spiral. Note that the phases A′, C′, B′,
D′ meet at a multicritical point, just as in Fig 1a. (b) and (c) show Kx, Ky, and the canting angle θ along two different
one-dimensional cuts of the phase diagram in (a). The phase diagram resulting from the spin-density wave analysis of the
Hubbard model (3) can be found in (d). Besides an additional ferromagnetic phase, denoted by (F′), we recover all the phases
of the classical phase diagram in (a). Part (e) and (f) show one-dimensional cuts of the spin-density wave phase diagram. In
all figures, solid (dashed) lines are used to represent second (first) order transitions.

We can now obtain the phases of HU with quantum
fluctuating spin density wave order, (A,B,C,D) shown in
Fig. 1b, in a simple step: the quantum fluctuations lead
to fluctuations in the orientation of the local magnetic or-
der, and so remove the R condensate leading to 〈R〉 = 0.
The Higgs fieldHi retains the condensate in Eq. (8) indi-
cating that the magnitude of the local order is non-zero.
In such a phase, spin rotation invariance is maintained
with 〈Ŝ〉 = 0, but the SU(2) gauge group has been ‘Hig-
gsed’ down to a smaller gauge group which describes the
topological order [17, 28–32]. The values of θ and K in
phases (A,B,C,D) obey the same constraints as the cor-
responding magnetically ordered phases (A′, B′, C′, D′).
In phase D, the gauge group is broken down to U(1), and
there is a potentially gapless emergent ‘photon’; in an in-
sulator, monopole condensation drives confinement and
the appearance of VBS order, but the photon survives in
a metallic, U(1) ‘algebraic charge liquid’ (ACL) state [33]
(which is eventually unstable to fermion pairing and su-
perconductivity [34]). The remaining phases A,B,C have
a non-collinear configuration of 〈Hi〉 and then only Z2

topological order survives [17]: such states are ACLs with
stable, gapped, ‘vison’ excitations carrying Z2 gauge flux
which cannot be created singly by any local operator.
Phase A breaks no symmetries, phase B breaks lattice ro-
tation symmetry leading to Ising-nematic order [17, 28],
and phase C has broken time-reversal and mirror sym-
metries (but not their product), leading to current loop
order [35]. All the 4 ACL phases (A,B,C,D) may also
become ‘fractionalized Fermi liquids’ (FL*) [4, 5] by for-
mation of bound states between the chargons and R; the
FL* states have a Pauli contribution to the spin suscep-
tibility from the reconstructed Fermi surfaces.

The structure of the fermionic excitations in the phases
of Fig. 1b, and the possible broken symmetries in the

Z2 phases, can be understood from an effective Hamil-
tonian for the chargons. As described in Appendix C,
a Hubbard-Stratonovich transformation on HU , followed
by the change of variables in Eqs. (4) and (5), and a mean
field decoupling leads to

Hψ = −
∑
i<j,s

tijZijψ
†
i,sψj,s − µ

∑
i,s

ψ†i,sψi,s

−
∑
i,s,s′

Hi · ψ†i,sσss′ψi,s′ . (9)

The chargons inherit their hopping from the electrons,
apart from a renormalization factor Zij , and experience
a Zeeman-like coupling to a local field given by the con-
densate of H: so the Fermi surface of ψ reconstructs in
the same manner as the Fermi surface of c in the phases
with conventional spin density wave order. Note that
this happens here even though translational symmetry is
fully preserved in all gauge-invariant observables; the ap-
parent breaking of translational symmetry in the Higgs
condensate in Eq. (8) does not transfer to any gauge
invariant observables, showing how the Luttinger the-
orem can be violated by the topological order [4–6] in
Higgs phases. However, other symmetries are broken in
gauge-invariant observables: Appendix C examines bond
and current variables, which are bilinears in ψ, and finds
that they break symmetries in the phases B and C noted
above.

CP1 theory: We now present an alternative description
of all 8 phases in Fig. 1 starting from the popular CP1

theory of quantum antiferromagnets. In principle (as we
note below, and in Appendix D, this theory can be de-
rived from the SU(2) gauge theory above after integrating
out the fermionic chargons, and representing R in terms
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of a bosonic spinon field zα by

Ri =

(
zi,↑ −z∗i,↓
zi,↓ z∗i,↑

)
, |zi,↑|2 + |zi,↓|2 = 1. (10)

However, integrating out the chargons is only safe when
there is a chargon gap, and so the theories below can
compute critical properties of phase transitions only in
insulators.

We will not start here from the SU(2) gauge theory,
but present a direct derivation from earlier analyses of
the quantum fluctuations of a S = 1/2 square lattice an-
tiferromagnet near a Néel state, which obtained the fol-
lowing action [36] for a CP1 theory over two-dimensional
space (r = (x, y)) and time (t)

S =
1

g

∫
d2rdt |(∂µ − iaµ)zα|2 + SB . (11)

Here µ runs over 3 spacetime components, and aµ is an
emergent U(1) gauge field. The local Néel order n is re-
lated to the zα by n = z∗ασαβzβ where σ are the Pauli

matrices. The U(1) gauge flux is defined modulo 2π,
and so the gauge field is compact and monopole con-
figurations with total flux 2π are permitted in the path
integral. The continuum action in Eq. (11) should be reg-
ularized to allow such monopoles. SB is the Berry phase
of the monopoles [37–39]. Monopoles are suppressed in
the states with Z2 topological order [17, 28], and so we
do not display the explicit form of SB .

