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Abstract

Quantum electrodynamics in 2+1-dimensions (QED3) is a strongly coupled conformal field theory

(CFT) of a U(1) gauge field coupled to 2N two-component massless fermions. The N = 2 CFT has been

proposed as a ground state of the spin-1/2 kagome Heisenberg antiferromagnet. We study QED3 in the

presence of weak quenched disorder in its two spatial directions. When the disorder explicitly breaks the

fermion flavor symmetry from SU(2N)!U(1)⇥SU(N) but preserves time-reversal symmetry, we find that

the theory flows to a non-trivial fixed line at non-zero disorder with a continuously varying dynamical

critical exponent z > 1. We determine the zero-temperature flavor (spin) conductivity along the critical

line. Our calculations are performed in the large-N limit, and the disorder is handled using the replica

method.
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I. INTRODUCTION

While our understanding of magnetic systems and spin liquids in particular has made great

progress in the last two decades, most systems have been studied in the clean limit with transla-

tional symmetry present. In this paper, we explore the behavior of a critical spin liquid described

by a conformal field theory (CFT) when perturbed by weak quenched disorder.

The CFT we consider is 2+1 dimensional quantum electrodynamics (QED3), a strongly coupled

theory of a U(1) gauge field coupled to 2N massless two-component fermions [1, 2]. This CFT

is one of the proposed ground states of the spin-1/2 kagome Heisenberg antiferromagnet, HH =

J
P

hiji Si

· S
j

, where J > 0 and hiji labels nearest-neighbour sites on a kagome lattice (shown in

Fig. 1) [3–5]. (We note that other proposed ground states are gapped Z2 spin liquids [6], and the

choice between the CFT and the Z2 spin liquids remains a matter of continuing debate [7–10].) In

addition, QED3 may also describe certain deconfined critical points [11, 12] between topological

phases [13, 14].

The QED3 action is written

Sqed

⇥
 ,  ̄, A

⇤
= �

Z
d2x d⌧  ̄

↵

�µ
✓
@
µ

� iA
µp

2N

◆
 
↵

+
1

4e2(2N)

Z
d2x d⌧ (@

µ

A
⌫

� @
⌫

A
µ

)2 (1)

where ↵ labels the 2N fermion flavors, and we have denoted the Euclidean spacetime coordinates

as r = (x, ⌧). The  
↵

’s are 2-component spinors, with  ̄
↵

=  †
↵

⌧ z and �µ = (⌧ z, ⌧ y,�⌧x) where the
⌧a’s are Pauli matrices. The dimension of the charge is [e2] = +1 and so under the renormalization

group (RG) flow we expect e2 ! 1; this will be discussed in greater detail in Sec. IIA. This theory

possesses an explicit global SU(2N) symmetry under which the fermions flavors are rotated into

one another.

The action in Eq. (1) specifically describes non-compact QED3 i.e. there are no monopoles oper-

ators in the action, and flux conservation is a global symmetry: @
µ

Jµ

top = 0, where Jµ

top = ✏µ⌫⇢@
⌫

A
⇢

.

Because Sqed arises in condensed matter as the low-energy description of a lattice model, monopole

events must be allowed in the ultraviolet (UV). However, Berry phases from the underlying lattice

spins can lead to destructive interference between monopole tunneling events [11, 12, 15, 16], and

it could well be the case that monopoles with the smallest magnetic charge are prohibited for the

clean kagome antiferromagnet; the minimal magnetic charge for allowed monopoles in the kagome

antiferromagnet is unknown, and its determination remains an important open problem. In order

for non-compact QED3 to be the correct low-energy description, the smallest allowed monopole
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operators must be irrelevant perturbations. When the number of fermion flavors is low, this is not

the case and the monopoles to proliferate, confining the theory [17, 18]. As matter is added to the

system, the scaling dimension of the monopoles increases and they eventually become irrelevant

[19–23]. The critical fermion flavor number is currently unknown, but estimates place it around

2N
c

. 12 for the smallest monopole charge [23]. In this paper, we work in the large-N limit,

where all possible monopole operators are strongly irrelevant [19]. The kagome antiferromagnet

corresponds to the case N = 2: the four flavors of fermions arise as a result of spin degrees of

freedom, as well as an additional two-fold valley degeneracy. Nonetheless, when we specify to this

case, we will operate under the assumption that the large N results also apply to the N = 2 case.

Since some degree of disorder is present in all physical systems, it is important to understand

the behavior of these theories under this type of perturbation. The primary result of this paper is

that when time reversal and a global U(1)⇥SU(N) flavour symmetry are respected microscopically,

there exists a critical line with both non-zero disorder and interactions. This is obtained by coupling

the theory to quenched disorder of the form

Sdis,z

⇥
 ,  ̄

⇤
=

Z
d2x d⌧

⇥
M

z

(x) ̄�z (x, ⌧) + +iA
jz

(x) ̄�z�j (x, ⌧)
⇤
. (2)

Here, M
z

and A
jz

are random fields with zero mean. Both fields are independent of time: although

QED3 is a relativistic theory, disorder explicits breaks this symmetry. This should be contrasted

with classical disordered field theories where the random fields are functions of all of the coordinates

in the action. M
z

and A
jz

are both Gaussian and entirely determined by their disorder averages:

M
z

(x)M
z

(x0) =
g
t,z

2
�2 (x� x0) , A

iz

(x)A
jz

(x0) = �
ij

gA,z

2
�2 (x� x0) , M

z

(x)A
jz

(x0) = 0. (3)

The variances, g
t,z

and gA,z

, control the strength of the disorder, and, naturally, they must be

positive. Performing a diagrammatic expansion to O(g2
⇠

, g
⇠

/2N) with ⇠ = (t, z), (A, z), we find a

critical line with g
t,z

= �8gA,z

+ 64/(3⇡2N). Provided the flavor symmetry is not broken further,

we expect at least a fixed point to exist at su�ciently large N : higher order corrections could

convert the fixed line to a fixed point, but are not expected to lead to runaway flows to strong

disorder.

In the context of the kagome antiferromagnet, the bilinear i ̄�z can be associated with the

z-component of the Dzyaloshinksii-Moriya (DM) interaction operator:

X

hiji2hex(x)
ẑ · (S

i

⇥ S

j

) , (4)
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FIG. 1: The kagome lattice. The arrows indicate the convention chosen for the bond directions of

the spin chirality operator, S
i

⇥S

j

, where i and j label nearest-neighbour sites. The order of the

cross product is taken such that first spin sits at the lattice site pointing towards the site of the

second spin. Later, we will use the same ordering convention to define nearest-neighbour bond

operators S
i

· S
j

.

where hex(x) labels the hexagon at point x and the bonds hiji are summed in the fashion shown

in Fig. 1. Similarly, i ̄�z�x,y correspond to spin currents in the microscopic theory. It follows

that the fixed line could be relevant to kagome magnets with a randomly varying DM field.