The phases of the CP1 theory in Eq. (11) have been ex-
tensively studied. For small g, we have the conventional
Néel state, D′ in Fig. 1a, with 〈zα〉 6= 0 and 〈n〉 6= 0. For
large g, the zα are gapped, and the confinement in the
compact U(1) gauge theory leads to valence bond solid
(VBS) order [38, 39], which is phase D in Fig. 1b. A de-
confined critical theory describes the transition between
these phases [40].

We now want to extend the theory in Eq. (11) to avoid
confinement and obtain states with topological order. In
a compact U(1) gauge theory, condensing a Higgs field
with charge 2 leads to a phase with deconfined Z2 charges
[41]. Such a deconfined phase has the Z2 topological or-
der [17, 28–32] of interest to us here. So we search for
candidate Higgs fields with charge 2, composed of pairs of
long-wavelength spinons, zα. We also require the Higgs
field to be spin rotation invariant, because we want the
Z2 topological order to persist in phases without mag-
netic order. The simplest candidate without spacetime
gradients, εαβzαzβ (where εαβ is the unit antisymmet-
ric tensor) vanishes identically. Therefore, we are led
to the following Higgs candidates with a single gradient
(a = x, y)

P ∼ εαβzα∂tzβ , Qa ∼ εαβzα∂azβ . (12)

These Higgs fields have been considered separately be-
fore. Condensing Qa was the route to Z2 topological or-
der in Ref. 28, while P appeared more recently in Ref. 42.

T Tx Ix Rπ/2

zα εαβzβ εαβz
∗
β zα zα

Qx Qx Q∗x −Qx Qy

Qy Qy Q∗y Qy −Qx
P −P P ∗ P P

TABLE I. Symmetry signatures of various fields under time
reversal (T ), translation by a lattice spacing along x (Tx),
reflection about a lattice site with x → −x, y → y (Ix), and
rotation by π/2 about a lattice site with x → y, y → −x
(Rπ/2).

The effective action for these Higgs fields, and the
properties of the Higgs phases, follow straightforwardly
from their transformations under the square lattice space
group and time-reversal: we collect these in Table I.
From these transformations, we can add to the action
S → S +

∫
d2rdtLP,Q

LP,Q = |(∂µ − 2iaµ)P |2 + |(∂µ − 2iaµ)Qa|2 (13)

+ λ1P
∗ εαβzα∂tzβ + λ2Q

∗
aεαβzα∂azβ + H.c.

− s1|P |2 − s2|Qa|2 − u1|P |4 − u2|Qa|4 ,+ . . .

where we do not display other quartic and higher order
terms in the Higgs potential.

For large g, we have 〈zα〉 = 0, and can then determine
the spin liquid phases by minimizing the Higgs poten-
tial as a function of s1 and s2. When there is no Higgs
condensate, we noted earlier that we obtain phase D in
Fig. 1b. Fig. 1b also indicates that the phases A,B,C are
obtained when one or both of the P and Qa condensates
are present. This is justified in Appendix D by a compu-
tation of the quadratic effective action for the zα from the
SU(2) gauge theory: we find just the terms with linear
temporal and/or spatial derivatives as would be expected
from the presence of P and/or Qa condensates in LP,Q.

We can confirm this identification from the symmetry
transformations in Table I:
(A) There is only a P condensate, and the gauge-
invariant quantity |P |2 is invariant under all symmetry
operations. Consequently this is a Z2 spin liquid with
no broken symmetries; it has been previously studied by
Yang and Wang [42] using bosonic spinons.
(B) With aQa condensate, one of the two gauge-invariant
quantities |Qx|2−|Qy|2 orQ∗xQy+QxQ

∗
y must have a non-

zero expectation value. Table I shows that these imply
Ising-nematic order, as described previously [17, 28, 43].
We also require 〈Qx〉〈Q∗y〉 to be real to avoid breaking
translational symmetry.
(C) With both and P and Qa condensates non-zero we
can define the gauge invariant order parameter Oa =
PQ∗a + P ∗Qa (again 〈P 〉〈Q∗a〉 should be real to avoid
translational symmetry breaking). The symmetry trans-
formations of Oa show that it is precisely the ‘current-
loop’ order parameter of Ref. 19: it is odd under reflection
and time-reversal but not their product.

A similar analysis can be carried out at small g, where
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zα condenses and breaks spin rotation symmetry. The
structure of the condensate is determined by the eign-
modes of the zα dispersion in the A,B,C,D phases, and
this determines that the corresponding magnetically or-
dered states are precisely A′,B′,C′,D′, as in Fig. 1a.

We have shown here that a class of topological orders
intertwine with the observed broken discrete symmetries
in the pseudogap phase of the hole doped cuprates. The
same topological orders emerge from a theory of quan-
tum fluctuations of magnetically ordered states obtained
by four different methods: the frustrated classical an-
tiferromagnet, the semiclassical non-linear sigma model,
the spin density wave theory, and the CP1 theory supple-
mented by the Higgs fields obtained by pairing spinons
at long wavelengths. The intertwining of topological or-

der and symmetries can explain why the symmetries are
restored when the pseudogap in the fermion spectrum
disappears at large doping.
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Appendix A: O(3) non-linear sigma model

We examined a semi-classical O(3) non-linear sigma model of quantum fluctuations of HJ , which expresses Ŝi in
terms of the Néel field n(r, t) and the canonically conjugate uniform magnetization density L(r, t)

Ŝi = Sηini

√
1−L2

i /S
2 +Li (A1)

n2 = 1 , n ·L = 0 , (A2)

where ηi = ±1 on the two sublattices, ni ≡ n(ri, t) and similarly for Li. Inserting Eq. (A1) into Eq. (2), and
performing an expansion to fourth order in spatial gradients and powers of L, we obtain HJ =

∫
d2rHJ (the lattice

spacing has been set to unity):

HJ =
S2(J1 − 2J2 − 4J3 + 10J4)

2

[
(∂xn)2 + (∂yn)2

]
+4(J1 + 2J4 − 4KS2)L2

− (J1 − 2J2 − 4J3 + 10J4 − 8KS2)

2
L2
[
(∂xn)2 + (∂yn)2

]
−S

2(J1 − 2J2 − 16J3 + 34J4)

24

[
(∂2
xn)2 + (∂2

yn)2
]

− (J1 + 2J2 + 4J3 + 10J4 − 8KS2)

2

[
(∂xL)2 + (∂yL)2

]
(A3)

+
S2(J2 − 8J4 − 2KS2)

2
(∂2
xn) · (∂2

yn)

−8KS2
[
(L · ∂xn)2 + (L · ∂yn)2

]
−KS4[(∂xn).(∂xn)][(∂yn).(∂yn)]

+2KS4[(∂xn).(∂yn)]2 + 16K[L2]2 .

It is useful to extract the terms important for identifying the phases

HJ =
ρs
2

(∂an)2 +
1

2χ⊥
L2 + C1(L2)2 + C2(∂aL)2 + . . . ;

In this expression, the stiffness of the Néel order is ρs, and χ⊥ is the uniform susceptibility transverse to the local
Néel order. The coefficients are

ρs = (J1 − 2J2 − 4J3 + 10J4)S2

χ−1
⊥ = 8(J1 + 2J4 − 4KS2) (A4)

C1 = 16K , C2 = − (J1 + 2J2 + 4J3 + 10J4 − 8KS2)

2
.
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The quantum fluctuations of the spin S antiferromagnet are then described by the action [44]

Sn =

∫
dtd2r

[
L · (n× ∂tn)−HJ

]
+ SB (A5)

where SB is as in Eq. (11) but now associated with ‘hedgehog’ defects in n [37–39].
The theory Sn with only the first two terms in H is the same [39] as the original CP1 model in Eq. (11), and so

displays the phases D′ (Néel) and D (VBS). Now consider the transition from D′ to the spiral phase B′: this occurs
when increasing J2,3 turns ρs negative, and we enter a state with 〈∂an〉 non-zero and spatially precessing; the pitch
of the spiral is determined by higher order terms in Eq. (A3). Similarly, we transition from state D′ to the canted
state A′ when χ−1

⊥ turns negative with increasing K: the state A′ has 〈L〉 6= 0, with a value stabilized by the quartic
term C1. Finally, the state C′ has both 〈∂an〉 6= 0 and 〈L〉 6= 0, and the second constraint in Eq. (A2) and C2 > 0
lead to a conical spiral.

These considerations on the O(3) model can be connected to the CP1 analysis by the important identity (which
follows from n = z∗ασαβzβ and |zα|2 = 1)

(∂µn) · (∂νn) = 2(εαβzα∂µzβ)(εγδz
∗
γ∂νz

∗
δ ) + c.c. . (A6)

From Eq. (12) we therefore have the correspondence

(∂an) · (∂bn) ∼ Q∗aQb +QaQ
∗
b , (∂tn) · (∂tn) ∼ |P |2

(∂an) · (∂tn) ∼ Q∗aP +QaP
∗ . (A7)

Using also ∂tn ∼ n × L (from Eq. (A5)), we can now see that the identifications, in the previous paragraph, of the
condensates in the O(3) model correspond to those of the CP1 model in Fig. 1a. The O(3) model analysis has located
the phases of Fig. 1a in the parameter space of the lattice model H, and we can also use it to estimate couplings in
the CP1 theory.

Appendix B: Spin density wave theory

In this appendix, we study the fermionic Hubbard model on the square lattice using a mean-field approach, and
show that metallic phases with all four spin-density wave orders discussed in the main text show up close to half-filling.
We start with the Hubbard Hamiltonian for the electrons ci,α.