We also study the RG flow when disorder couples to the more general set of operators:

N
s

=  ̄ , Na =  ̄�a , Ja

µ

= i ̄�a�
µ

 , Jtop,µ = ✏
µ⌫⇢

@⌫A⇢ (5)

where �a = (�x, �y, �z). We find that the U(1)⇥SU(N) symmetric critical line is relevant to

disorder coupling to either Nx,y, Jx,y

j

, and Jz

0 . These theories flow to strong disorder and cannot

be accessed with the perturbative methods used here. Disorder coupling to the topological current

is marginal to leading order; however, while a full analysis has not been performed, we have strong

reason to believe that higher order contributions render Jtop,0 relevant.

There have been earlier studies of massless Dirac fermions coupled to disorder. A comprehensive

analysis for free Dirac fermions was presented by Ludwig et al. [24]. An important ingredient in

their analysis was the coupling of the disorder to components of the current operator Jµ(r) =

i ̄�µ (r). For the free theory, Jµ has scaling dimension 2, like any other globally conserved

current; consequently, the disorder coupling to Jµ turns out to be margnial at the clean free
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fixed point, and this has important consequences for the disordered system. For the QED3 case

considered here, the situation is dramatically di↵erent: because of the presence of the gauge field,

Jµ is no longer a globally conserved current, and its scaling dimension at the CFT fixed point is 3

[25]. The corresponding disorder is strongly irrelevant, and this is the reason it was not included

in Eqs. (2) and (5).

Other earlier works with Dirac fermions studied the influence of disorder and the 1/r Coulomb

interactions between the Dirac fermions [26, 27], and were motivated by the study of transitions

between quantum Hall states. Today, they can be applied to graphene. As in our work, they found

fixed lines at non-zero disorder and interactions.

Our paper begins in Sec. II by discussing our model in more detail. We start by reviewing

some important properties of QED3 in Sec. IIA, before presenting the types of disorder under

consideration in Sec. II B. The renormalization procedure and resulting �-functions are described

in Sec. IIIA. The remainder of the section discusses the flows which result upon enforcing di↵er-

ent symmetries, including the U(1)⇥SU(N) symmetric critical line mentioned above (Sec. IIID).

Sec. IV focuses on applications to the kagome antiferromagnet and translates the fermion bilinears

and topological current of the CFT to the microscopic observables of the spin model. Finally, in

Sec. V the flavor conductivity along the critical line is calculated.

II. DISORDERED QED3

A. Pure QED3

The Euclidean signature action for QED3 is given in Eq. (1). In the IR limit, for N large

enough, this theory flows to a strongly coupled CFT at e2 = 1. All loop contributions to the

fermion propagator are suppressed by 1/2N and so we will work with the free propagator

G(p) = �
↵�

ip
µ

�µ

p2
(6)

where ↵ and � are flavor indices. The same is not true of the photon propagator. Instead, the

e↵ective N = 1 Green’s function must include a summation over the bubble diagrams shown in

Fig. 2. The e↵ective propagator is determined most simply by adding a non-local gauge fixing
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µ

⌫

=
µ

⌫

+
µ

⌫

+
µ

⌫

+ · · ·

FIG. 2: Diagrammatic expression for the e↵ective photon propagator in the large-N limit. The

dotted lines indicate the bare photon propagator, D0
µ⌫

(p), while the fermion bubbles are equal to

⇧
µ⌫

(q). As indicated in the text, only the full photon propagator will be used.

term to the action [28]

Sgauge-fixing =
1

32 (⇣ � 1)

Z
d3p

(2⇡)3
p
µ

p
⌫

|p| Aµ(p)A⌫(�p), (7)

where ⇣ is an arbitrary parameter which cannot enter into any physical observable. The resulting

free photon propagator is

D0
µ⌫

(p) =
2Ne2

p2

✓
�
µ⌫

� p
µ

p
⌫

p2

◆
+

16 (⇣ � 1)

|p|
p
µ

p
⌫

p2
· (8)

The polarization bubble in Fig. 2 can be evaluated (see Appendix F 1) and gives

⇧µ⌫(p) =
|p|
16

✓
�
µ⌫

� p
µ

p
⌫

p2

◆
· (9)

The N = 1 propagator is therefore

De↵
µ⌫

(p) =

✓⇥
D0

µ⌫

(p)
⇤�1

+ ⇧
µ⌫

(p)

◆�1

=
16

|p|

✓
�
µ⌫

� ⇣
p
µ

p
⌫

p2

◆
+O

✓
p2

e2

◆
. (10)

Here, we have used the fact that, because the dimension of e2 is 1, in the infrared limit, p ! 0,

all terms of O(p2/e2) will be suppressed. Provided we use the e↵ective photon propagator and

organize our perturbation theory such that no fermion bubbles of the type summed in Fig. 2 are

repeated, the limit e2 ! 1 can be taken directly. We will further simplify by working in the ⇣ = 0

gauge.

Since we will regulate the disordered theory using dimensional regularization, we write

Sqed

⇥
 ,  ̄, A

⇤
= �

Z
ddx d⌧  ̄

↵

✓
/@ +

iµ�✏/2gp
2N

/A

◆
 
↵

, (11)

where d = 2 + ✏, µ is an arbitrary scale, and the photon propagator is understood to be De↵
µ⌫

(p).

We will often write D = d + 1 and denote spacetime coordinates by r = (x, ⌧). By making the

6



coupling dimensionful, we are taking the engineering dimension of A
µ

to be d/2. Gauge invariance

guarantees that g will not be renormalized, and it will be set to unity at the end of the calculation.

This is discussed further in Sec. III A.

We now discuss the symmetries and operator content of the theory. QED3 has a SU(2N)

symmetry under which the flavors rotate into one another:

 
↵

!
⇥
exp

�
i✓

ab

�aT b

�⇤
↵�

 
�

· (12)

Here, we have expressed the (2N)2 � 1 generators of SU(2N) as

�a T b, �a, T b, (13)

where �a, a = x, y, z are the 2⇥2 Pauli matrices and T a are N ⇥N traceless, Hermitian matrices

normalized such that tr
�
T aT b

�
= �

ab

/2. Associated with each generator of this symmetry is a

conserved current,

Jab

µ

(r) = i ̄�aT b�
µ

 (r), Ja0
µ

(r) = i ̄�a�
µ

 (r), J0b
µ

(r) = i ̄T b�
µ

 (r). (14)

To all orders in 1/(2N), these operators have scaling dimension �
J

= 2. When we discuss the

symmetry of the theory in the remainder of the paper, we will be referring to the flavour symmetry

unless explicitly stated otherwise.

As we remarked in Sec. I, the irrelevance of monopoles results in an emergent U(1)top symmetry

associated with a conserved gauge flux current,

Jµ

top = ✏µ⌫⇢@
⌫

A
⇢

. (15)

Like the SU(2N) currents, the scaling dimension of Jµ

top is exactly 2. In the limit we consider,

monopole scaling dimensions are much greater than 2, though, as N descreases, this may cease to

be the case.

The global U(1) transformation,  ! ei✓ , also has a conserved current, Jµ(r) = i ̄�µ (r).