HU = −
∑
i<j,α

tijc
†
i,αcj,α − µ

∑
i,α

c†i,αci,α + U
∑
i

n̂i,↑n̂i,↓ (B1)

where α is a spin-index, tij = tp are the hopping parameters for p’th nearest neighbors with tp 6= 0 for p = 1, 2, 3 and
4, U is the Hubbard on-site repulsion and µ is the chemical potential. We perform a mean-field decoupling of the
interaction term as follows [45–48]:

Un̂i,↑n̂i,↓ =
U

4
n̂2
i − U(Ŝi · ui)2 → −ζin̂i − hi · Ŝi −

U

4
〈n̂i〉2 + U〈Ŝi〉2 (B2)

where Ŝi = 1
2c
†
i,ασαβci,β is the electron spin operator, n̂i =

∑
α n̂i,α is the particle number operator at site ri, ui is

the unit-vector along the spin-quantization axis, ζi = −U2 〈n̂i〉 is a renormalization of the chemical potential which is

henceforth absorbed in µ, and hi = 2U〈Ŝi〉 is the mean magnetic field at site ri.
We consider states which are translation invariant in the charge sector. Therefore the charge density 〈n̂i〉 = n is

the same on every site. We include the possibility of in-plane Néel and spiral order, as well as ferromagnetic canting
in the orthogonal (z) direction:〈

Ŝi

〉
= N0 [cos (K · ri) cos(θ) êx + sin (K · ri) cos(θ) êy + sin(θ) êz] . (B3)

We expect that having the largest possible magnetization at each site will be energetically more favorable. Therefore,
we have neglected the possibility of the collinear incommensurate state (stripes) as that leads to a variation in particle
number density. While the Néel or spiral spin-density wave states can consistently explain the drop in Hall number
and longitudinal conductivities in the cuprates [49–51], stripes seem to be inconsistent with the experimental data
[52]. This provide additional motivation for restricting our study to the states described by Eq. (B3). The assumption
of uniform charge density also rules out phase separation into hole-rich and particle-rich regions, which are often found
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FIG. 3. Phase diagram from the spin-density wave analysis as a function of Hubbard U and doping n at fixed hopping, showing
the Néel (D′), spiral (B′), conical spiral (C′) and ferromagnetic (F′) phases. As in Fig. 2, solid (dashed) lines are used to
represent second (first) order transitions.

in such mean-field treatments [48]. In principle, farther interactions beyond a single on-site Hubbard repulsion can
help avoid phase separation, but such physics cannot be captured by a mean-field treatment. Finally, we also do not
consider possible superconductivity since we are interested in metallic phases (which appear at temperatures above
the exponentially small superconducting Tc).

The mean-field grand canonical Hamiltonian can then be written in terms of a 2-component spinor Ψk, the dispersion
ξk = −∑j 6=i tije

ik·(ri−rj) − µ, and h = |hi| = 2UN0 as

HMF
U =

∑
k

C†khkCk, where hk =

(
ξk − h

2 sin θ −h2 cos θ

−h2 cos θ ξk+K + h
2 sin θ

)
, and Ck =

(
ck,↑

ck+K,↓

)
. (B4)

This can be diagonalized by a unitary transformation(
ck,↑

ck+K,↓

)
=

(
cosφk sinφk
− sinφk cosφk

)(
αk

βk

)
, where tan(2φk) =

h cos θ

ξk − ξk+K − h sin θ
(B5)

The energies of the upper and lower Hubbard bands are given by (s = ±)

Ek,s =
1

2

(
ξk + ξk+K + s

√
(ξk − ξk+K − h sin θ)2 + h2 cos2 θ

)
. (B6)

The free energy of the system in the canonical ensemble is given in the continuum limit by (setting Ns to be the
number of lattice sites)

EMF

Ns
=
∑
s=±

∫
d2k

(2π)2
Ek,s nF (Ek,s) + µn− Un2

4
+
h2

4U
, where n = 〈n̂i〉 =

∑
s=±

∫
d2k

(2π)2
nF (Ek,s).

We first tune µ to adjust the electron-filling n. At a fixed filling, we minimize the mean-field free energy EMF (h, θ,K).
The values of these parameters at the minima in turn describe the magnetically ordered (or paramagnetic) phase for
a given set of hopping parameters tp and Hubbard repulsion U .

As shown in Fig. 2 in the main text and in Fig. 3 in this appendix, at large U we find exactly the 4 kinds of spin-
density wave phases (D′) K = (π, π), θ = 0, (A′) K = (π, π), 0 < θ < π/2, (B′) K incommensurate, θ = 0, and (C′)
K incommensurate, 0 < θ < π/2. As expected, in the insulator (n = 1) the nearest neighbor Heisenberg exchange J1

is dominant at large U , and we find the insulator to be always in the Néel phase (D′). In the metallic states, the Néel
phase only appears close to zero doping, while the other three antiferromagnetic phases appear contiguous to the Néel
phase. The presence of tp for p > 1 breaks particle-hole symmetry. It is interesting to note that the canted phases
appear only on the hole-doped side (n < 1) while the electron-doped side has coplanar magnetic order (even at larger
dopings not shown in Figs. 2 and 3). Finally, an additional ferromagnetic phase (F ′) with θ = π/2 also shows up at
low enough hole-doping, consistent with previous mean-field studies of the Hubbard model [47, 48].
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Appendix C: SU(2) gauge theory

In this appendix, we derive the effective chargon Hamiltonian (9) from the Hubbard model in Eq. (3) and study the
symmetries, together with the associated current and bond patterns, of the different Higgs-field configurations stated
in the main text.

1. Effective chargon Hamiltonian

We write the Hubbard Hamiltonian HU as a coherent state path integral and decouple the interaction using a
Hubbard-Stratonovich field Φi. This yields the equivalent action S = Sc + Sint + SΦ, where (β and τ denote inverse
temperature and imaginary time, respectively)

Sc =

∫ β

0

dτ

∑
i,α

c†i,α(∂τ − µ)ci,α −
∑
i<j,α

tijc
†
i,αcj,α

 (C1)

describes the hopping of the electrons on the square lattice; The electrons are coupled to the Hubbard-Stratonovich
field via

Sint =

∫ β

0

dτ
∑
i

c†i,ασαβc,iβ ·Φi (C2)

and the action of Φi reads as

SΦ =
3

2U

∫ β

0

dτ
∑
i

Φ2
i . (C3)

We next transform the electrons to a rotating reference frame as defined in Eq. (4). To rewrite the action in terms
of the new degrees of freedom, the chargon and spinon fields ψi and Ri, let us first focus on Sc. The hopping terms
assume the form ∑

α

tijc
†
i,αcj,α =

∑
s,s′,β

tijψ
†
i,s

(
R†i
)
sβ

(Rj)βs′ ψj,s′ (C4)

using α, β =↑, ↓ and s, s′ = ± as physical spin and SU(2)-gauge indices, respectively. To make the quartic term

accessible analytically, we perform a mean-field decoupling. Upon introducing (Uij)ss′ = 〈
(
R†iRj

)
ss′
〉 and (χij)ss′ =

〈ψ†i,sψj,s′〉, Eq. (C4) becomes

tij
∑
s,s′

(
ψ†i,s (Uij)ss′ ψj,s′ + (χij)ss′

(
R†iRj

)
ss′

)
. (C5)

In the same way, we can rewrite and decouple the time-derivative and chemical potential terms in Eq. (C1).
Introducing the ‘Higgs’ field Hi according to (cf. Eq. (5))

σ ·Hi = R†iσRi ·Φi, (C6)

the remaining parts of the action, Sint and SΦ, can be restated as

Sint =

∫ β

0

dτHi ·
∑
i,s,s′

ψ†i,sσss′ψi,s′ , (C7)

SΦ =
3

2U

∫ β

0

dτ
∑
i

H2
i . (C8)

Taken together, the new action consists of three parts: The effective chargon action,

Sψ =

∫ β

0

dτ

[∑
i,s

ψ†i,s(∂τ − µ)ψi,s −
∑

i<j,s,s′

tijψ
†
i,s (Uij)ss′ ψj,s′

+
∑
i,s,s′

Hi · ψ†i,sσss′ψi,s′
]
,

(C9)
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the spinon action (tr denotes the trace in SU(2) space),

SR =

∫ β

0

dτ tr

∑
i

χTiiR
†
i∂τRi −

∑
i,j

tijχ
T
ijR
†
iRj

 , (C10)

which will be discussed in detail in Appendix D below, and the bare Higgs action in Eq. (C8).
Let us for now assume that Uij in Eq. (C9) is trivial in SU(2) space, (Uij)ss′ = Zijδss′ . This should be seen as

the first step in or the ‘ansatz’ for an iterative self-consistent calculation of χij and Uij where these two quantitities
are inserted in and calculated from the spinon and chargon actions until convergence is reached. At the end of this
appendix, we will show that there are no qualitative changes when the self-consistent iterations are carried out.

For (Uij)ss′ = Zijδss′ , we recover the effective chargon Hamiltonian (9) stated in the main text. Furthermore, the
bare Higgs field action and the coupling of the Higgs to the chargons is mathematically equivalent to the bare action
of the Hubbard-Stratonovich field Φi and its coupling to the electrons. For this reason, we can directly transfer the
results of the spin-density-wave calculation of Appendix B to the Higgs phase. The main modification is an order-one
rescaling of the hopping parameters from the bare electronic values tij to those of the chargons Zijtij .

2. Symmetries and current patterns

Let us next analyze the symmetries of the effective chargon Hamiltonian (9) for the different Higgs condensates
parameterized in Eq. (8) of the main text.

As a consequence of the SU(2) gauge redundancy, a lattice symmetry g with real space action i→ g(i) is preserved
if and only if there are SU(2) matrices Gi(g) such that the effective chargon Hamiltonian is invariant under

ψi,s →
∑
s′

(Gi(g))s,s′ ψg(i),s′ . (C11)

To illustrate the nontrivial consequences of the additional gauge degree of freedom, let us consider translation sym-
metry g = Tµ, µ = x, y, with Tµ(i) = i+ êµ. We first note that all configurations in Eq. (8) satisfy

〈
Hi+eµ

〉
=

 R(Kµ)
0

0

0 0 1

 〈Hi〉 , (C12)

where R(ϕ) is a 2× 2 matrix describing the rotation of 2D vectors by angle ϕ. As the matrix in Eq. (C12) belongs to
SO(3) and the Higgs field transforms under the adjoint representation of SU(2), we can always find Gi(Tµ) to render
the chargon Hamiltonian invariant; Translation symmetry is thus preserved in all Higgs phases discussed in the main
text.