However, because the U(1) phase rotation is also a local symmetry, its current is quite di↵erent

from the SU(2N) and U(1)top currents. This is evident upon considering the equations of motion:

Jµ =
1

e2
p
2N

@
⌫

F ⌫µ =
1

e2
p
2N

✏µ⌫⇢@
⌫

Jtop,⇢· (16)

Taken as an operator identity, this implies that the global U(1) current is actually a descendent of

the gauge field, and, consequently, its scaling dimension is 3 instead of 2 [25].
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In addition to the currents, there are (2N)2 � 1 “mass” operators which can be constructed

from the SU(2N) generators,

Nab(r) =  ̄�aT b (r), Na0(r) =  ̄�a (r), N0b(r) =  ̄T b (r), (17)

as well as the usual 2+1 dimensional Dirac mass term:

N
s

(r) =
1p
2N

 ̄ (r)· (18)

Unlike the currents, at finite N , these operators have nontrivial anomalous scaling dimensions

[25, 28, 29]. In particular, since N
s

allows for “photon decay” processes, it becomes less relevant,

with a scaling dimension of

�
s

= 2 +
128

3⇡2(2N)
+O

✓
1

N2

◆
· (19)

Conversely, the SU(2N) masses become more relevant:

�1 = 2� 64

3⇡2(2N)
+O

✓
1

N2

◆
· (20)

B. Disorder

We are interested in perturbing the QED3 CFT with disorder. A simple scaling argument shows

that there are a limited number of operators which can give interesting results upon coupling to

disorder. We begin by considering disorder which couples to an arbitrary, gauge-invariant operator

O with scaling dimension �O:

Sdis,O [ ,O] =

Z
ddx d⌧MO(x)O(x, ⌧) (21)

where MO(x) is a Gaussian random variable with zero average and with correlations given by

MO(x)MO(x0) =
gO
2
�d(x� x0)· (22)

gO is the variance of MO and controls the strength of the disorder. To allow for a well-controlled

perturbative expansion, we further assume that gO is of the same order as 1/(2N); this implies that

the bare disorder strength and the electromagnetic interaction are of the same magnitude. The

dimension of gO can be determined by first noting that Eq. (21) establishes that [MO] = d+1��O.

With Eq. (22), this indicates that [gO] = d + 2 � 2�O, and it follows that disorder coupling to
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operators with �O > 2 in 2d is irrelevant: at low energies, the system is described by the clean

theory. Conversely, operators with scaling dimensions less than or equal to 2 are either relevant

or marginal perturbations when coupled to disorder. This is the quantum version of the Harris

criterion [30].

Referring to the previous section, to leading order in N , there are no relevant perturbations and

only the global topological current, the SU(2N) currents, and the mass terms, N
s

and N
ab

, are

marginal. However, as mentioned above, at finite N , it’s possible that the scaling dimension of an

allowed monopole operator is less than 2, making it relevant. We will not examine this possibility

in our present large N expansion. As discussed in Sec. I, the global U(1) current, Jµ = i ̄�µ , is

irrelevant because its scaling dimension is 3.

Keeping in mind that in order to compare with the kagome antiferromagnet we must set N = 2,

we couple disorder to operators which break the SU(2N) symmetry down to SU(N):

Sdis[ ,  ̄] =

Z
ddx d⌧


M

s

(x) ̄ (x, ⌧) +M
t,a

(x) ̄�a (x, ⌧)

+ iA
ja

(x) ̄�a�j (x, ⌧) + V
a

(x) ̄�a�0 (x, ⌧)

+ iE
j

(x)J j

top(x, ⌧) + B(x)J0
top(x, ⌧)

�
(23)

where M
s

, M
t,a

, A
ja

, V
a

, E
j

, and B are Gaussian random variables with vanishing mean. Here

and throughout the paper we use the convention that, when contracting vectors and �-matrices,

Roman letters i, j, `, etc. indicate that the sum is only over the spatial coordinates x, while Greek

letters µ, ⌫, �, etc. include time as well. We note that since the quenched disorder is classical,

we’ve expressed the random fields in real time. That is, the time component of all classical gauge

potentials picks up a factor of “i”. Averaging over disorder, we have

M
s

(x)M
s

(x0) =
g
s

2
�d(x� x0), V

a

(x)V
b

(x0) =
g
v,a

2
�
ab

�d(x� x0)

M
t,a

(x)M
t,b

(x0) =
g
t,a

2
�
ab

�d(x� x0), E
i

(x)E
j

(x0) =
gE
2
�
ij

�d(x� x0)

A
ia

(x)A
jb

(x0) =
gA,a

2
�
ab

�
ij

�d(x� x0), B(x)B(x0) =
gB
2
�d(x� x0) (24)

with all other two-points vanishing. As in the general case considered above, we assume that the

variances, {g
s

, g
t,a

, gA,a

, g
v,a

, gE , gB}, are small and of the same order as 1/(2N).

When we interpret these operators in the context of the kagome antiferromagnet, the �a matrices

will act on spin. By recalling that the Dirac mass,  ̄ , is odd under time reversal in 2+1 dimensions,
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we deduce that the SU(2) mass operators, i ̄�a , should be even. The same logic asserts that

the scalar potential operators, i ̄�0�a , are odd under time reversal while the vector potential

operators, i ̄�j�a , are even. Similarly, the fact that J0
top and J j

top are the emergent magnetic field

and electric fields respectively reveals that they are odd and even under time reversal. Therefore,

while the zero mean of the quenched disorder fields implies that Sdis[ ,  ̄] preserves time reversal

on average, it is only a good symmetry everywhere within the system when M
s

, V
a

and B are not

present (equivalently, g
s

= g
v,a

= gB = 0.) In Sec. IV we will discuss the microscopic meaning of

Sdis[ ,  ̄] in the kagome antiferromagnet more thoroughly.

We will use dimensional regularization with d = 2 + ✏ so that the dimension of the variances

is shifted to [g
⇠

] = �✏, where ⇠ = s, (t, a), (A, a), (v, a), E , or B. For convenience, we make the

couplings dimensionless by taking g
⇠

! µ�✏g
⇠

where µ is an arbitrary momentum scale. When we

perform the renormalization group study, because the couplings physically correspond to variances,

they are restricted to non-negative values.