To present an example of broken translation symmetry, let us consider the ‘staggered conical spiral’, labeled by

(E)
(ηx,ηy)
K , ηµ = ±1, in the following, where with ri = (ix, iy)

〈Hi〉 = H0

[
cos (K · ri) cos(θ) êx + sin (K · ri) cos(θ) êy + ηixx η

iy
y sin(θ) êz

]
, (C13)

with at least one of ηx, ηy equal to −1, 0 < θ < π/2, and incommensurate K. We chose this particular example
since we have found the associated magnetically ordered phase as the ground state in the classical analysis of the spin
model in Eq. (2). It is not visible in Fig. 2(a)–(c) as it only appears for larger values of J2. For this configuration,
the 1 in the matrix in Eq. (C12) has to be replaced by ηµ. If ηµ = −1, the matrix in Eq. (C12) has determinant −1
and, hence, does not belong to SO(3). Consequently, translation symmetry along µ is broken if ηµ = −1. Note that
ΘTµ, with Θ denoting time-reversal, is still a symmetry since the Higgs field is odd under Θ.

Similarly, time-reversal and all other lattice symmetries of the effective chargon Hamiltonian can be analyzed. The
result is summarized in Table II where the residual symmetries of all the phases with Z2 topological order discussed in
the main text are listed. Note that time-reversal-symmetry breaking necessarily requires a non-collinear Higgs phase
since, otherwise, Hi → −Hi can be undone by a global gauge transformation (a global rotation of the Higgs field).

A complementary and physically insightful approach of detecting and visualizing broken symmetries is based on
calculating the (time-reversal symmetric) kinetic energies Kij and the (time-reversal odd) currents Jij on the different
bonds (i, j) of the lattice in the ground state of the chargon Hamiltonian. These two quantities are defined as and
calculated from Kij = −2ReTij and Jij = 2ImTij where

Tij = Zijtij
∑
s

〈
ψ†i,sψj,s

〉
〈Hi〉. (C14)
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TABLE II. Generators of the residual symmetry group of the Higgs phases with Z2 topological order shown in Fig. 1b of the
main text. We use Θ to denote time-reversal, Cn for n-fold rotation along the z axis. Ix (Iy) and I± are the reflections with
action x→ −x (y → −y) and at the plane spanned by x = ±y and the z axis, respectively.

Higgs Phase Residual generators

(A) Tµ, C4, Iy, Θ

(B)(k,π)/(B)(π,k) Tµ, C2, Iy, Θ

(B)(k,k)/(B)(k,−k) Tµ, C2, I+, Θ

(C)(k,π)/(C)(π,k) Tµ, ΘC2, Iy/x

(C)(k,k)/(C)(k,−k) Tµ, ΘC2, I+/−

FIG. 4. Bond currents (arrows) are shown for the different (symmetry inequivalent) staggered conical spiral Higgs field
configurations that allow for finite currents in a model with only nearest and next-to-nearest neighbor hopping on the square
lattice (dots).

Here 〈. . . 〉〈Hi〉 denotes the expectation values with respect to the ground state of the chargon Hamiltonian Hψ in
Eq. (9) for a given Higgs condensate Hi → 〈Hi〉. The kinetic energies Kij (black solid and dashed lines) and, if finite,
the currents Jij (black arrows) along the different bonds are illustrated in Fig. 1(b) for the three different phases (A)–
(C) with Z2 topological order focussing on a model where only the nearest t1 and next-to-nearest neighbor hopping
t2 are non-zero.

For completeness, we also illustrate the current patterns for the staggered conical spiral phases in Fig. 4. Here,
four unit cells of the square lattice are shown as translation by one lattice site Tµ is broken if ηµ = −1 while T 2

µ is
preserved.

Three comments on the staggered conical spiral configurations are in order. We first note that the (magnetic) point

symmetries of (E)
(ηx,ηy)

(k,π) and (E)
(η,η)
(k,k) are the same as those of (C)(k,π) and (C)(k,k), given in Table II, while (E)

(η,−η)
(k,k)

only has ΘC2 symmetry. Secondly, the nearest neighbor current operator Ji,i+êµ must be zero if ηµ = −1 since the
residual symmetry ΘC2 implies Ji,i+êµ = Ji−êµ,i while ΘTµ leads to Ji,i+êµ = −Ji−êµ,i. For the same reason, we

conclude that the diagonal currents must vanish if ηxηy = −1. Third, notice that the configuration (E)
(+,−)
(π,k) cannot

support finite currents in the model with nearest and next-to-nearest-neighbor hopping since the (magnetic) point
symmetries and the (magnetic) translations are only consistent with Jij = 0 along all bonds of the lattice (Finite
currents are possible in the presence of third-nearest-neighbor hopping. The associated current pattern is not shown
in Fig. 4).

Finally, let us come back to the issue of calculating Uij (and χij entering the spinon action) self-consistently. While
we had used the ansatz of diagonal Uij for the iteration, recalculating Uij from the spinon action will in general also
yield non-vanishing off-diagonal components; However, the symmetry analysis we discussed above is not affected since

symmetries are preserved in the iteration process. To see this, assume that the chargon Hamiltonian Hψ[Hi, U
(0)
ij ]

with a certain Higgs field configuration Hi and gauge connection Uij = U
(0)
ij (e.g., U

(0)
ij = Zijσ0 in the first iteration)

is invariant under a symmetry operation g, i.e., invariant under (C11). This implies that the χij calculated from

Hψ[Hi, U
(0)
ij ] satisfy χij = G∗i (g)χg(i)g(j)G

T
j (g). Consequently, the spinon action in Eq. (C10) is symmetric under

Ri → Rg−1(i)Gg−1(i)(g), where g−1 denotes the inverse of g. The ‘new’ or ‘updated’ gauge connection Uij = U
(1)
ij as
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obtained from the spinon action thus satisfies

U
(1)
g(i)g(j) = G†i (g)U

(1)
ij Gj(g) (C15)

and, hence, the ‘new’ chargon HamiltonianHψ[Hi, U
(1)
ij ] is still invariant under (C11). This means that the symmetries

and the qualitative form of the bond as well as current patterns discussed above are unaffected by replacing Uij =

U
(0)
ij = Zijσ0 by the, generally non-diagonal, self-consistent solution Uij obtained via iteration. The off-diagonal

components in Uij should be seen as additional corrections to the energetics of the spin-density-wave analysis of
Appendix B and, hence, are expected to only lead to small changes in the phase boundaries in Fig. 2d-f.