The disorder breaks translational symmetry and makes calculating quantities for a given re-

alization of disorder completely intractable. Instead, the fundamental quantity of interest is the

disorder-averaged free energy:

F = �logZ

= �
Z

DM(x)DM
a

(x)DM
µa

(x)DA
µa

(x)DV
a

(x) e�S[⌘,⌘̄] e
� µ✏

2g2s

R
d

d
xMs(x)2

e
� µ✏

2g2B

R
d

d
xB(x)2

⇥ e
� 1

2g2E

R
d

d
xEj(x)Ej(x) Y

a=x,y,z

e
� µ✏

2g2t,a

R
d

d
xMt,a(x)2

e
� µ✏

2g2A,a

R
d

d
xAja(x)A

ja(x)

e
� µ✏

2g2v,a

R
d

d
xVa(x)2

. (25)

To solve perturbatively, we employ the replica trick. Using the identity

logZ = lim
n!0

Zn � 1

n
, (26)

we instead calculate

Z
n

⌘ Zn

= N
Z Y

↵=1,...,2N
`=1,...,n

D 
↵`

D ̄
↵`

e
P

↵`

R
d

d
x d⌧[⌘̄↵(x,⌧) ↵`(x,⌧)+ ̄↵`(x,⌧)⌘↵(x,⌧)] e�Sn[ ↵`, ̄↵`] (27)
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p

=
ip

µ

�

µ

p

2
p

µ

⌫ =
16

|p| �
µ⌫

p

p+ q

q

µ =
µ

�✏/2gp
2N

i�

µ

0 0
= �2⇡�(q0)µ�✏

gBq2
i

j

= 2⇡�(q0)µ�✏
gEq2

⇣
�

ij � q

i
q

j

q

2

⌘

q

⇢,m

�, `

�,m

↵, `

= 2⇡�(q0)µ�✏
g

s

[1]
↵�

[1]
�⇢

q

⇢,m

�, `

�,m

↵, `

a, 0

a, 0

= �2⇡�(q0)µ�✏
g

v,a

⇥
i�

0
�

a

⇤
↵�

⇥
i�

0
�

a

⇤
�⇢

q

⇢, m

�, `

�, m

↵, `

a

a

= 2⇡�(q0)µ�✏
g

t,a

[�a]
↵�

[�a]
�⇢

q

⇢,m

�, `

�,m

↵, `

a, j

a, j

= 2⇡�(q0)µ�✏
gA,a

⇥
i�

j

�

a

⇤
↵�

⇥
i�

j

�

a

⇤
�⇢

FIG. 3: Feynman rules associated with the replicated action, S
n

⇥
 ,  ̄, A

⇤
. The diagrams on the

first and second rows are diagonal with respect to the replica and flavor indices. In the four-point

diagrams, ` and m are replica indices while ↵, �, �, ⇢ label the 2N fermion flavors.

where N is a normalization constant and

S
n

⇥
 ,  ̄, A

⇤
= �

X

`

Z
ddx d⌧  ̄

`

(x, ⌧)

✓
/@ +

iµ�✏/2gp
2N

/A
`

◆
 
`

(x, ⌧)

+
µ�✏

2

X

`,m

Z
ddx d⌧ d⌧ 0

⇢
� g

s

 ̄
`

 
`

(x, ⌧) ̄
m

 
m

(x, ⌧ 0)�
X

a

g
t,a

 ̄
`

�a 
`

(x, ⌧) ̄
m

�
a

 
m

(x, ⌧ 0)

�
X

a

gA,a

 ̄
`

i�j�a 
`

(x, ⌧) ̄
m

i�
j

�
a

 
m

(x, ⌧ 0) +
X

a

g
v,a

 ̄
`

i�0�a 
`

(x, ⌧) ̄
m

i�0�
a

 
m

(x, ⌧ 0)

� gBJ
`,0
top(x, ⌧)J

m,0
top (x, ⌧

0) + gE J
`,j

top(x, ⌧)J
m

top,j(x, ⌧
0)
�
· (28)

In addition to the physical flavor symmetry, the fermions and photon now carry a replica index

denoted by ` and m. We have suppressed the summation over the flavour indices and will continue

to do so in what follows. Likewise, the replica indices will often be left implicit. The Feynman

rules corresponding to S
n

⇥
 ,  ̄, A

⇤
are provided in Fig. 3.
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FIG. 4: Example of a diagram which vanishes in the replica limit, n ! 0. The internal fermion

loop involves a sum over all replica indices, and multiplies the diagram by an overall factor of n.

III. RENORMALIZATION GROUP ANALYSIS

A. Renormalized action

The low energy properties of S
n

⇥
 ,  ̄, A

⇤
can be studied with the same renormalization tech-

niques used in many-body systems provided the number of replicas, n, is taken to zero at the end

of the calculation. This implies that diagrams which sum over all replicas must be neglected. For

instance, Fig. 4 is proportional to n and should not be included.

We will use renormalized perturbation theory [31], making use of a counter term action:

SCT
n

⇥
 ,  ̄

⇤
= �

X

`

Z
ddx d⌧  ̄

`

✓
i�1�

0 @

@⌧
+ i�2�

j

@

@x
j

+
iµ�✏/2g�01p

2N
A`

0�
0 +

iµ�✏/2g�02p
2N

A`

j

�j
◆
 
`

(x, ⌧)

+
µ�✏

2

X

`,m

Z
ddx d⌧ d⌧ 0

⇢
� �

s

 ̄
`

 
`

(x, ⌧) ̄
m

 
m

(x, ⌧ 0)�
X

a

�
t,a

 ̄
`

�a 
`

(x, ⌧) ̄
m

�
a

 
m

(x, ⌧ 0)

�
X

a

�A,a

 ̄
`

i�j�a 
`

(x, ⌧) ̄
m

i�
j

�
a

 
m

(x, ⌧ 0) +
X

a

�
v,a

 ̄
`

i�0�a 
`

(x, ⌧) ̄
m

i�0�
a

 
m

(x, ⌧ 0)

� �B J
`,0
top(x, ⌧)J

m,0
top (x, ⌧

0) + �E J
`,j

top(x, ⌧)J
m

top,j(x, ⌧
0)
�
· (29)

The counter terms, {�1,2, �01,2, �s, �t,a, �v,a, �A,a

, �B, �E}, are determined by requiring that all physical

observables are finite in a dimensional regularization scheme. While relativistic invariance is ex-

plicitly broken, there is no need track the relative flow of the fermion and photon velocities since

the low-energy behaviour of the photon propagator descends entirely from its interaction with the

fermions.
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The bare action is the sum of S
n

and SCT
n

:

SB

n

⇥
 ,  ̄, A

⇤
= �

X

`

Z
ddx

B

d⌧
B

 ̄
`,B

✓
i�0

@

@⌧
B

+ i�j
@

@x
j,B

+
ig

B

�0p
2N

A`

0,B +
ig

B

�jp
2N

A`

j,B

◆
 
`,B

(x
B

, ⌧
B

)

+
1

2

X

`,m

Z
ddx

B

d⌧
B

d⌧ 0
B

⇢
gB
s

 ̄
`,B

 
`,B

(x
B

, ⌧
B

) ̄
m,B

 
m,B

(x
B

, ⌧ 0
B

)

�
X

a

gB
t,a

 ̄
`,B

�a 
`,B

(x
B

, ⌧
B

) ̄
m,B

�
a

 
m,B

(x
B

, ⌧ 0
B

)

�
X

a

gBA,a

 ̄
`,B

i�j�a 
`,B

(x
B

, ⌧
B

) ̄
m,B

i�
j

�
a

 
m,B

(x
B

, ⌧ 0
B

)

+
X

a

gB
v,a

 ̄
`,B

i�0�a 
`,B

(x
B

, ⌧
B

) ̄
m,B

i�0�
a

 
m,B

(x
B

, ⌧ 0
B

)

� gBB J `,0top,B(xB

, ⌧
B

)Jm,0
top,B(xB

, ⌧ 0
B

) + gBE J `,jtop,B(xB

, ⌧
B

)Jm

top,B,j

(x
B

, ⌧ 0
B

)

�
(30)

where the bare fields are

 
B

(x
B

, ⌧
B

) = Z
1/2
1  (x, ⌧),

A0,B(xB

, ⌧
B

) = Z
1/2
�,0 A0(x, ⌧), A

jB

(x
B

, ⌧
B

) = Z1/2
�,xy

A
j

(x, ⌧),

⌧
B

=
Z2

Z1

⌧, x
B

= x. (31)

We’ve let Z1 = 1 + �1 and Z2 = 1 + �2, and, by taking x = x
B

, we are renormalizing relative to

the spatial scale. Gauge invariance constrains the photon field strength renormalization constants

to be

Z
1/2
�,0 =

Z1

Z2

, Z1/2
�,xy

= 1, (32)

and it follows that we must have �1,2 = �01,2. This has been explicitly verified. The field strength

renormalization of the topological currents then follows simply from the renormalization of A
µ

and

(x, ⌧):

J0
top,B =

@A
y

@x
� @A

x

@y
, Jx

top,B =
Z1

Z2

✓
@A0

@y
� @A

y

@⌧

◆
, Jy

top,B = �Z1

Z2

✓
@A0

@x
� @A

x

@⌧

◆
· (33)

The dynamic critical exponent relates the scaling of time and space to one another:

µ
d

dµ
⌧ = z⌧ · (34)

Since ⌧
B

should scale like µ, taking its derivative with respect to log µ gives

z = 1� µ
d

dµ
log

✓
Z2

Z1

◆
· (35)
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µ µ

(a) �i�

µ

p

µ

⇣
8g2

3⇡2(4N)✏

⌘
(b) �i!�

0
�

gs
2⇡✏

�

a a

(c) �i!�

0
�P

a

gA,a

2⇡✏

�

a, 0 a, 0

(d) �i!�

0
�P

a

gv,a

2⇡✏

�

a, j a, j

(e) �i!�

0
�P

a

gA,a

⇡✏

�

FIG. 5: Feynman diagrams which contribute to the fermion self-energy at O(g
⇠

, 1/2N).

The renormalization of the disorder strengths is determined by comparing the bare action to

S
n

+ SCT
n

:

gB
s

= µ�✏Z�2
2 (g

s

+ �
s

) , gB
t,a

= µ�✏Z�2
2 (g

t,a

+ �
t,a

) ,

gBA,a

= µ�✏Z�2
2 (gA,a

+ �A,a

) , gB
v,a

= µ�✏Z�2
2 (g

v,a

+ �
v,a

) ,

gBE = µ�✏ (gE + �E) , gBB = µ�✏Z2
1Z

�2
2 (gB + �B) · (36)

The fact that the bare couplings are independent of the scale µ establishes the �-functions. For

disorder coupling to fermion bilinears, we have

0 = �✏ (g
⇠

+ �
⇠

)� 2 (g
⇠

+ �
⇠

)µ
d

dµ
logZ2 + µ

d

dµ
�
⇠

+ �
⇠

, ⇠ = s, (t, a), (A, a), (v, a), (37)

where �
⇠

= µdg
⇠

/dµ and a = x, y, z. Similarly, the �-functions for the flux disorder are

0 = �✏ (gE + �E) + µ
d

dµ
�E + �E ,

0 = �✏ (gB + �B) + 2 (gB + �B) (z � 1) + µ
d

dµ
�B + �B. (38)

In the second equation, the relation z � 1 = µd log (Z1/Z2) /dµ has been used.

The fermion self-energy diagrams determining the counter terms �1 and �2 to leading order are

shown in Fig. 5. These are evaluated in Appendix B, and the divergent pieces are listed below the
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(a)
⇥
�

j ⌦ �

j

⇤
[1⌦ 1]

⇣
� g

2
s

4⇡✏

⌘
(b)

⇥
�

j ⌦ �

j

⇤
[1⌦ 1]

⇣
g

2
s

4⇡✏

⌘

2⇥

(c) [1⌦ 1] [1⌦ 1]
⇣
g

2
s
⇡✏

⌘

2⇥
µ µ

(d) [1⌦ 1] [1⌦ 1]
⇣
� 48gsg2

⇡

2(2N)✏

⌘

4⇥

⌫ µ

⌫

µ

(e) [1⌦ 1] [1⌦ 1]
⇣

64gsg4

⇡

2(2N)✏

⌘

FIG. 6: Diagrams which contribute when only SU(2N)-preserving, bilinear disorder is considered

(g
t,a

= gA,a

= g
v,a

= 0). Both Figs. 6c and 6d are accompanied by a diagram with the interaction

on the other vertex. Partner diagrams to Fig. 6e with the fermion loop direction reversed and/or

the vertex switched are also present. These diagrams sum to

[1⌦ 1] [1⌦ 1]

⇢
g

2
s
⇡✏

+ 64gsg4

⇡

2(2N)✏
� 48gsg2

⇡

2(2N)✏

�

corresponding diagram in the figure. Only the photon loop in Fig. 5a contributes to Z2. In order

to cancel this divergence, we must have

�2 =
8g2

3⇡2(2N)✏
· (39)

The frequency counter term, on the other hand, receives contributions from all of the diagrams in

Fig. 5:

�1 =
8g2

3⇡2(2N)✏
+

1

2⇡✏

"
g
s

+
X

a

(g
t,a

+ g
v,a

+ 2gA,a

)

#
· (40)

From Eq. (35), the dynamic critical exponent is

z = 1 +
1

2⇡

"
g
s

+
X

a

(g
t,a

+ 2gA,a

+ g
v,a

)

#
· (41)

The provision that all couplings be positive implies that z > 1 in the presence of any disorder.

The bilinear counter terms, �
⇠

, ⇠ = s, (t, a), (A, a), (v, a), are determined by adding diagrams

like those in Fig. 6. In particular, Fig. 6 shows all diagrams which renormalize disorder coupled to
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the SU(2N)-symmetric mass when all other couplings have been tuned to zero. The integrals are

performed in Appendix C, and the remainder of the diagrams renormalizing the bilinear disorder

are shown in Appendix D in Tables I, II, and III. The resulting counter terms are

�
s

= � 1

⇡✏

"
g2
s

+
64g

s

g4

⇡(2N)
� 48g

s

g2

⇡(2N)
+ g

s

X

a

(g
t,a

+ g
v,a

� 2gA,a

)� 2
X

a

g
v,a

gA,a

#

�
t,a

= � 1

⇡✏

"
g
t,a

 
2g

t,a

�
X

b

g
t,b

!
� 2g

t,a

 
2gA,a

�
X

b

gA,b

!
+ g

t,a

 
2g

v,a

�
X

b

g
v,b

!