Appendix D: Derivation of CP1 theory from SU(2) gauge theory

To derive the CP1 actions for the different phases in Fig. 1b from the SU(2) gauge theory, it is convenient to use
the gauge where the Higgs field is given by

〈Hi〉 = (−1)ix+iyH0 êz, (D1)

i.e., the Higgs field has the form of the spin configuration of an antiferromagnet. Choosing the ‘antiferromagnetic
gauge’ in Eq. (D1) is possible for all configurations in Eq. (8) or, more generally, in Eq. (C13), since the Higgs field
transforms under the adjoint representation of SU(2) and | 〈Hi〉 | = H0.

In this gauge, the relation between the CP1 fields zi = (zi↑, zi↓) and the spinons Ri is given by Eq. (10) for all Higgs

configurations. This is verified by noting that Eq. (5) with Ŝi = (−1)ix+iyni and ni = z†iσzi will hold for Ri given
in Eq. (10) if the Higgs field has the form (D1). As Ri transforms nontrivially under SU(2) gauge transformations,
see Eq. (6), the relation between zi and Ri is generally different in a different gauge.

Inserting the parameterization (10) into Eq. (C10) and writing χss
′

ij = (χij)ss′ yields the general form

Sz =

∫ β

0

dτ

[∑
i

(
(χ++
ii − χ−−ii )z†i ∂τzi + χ−+

ii εαβzi,α∂τzi,β − χ+−
ii εαβz

∗
i,α∂τz

∗
i,β

)
−
∑
i<j

tij

(
(χ++
ij + χ−−ji )z†i zj + (χ−+

ij − χ−+
ji )εαβzi,αzj,β + c.c.

)]
,

(D2)

of the CP1 action. We already notice (the lattice form of) the charge-2 terms εαβzα∂τzβ and εαβzα∂azβ , a = x, y,
coupling to the Higgs fields P and Qa in Eq. (13).

Depending on the symmetries of the chargon Hamiltian, some of the terms in Eq. (D2) have to vanish as we will
discuss next. This corresponds to the absence of condensation of one or both of the Higgs fields P and Qa in the
phases (A), (B), and (D).

Since this has already been discussed for the case of phase (D) in Ref. 53, we focus here on the other three cases.
To begin with phase (B), we apply the gauge transformation Vi = e−iπσy/4eiδK·riσx/2, where δK = K − (π, π), to
bring the associated Higgs field configuraton in the form of Eq. (D1). In the resulting ‘antiferromagnetic gauge’, the
chargon Hamiltonian reads as

H(B)
ψ = −

∑
i<j,s,s′

tijZijψ
†
i,s

(
eiδK·(rj−ri)

σx
2

)
ss′
ψj,s′ − µ

∑
i,s

ψ†i,sψi,s −H0

∑
i,s

(−1)ix+iysψ†i,sψi,s . (D3)

We see that K 6= (π, π), i.e., δK 6= 0, is required to have off-diagonal matrix elements in SU(2) space (s 6= s′) in

the Hamiltonian. These are necessary for charge-2 terms in the CP1 action as otherwise χs,−sij = 0 and, hence, the

prefactors of εαβzi,α∂τzi,β and εαβzi,αzj,β vanish in Eq. (D2). Alternatively, this can also be seen by noting that

RiV
†
i = Ri|zi→zieiξ for the global gauge transformation Vi = e−iξσz and that all terms in the chargon Hamiltonian

H(B)
ψ are invariant under this gauge transformation, ψi → Viψi, except for the contributions of finite δK to the

hopping term. This means that the effective CP1 action must be invariant under zi → zie
iξ in the limit δK = 0, i.e.,

the charge-2 terms can only arise if δK 6= 0.
To see which of the two possible charge-2 terms in Eq. (D2) can be non-zero, let us analyze the symmetries of the

chargon Hamiltonian H(B)
ψ for non-zero δK. We first note that H(B)

ψ is invariant under ψi,s → ψi+êµ,−s leading to

χss
′

ij = χ−s−s
′

i+êµj+êµ
= χss

′

i+2êµj+2êµ . (D4)



12

From this follows

χ++
ii − χ−−ii = χ++

ii − χ++
i+êµi+êµ

= (−1)ix+iyχτ . (D5)

The constant χτ can be shown to be real: The Hamiltonian H(B)
ψ commutes with the antiunitary operator Θ̃ defined

by Θ̃ψj,sΘ̃
† = iσzψj,s. This implies

χss
′

ij = ss′
(
χss

′

ij

)∗
= ss′χs

′s
ji . (D6)

This not only leads to χτ ∈ R, but can also be used to rewrite

χ++
ij + χ−−ji = χ++

ij + χ++
i+êµj+êµ

= χti−j ∈ R, (D7a)

χ−+
ij − χ−+

ji = χ−+
ij + χ−+

i+êµj+êµ
= χQi−j = −χQj−i ∈ iR, (D7b)

where we have also taken advantage of Eq. (D4).