+ g
t,a

g
s

+ 4g
t,a

gA,a

g2 � 4g
t,a

g
v,a

g2 � 2
X

bc

��✏abc
�� g

t,b

gA,c

� 48g
t,a

g2

⇡(2N)

�

�A,a

= � 1

⇡✏


� g

s

g
v,a

�
X

bc

��✏abc
��
⇣g

t,b

g
t,c

2
+ 2gA,b

gA,c

+
g
v,b

g
v,c

2

⌘
� 16gA,a

g2

3⇡(2N)

�

�
v,a

= � 1

⇡✏


� g

v,a

 
2g

v,a

�
X

b

g
v,b

!
� g

v,a

 
2g

t,a

�
X

b

g
t,b

!
� 2g

v,a

 
2gA,a

�
X

b

gA,b

!

� g
v,a

g
s

� 2g
s

gA,a

� 2
X

bc

��✏abc
�� g

v,b

gA,c

� 16g
v,a

g2

3⇡(2N)

�
· (42)

The graphs which renormalize the topological disorder stengths, gE and gB, are actually three loop

diagrams at leading order. These are calculated in Appendix E where we find

�E =
g
s

gBg4

⇡✏
, �B =

g
s

gEg4

⇡✏
· (43)

Di↵erentiating the bare couplings (Eq. (36)) with respect to µ, solving for the �-functions to
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O(g2
⇠

, g
⇠

/2N), and setting g2 = 1, we obtain

⇡�
s

= ⇡✏g
s

+ g
s

"
g
s

+
X

a

(g
t,a

+ g
v,a

� 2gA,a

) + 2c

#
� 2

X

a

g
v,a

gA,a

⇡�
t,a

= ⇡✏g
t,a

+ g
t,a

" 
2g

t,a

�
X

b

g
t,b

!
+ 2

 
2gA,a

+
X

b

gA,b

!
�
 
6g

v,a

+
X

b

g
v,b

!

+ g
t,a

g
s

� 2c

�
� 2

X

bc

��✏abc
�� g

t,b

gA,c

⇡�A,a

= ⇡✏gA,a

� g
s

g
v,a

�
X

bc

��✏abc
��
⇣g

t,b

g
t,c

2
+ 2gA,b

gA,c

+
g
v,b

g
v,c

2

⌘

⇡�
v,a

= ⇡✏g
v,a

� g
v,a

" 
2g

v,a

�
X

b

g
v,b

!
+

 
2g

t,a

�
X

b

g
t,b

!
+ 2g

v,a

 
2gA,a

�
X

b

gA,b

!
+ g

s

#

� 2g
s

gA,a

� 2
X

bc

��✏abc
�� g

v,b

gA,c

,

⇡�E = ⇡✏gE � 3g
s

gB,

⇡�B = ⇡✏gB � 3g
s

gE � gB

"
g
s

+
X

a

(g
t,a

+ 2gA,a

+ g
v,a

)

#
· (44)

where

c =
64

3⇡N
. (45)

In what follows we will work in 2 spatial dimensions and set ✏ = 0.

B. SU(2N) flavour symmetry

Since disorder coupling to the U(1) gauge currents is irrelevant, the only finite couplings which

preserve the SU(2N) flavour symmetry of QED3 are g
s

, gE , and gB. With g
t,a

= g
t,A = g

v,a

= 0,

the only non-trivial �-functions are

⇡�
s

= g2
s

+ 2cg
s

, ⇡�E = �3g
s

gB, ⇡�B = �g
s

(3gE + gB) · (46)

�
s

is entirely determined by the fermion self-energy diagrams in Figs. 5a and 5b and the 4-point

diagrams in Fig. 6. Figs. 6a and 6b cancel, and Fig. 6c contributes the second term in �
s

. This is

precisely the same term found in Ref. 32 for free Dirac fermions. The second term in �
s

results from

interactions with the photon. In fact, this is simply the anomalous dimension of N
s

(r) = 1p
2N
 ̄ (r)
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0 0

0 0

FIG. 7: The only disorder diagram to contribute to O(gB/2N) when B(x) is the only random

field coupled to QED3. Note that it is subleading to the self-energy diagrams we consider

elsewhere in the paper. It contributes a divergence �ip0�
0
⇣

gB
2⇡(2N)✏

⌘
.

in pure QED3 (Eq. (19)). Since g
s

> 0, both terms in �
s

are positive, and, as the energy scale is

taken to zero, g
s

flows to zero.

Both of the �-functions for the flux disorder are directly proportional to the SU(2N)-symmetric

mass coupling and so vanish when g
s

= 0. This is expected since the conservation of flux guarantees

that the scaling dimensions of J0
top and Jx,y

top are 1 + z and 2 respectively: when z = 1, both types

of disorder are exactly marginal. However, there is no reason to expect this to be true beyond

leading order. For instance, setting g
s

= gE = 0, the lowest order diagram which contributes to the

self-energy is shown in Fig. 7. Like the self-energy diagrams in Fig. 5, its divergence is cancelled by

Z1, yielding a dynamic critical exponent greater than unity: z = 1+ gB/2⇡(2N). Since monopoles

are still conserved, this is the only contribution to the �-function of gB, and we conclude that

⇡�B = �g2B/2N . The clean theory is therefore unstable to this type of disorder, albeit it at a

higher order than what we consider in the rest of the paper: O(g2B/2N) ⇠ O(1/(2N)3) instead of

O(1/(2N)2).

The above reasoning has one caveat. Notably, if the scaling dimension of J j

top is non-

perturbatively protected to be exactly 2, the �-function for gE should be exactly zero even in

the presence of a finite g
s

. Instead, when g
s

6= 0, J j

top and J0
top are mixed into one another.

This arises from the same physics as the parity anomaly: when a single species of Dirac fermions

are coupled to a mass, a Chern-Simons term at level 1/2 is generated ⇠ 1
2
✏µ⌫⇢A

µ

@
⌫

A
⇢

/4⇡. In

the disordered system, this manifests itself through the induced coupling of the two topological

currents.

Finally, when both the SU(2N) flavour symmetry and time reversal are imposed, only disorder

coupling to J j

top is allowed. We expect this to be exactly marginal to all orders in perturbation

theory.
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C. SU(2)⇥SU(N) flavour symmetry

If we instead allow disorder to break the symmetry from SU(2N) ! SU(2) ⇥ SU(N), no non-

trivial fixed point is found; the system flows to strong disorder, and out of the perturbative regime.

Setting g
t,a

= g
t

, g
v,a

= g
v

, and gA,a

= gA, the resulting set of �-functions is

⇡�
s

= g
s

[g
s

+ 3g
t

+ 3g
v

� 6gA + 2c]� 6g
v

gA,

⇡�
t

= g
t

[�g
t

+ g
s

� 9g
v

+ 6gA � c] ,

⇡�A = �4g2A � g2
t

� g2
v

� g
s

g
v

,

⇡�
v

= g
v

[g
v

� g
s

+ g
t

� 2gA]� 2g
s

gA,

⇡�E = �3g
s

gB,

⇡�B = �3g
s

gE � gB [gs + 3(g
t

+ 2gA + g
v

)] · (47)

The third equation indicates that if either g
t

, gA, or g
v

is non-zero, gA always flows to strong

coupling. The four negative terms in �A can be traced to the diagrams in the first, fifth, and seventh

rows of Table I, and the second row of Table II (shown in Appendix D). In these diagrams, the

anticommutation properties of the Pauli matrices ensure that the “box” and “crossing” diagrams

do not cancel as they did for the singlet mass term (Figs. 6a and 6b). In fact, it is shown in

Appendix A that disorder symmetric under any continuous non-abelian subgroup H of SU(2N)

will have this property and, consequently, flow to strong coupling.

This may appear to contradict the argument of the previous section: since gA couples disorder

to the spatial components of a conserved current, in the absence of a random mass M
s

(x), should

it not be exactly marginal like gE? The key di↵erence is that because SU(2) is non-ablelian, the

SU(2)⇥SU(N) flavour symmetry is only present on average. The action for a specific realization

of disorder, Aa

j

(x), only has a SU(N) flavour symmetry, and, as a result, the scaling dimension of

i ̄�j�a is not protected.

Similarly, if gB is non-zero and any of the other four fermion bilinears couplings are non-

zero, disorder coupling to J0
top also becomes strong. Again, this is because the dynamical critical

exponent is greater than 1 when g
s

, g
t

, gA, or g
v

do not vanish. [J0
top] = 1 + z > 2 and it is a

relevant perturbation.
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D. U(1)⇥SU(N) symmetry

We turn, finally, to the case of greatest interest in the present paper. When the disorder couples

to a U(1) subgroup of SU(2N), we find a fixed line with both finite disorder and interactions.

We begin by considering an XY anisotropy where g·,z is allowed to di↵er from g·,x = g·,y = g·,?.

With this restriction, the �-functions in Eq. (44) reduce to

⇡�
s

= g
s

[g
s

+ g
t,z

+ 2g
t,? � 2gA,z

� 4gA,? + g
v,z

+ 2g
v,? + 2c]� 2g

v,z

gA,z

� 4g
v,?gA,?,

⇡�
t,z

= g
t,z

[g
t,z

� 2g
t,? + 6gA,z

+ 4gA,? + g
s

� 7g
v,z

� 2g
v,? � c]� 4g

t,?gA,?,

⇡�
t,? = g

t,? [�g
t,z

+ g
s

+ 8gA,? � g
v,z

� 8g
v,? � c]� 2g

t,z

gA,?,

⇡�A,z

= �4g2A,? � g2
t,? � g2

v,? � g
s

g
v,z

,

⇡�A,? = �4gA,?gA,z

� g
t,z

g
t,? � g

v,z

g
v,? � g

s

g
v,?,

⇡�
v,z

= g
v,z

[�g
v,z

+ 2g
v,? � g

t,z

+ 2g
t,? � 2gA,z

+ 4gA,? � g
s

] ,�2g
s

gA,z

� 4g
v,?gA,?

⇡�
v,? = g

v? [g
v,z

+ g
t,z

� g
s

]� 2g
s

gA,? � 2g
v,z

gA,?,

⇡�E = �3g
s

gB,

⇡�B = �3g
s

gE � gB [gs + g
t,z

+ 2gA,z

+ g
v,z

+ 2(g
t,? + 2gA,? + g

v,?)] · (48)

These results are consistent with the RG equations obtained in Ref. 33. In this paper, the authors

considered Dirac cones interacting through a 3d Coulomb term instead of a strictly 2+1 dimension

gauge field; we can compare to their results by setting the Coulomb coupling in their equations to

zero and g2 = g
s

= g
v,z

= g
v,? = gE = gB = 0 in Eq. (42).

As in the previous section, the �-functions for the vector potential couplings, gA,z

and gA,? are

all negative. In order to ensure that they do not flow to infinity, all perpendicular couplings must

vanish, gA,? = g
t,? = g

v,? = 0, so that �
z,? = �A,? = �

v,? = 0. This describes a situation where

the U(1)⇥SU(N) symmetry of the underlying theory is preserved even in the presence of disorder.
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FIG. 8: RG flow in the (a) (g
t,z

, gA,z

) plane, (b) (g
t,z

, g
v,z

) plane, and (c) (g
s

, g
v,z

) plane with all

other couplings set to zero. (d) shows the (g
t,?, gA,?) plane with g

t,z

= c and all other couplings

vanishing. The critical point with all couplings equal to zero (no disorder) is marked in orange

with “A” and the critical point with g
t,z

= c is marked in green with a “B”. In (a), the critical

line is drawn in green. Here c = 128/3⇡(2N).
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The �-functions in the presence of this symmetry are

⇡�
s

= g
s

(g
s

+ g
t,z

� 2gA,z

+ 3g
v,z

+ 2c)� 2gA,z

g
v,z

,

⇡�
t,z

= g
t,z

(g
t,z

+ g
s

+ 8gA,z

� 7g
v,z

� c) ,

⇡�A,z

= �g
s

g
v,z

,

⇡�
v,z

= �g
v,z

(g
v,z

+ g
s

+ g
t,z

+ 2gA,z

)� 2g
s

gA,z

,

⇡�E = �3g
s

gB,

⇡�B = �3g
s

gE � gB (gs + g
t,z

+ 2gA,z

+ g
v,z

) · (49)

Recalling that all couplings must be positive, we find a single physical solution which breaks the

SU(2N) flavour symmetry to U(1)⇥SU(N). It is parametrized by the line

g
t,z

= c� 8gA,z

, gA,z

 c

8
, (50)

with gB and all other bilinear couplings equal to zero. Moreover, since g
s

, g
v,z

, and gB are all

zero, each realization of disorder is invariant under time reversal and, consequently, gE is exactly

marginal (see Sec. III B). The fixed line we discuss is more correctly a fixed plane (though we will

frequently refer to it only as a line). Referring to Eq. (41), the dynamical critical exponent on this

surface is

z = 1 + c� 6gA,z

· (51)

In the presence of both time reversal and the U(1)⇥SU(2N) flavor symmetry, g·,? = 0, the

critical surface has one irrelevant and two marginal directions. It is stable to small variations in

g
t,z

while perturbations in gE and gA,z

are marginal. Once more, as these couplings are associated

with the spatial components of a conserved current, their scaling dimensions are non-perturbatively

fixed at exactly two when time reversal symmetry is present. As a result of these symmetries, for

su�ciently large N , we do not expect the stability of the critical surface to change, though it is

possible that that it will be reduced to a single critical point. The RG flow in the (g
t,z

, gA,z

) plane

is shown in Fig. 8a.

When time reversal only holds on average, g
s

, g
v,z

and gB are allowed to be finite as well.