We finally consider the symmetry of H(B)
ψ under the unitary transformation ψj,s → iσzψ−j,s which, together with

Eq. (D4), leads to

χ+−
ii = −χ+−

−i−i = −χ+−
ii = 0. (D8)

Consequently, the terms εαβzi,α∂τzi,β and εαβz
∗
i,α∂τz

∗
i,β are absent in Eq. (D2) for phase (B).

Taken together, the CP1 action Sz in Eq. (D2) assumes the form

S(B)
z =

∫ β

0

dτ

[∑
i

(−1)ix+iyχτ z
†
i ∂τzi −

∑
i<j

tij

(
χti−j z

†
i zj + χQi−j εαβzi,αzj,β + c.c.

)]
. (D9)

For concreteness, let us focus on nearest-neighbor hopping (t = ti,i+êµ) and δQx = δQy (corresponding to phase

(B)(k,k)). Using that χt,Qêx = χt,Qêy ≡ iχQ,t, treating the constraint z†i zi = 1 on average by introducing the Lagrange

multiplier λ, and rewriting

ziα ∼ zα(ri) + (−1)ix+iyπα(ri), (D10)

where z(r) and π(r) are assumed to be slowly varying continuum fields, a gradient expansion of Eq. (D9) yields (a
denotes lattice spacing)

S(B)
z ∼

∫ β

0

dτ

∫
d2r

a2

[
χτ (z†∂τπ + π†∂τz) + (λ− tχt)z†z + (λ+ tχt)π†π

+ tχta2
∑
µ=x,y

(∂µz
†)∂µz + 2tχQa

∑
µ=x,y

(εαβzα∂µzβ + c.c)

]
.

(D11)

In Eq. (D11) spatial derivatives up to second (zeroth) order of zα (πα) are kept as these gives rise to the terms of the
CP1 action we are interested in. Indeed, integrating out the π field, we recover the CP1 theory of the main text with
Higgs condensates 〈Qx〉 = 〈Qy〉 6= 0 and 〈P 〉 = 0.

In a similar way, the remaining phases, (A) and (C), can be analyzed and one finds the CP1 action with Higgs
condensates summarized in Fig. 1b.
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magnets,” Phys. Rev. B 42, 4568 (1990).

[40] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. P. A. Fisher, “Deconfined Quantum Critical Points,” Science
303, 1490 (2004), cond-mat/0311326.

[41] E. Fradkin and S. H. Shenker, “Phase diagrams of lattice gauge theories with Higgs fields,” Phys. Rev. D 19, 3682 (1979).
[42] X. Yang and F. Wang, “Schwinger boson spin-liquid states on square lattice,” Phys. Rev. B 94, 035160 (2016),

arXiv:1507.07621 [cond-mat.str-el].
[43] S. Chatterjee, Y. Qi, S. Sachdev, and J. Steinberg, “Superconductivity from a confinement transition out of a fractionalized

Fermi liquid with Z2 topological and Ising-nematic orders,” Phys. Rev. B 94, 024502 (2016), arXiv:1603.03041 [cond-
mat.str-el].

[44] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge University Press, Cambridge, UK, 2011).
[45] M. Inui and P. B. Littlewood, “Hartree-Fock study of the magnetism in the single-band Hubbard model,” Phys. Rev. B

44, 4415 (1991).
[46] E. Arrigoni and G. C. Strinati, “Doping-induced incommensurate antiferromagnetism in a Mott-Hubbard insulator,” Phys.

Rev. B 44, 7455 (1991).
[47] M. Dzierzawa, “Hartree-Fock theory of spiral magnetic order in the 2-d Hubbard model,” Z. Phys. B Cond. Mat. 86, 49

(1992).
[48] P. A. Igoshev, M. A. Timirgazin, A. A. Katanin, A. K. Arzhnikov, and V. Y. Irkhin, “Incommensurate magnetic order and

phase separation in the two-dimensional Hubbard model with nearest- and next-nearest-neighbor hopping,” Phys. Rev. B
81, 094407 (2010), arXiv:0912.0992 [cond-mat.str-el].

[49] J. G. Storey, “Hall effect and Fermi surface reconstruction via electron pockets in the high-Tc cuprates,” Europhys. Lett.
113, 27003 (2016), arXiv:1512.03112 [cond-mat.supr-con].

[50] A. Eberlein, W. Metzner, S. Sachdev, and H. Yamase, “Fermi Surface Reconstruction and Drop in the Hall Number due to
Spiral Antiferromagnetism in High-Tc Cuprates,” Phys. Rev. Lett. 117, 187001 (2016), arXiv:1607.06087 [cond-mat.str-el].

[51] S. Chatterjee, S. Sachdev, and A. Eberlein, “Thermal and electrical transport in metals and superconductors across
antiferromagnetic and topological quantum transitions,” Phys. Rev. B 96, 075103 (2017), arXiv:1704.02329 [cond-mat.str-
el].
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