Disorder coupling to the SU(2N)-symmetric mass term remains irrelevant, but the scalar potential-

like disorder, g
v,z

and gB, take the theory into the strong coupling regime, as expected when the

z > 1. The RG flows in the (g
t,z

, g
v,z

) and (g
s

, g
v,z

) planes are shown in Figs. 8b and 8c.
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The fixed surface is not stable to perturbations which explicitly break the U(1)⇥SU(2N) flavour

symmetry of the replicated theory. Fig. 8d shows the RG flow in the (g
t,?, gA,?) plane for gt,z = c,

gA,z

= 0 and indicates that both parameters are relevant. This is true along the entire critical

surface. Conversely, it can also be shown that along the critical line g
v,? is irrelevant.

IV. APPLICATION TO THE KAGOME ANTIFERROMAGNET

The large emergent symmetry of the QED3 CFT implies that the currents and the fermion

bilinears which we couple to disorder can be interpreted in a number of ways. Nonetheless, it is

useful to directly relate our model to the microscopic operators of the spin-1/2 kagome Heisenberg

antiferromagnet (N = 2): HH = J
P

hiji Si

· S
j

, where hiji are nearest-neighbour sites on the

kagome lattice (see Fig. 1). Special attention will be given to the fixed line found in Sec. IIID.

This section draws heavily from the discussion of Ref. [5], and more details can be found therein.

We begin by reviewing how the CFT is obtained as the low energy description of the kagome

antiferrormagnet. We start by expressing the spin operators in terms of fermions, S
i

= 1
2
f †
i⌧

�

⌧⌧

0f
i⌧

0 ,

where � are the three Pauli matrices. This representation reproduces the Hilbert space of the spins

provided it is accompanied by the local constraint
P

⌧=",# f
†
i⌧

f
i⌧

= 1. The resulting Hamiltonian,

HH = �J

4

P
hiji f

†
i⌧

f
j⌧

f †
j⌧

f
i⌧

0 + const., can be approximated by a mean field Hamiltonian HMF =

�
P

hiji tijf
†
i⌧

f
j⌧

0+H.c., where t
ij

is chosen so as to minimize the ground state energy while enforcing

the condition
P

⌧=",# hfi⌧fi⌧ i = 1 on average. The mean field ansatz which inserts ⇡ and zero flux

through the kagome hexagon and triangle plaquettes respectively is found to have a particularly

low energy [3–5]. In this case, the dispersion of HMF has two Dirac cones per spin at a non-zero

crystal momentum, ±Q [3, 5]. The low energy excitations of HMF are described by expanding

about these two valleys, giving a free Dirac Lagrangian, LD = � ̄
↵

/@ 
↵

, where ↵ labels both spin

and valley (the relation between the continuum Dirac spinors,  
↵

, and the lattice fermions, f
i⌧

,

is given in the appendix to Ref. 5). However, since the physical spin operators, S
i

, are invariant

under local phase rotations, f
i⌧

! ei�if
i⌧

, the fermions carry an emergent gauge charge, and,

consequently, the true e↵ective theory of HH must take gauge fluctuations into account. Provided

monopoles do not the confine the theory, the low energy description of the kagome antiferromagnet

is QED3 and not the free Dirac theory [20–23]. We note that while HH only had an SU(2) spin

symmetry, QED3 has an emergent SU(4) symmetry under which spin and valley indices are rotated
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into one another.

In order to calculate physical quantities, microscopic observables of the lattice theory must be

associated with continuum operators of QED3:

A
i

⇠
X

`

c
`

O
`

(r), (52)

where A
i

is some function of local operators near the lattice site r, and O
`

(r) are a set of operators

belonging to the CFT. At long distances, the quantities to the left and right of Eq. (52) must

decay in the same manner. Given A
i

, the set of operators O
`

for which c
`

is non-vanishing could

be determined by repeating the steps used to derive QED3 from the Heisenberg model on the

microscopic operators O
`

[5]. However, it is easier to note that the c
`

’s can be non-zero if and

only if A
i

and O
`

transform in the same manner under the action of the microscopic symmetries

of the theory. In particular, the action under time reversal and space group transformations will

be important. The symmetry operations relevant to the kagome antiferromagnet can be found in

Ref. 5.

As discussed in Sec. II B, we only consider disorder which couples to the topological current

and the fermion bilinears. That is, we restrict O
`

to be either the conserved currents in Eqs. (14)

and (15), or the mass-like operators given in Eqs. (17) and (18). By applying our large-N results to

the N = 2 case, we may be neglecting relevant types of disorder in the form of monopole operators.

With this caveat in mind, we begin by identifying the singlet mass operator 1p
2N
 ̄ with the

chiral mass term discussed in Ref. 3. Noting that 1p
2N
 ̄ is odd under both parity and time

reversal, it’s not surprising that it can be associated with the scalar spin chirality,

CSSP(x4) =
X

(ijk)24
S

i

· (S
j

⇥ S

k

) , (53)

where x4 is the position of a triangle in the lattice, and (ijk) are ordered as indicated by the arrows

in Fig. 1. The flux disorder operator, J0
top transforms in the same way as 1p

2N
 ̄ , indicating that it

can also be associated with CSSP. We conclude that the random fields M
s

(x) and B(x) in Eq. (23)

descend from disorder coupling to CSSP. The renormalization group study of Secs. III B, III C,

and IIID indicates that a randomly varying scalar spin chirality remains a marginal perturbation

to leading order. However, this is not protected by any symmetry and, as discussed in Sec. III B,

higher order diagrams are believed to make it relevant.

The spatial components of the topological current are time reversal invariant and transform as

vectors under spatial rotations. The simplest operators invariant under time reversal are the bond
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operators,

P
ij

= S

i

· S
j

, (54)

where i and j are nearest-neighbours. In order to find the simplest combination of P
ij

’s which

rotate in the correct fashion, we calculate the irreducible representations governing the bond con-

figurations within a unit cell. Defining

P
x

(x) =
X

ij2hex(x)
ex
ij

P
ij

, P
y

(x) =
X

ij2hex(x)
ey
ij

P
ij

,

�
ex
ij

�T
=

1

2
p
3
(2, 1,�1,�2,�1, 1) ,

�
ey
ij

�T
=

1

2
(0, 1, 1, 0,�1,�1) , (55)

we identity Jx

top and Jy

top with P
x

and P
y

respectively. These patterns are shown in Fig. 9.

We next express the 15 generators of SU(4) as {�a, µj, �aµj} where �a and µj are commuting

sets of Pauli matrices with �a acting on spin and µa acting on valley indices. Following the notation

of Ref. 5, it’s useful to re-label the operators of Eqs. (14) and (17) as

J ia

A,µ

= i ̄µi�a�
µ

 , Ja

B,µ

= i ̄�a�
µ

 , J i

C,µ

= i ̄µi�
µ

 ,

N ia

A

=  ̄µi�a , Na

B

=  ̄�a , N i

C

=  ̄µi · (56)

Each of these operators can couple to a random field to give an action of the form in Eq. (23).

In Ref. 5, the microscopic spin operators corresponding to each of the mass operators, N ia

A

, Na

B

,

and N i

C

are identified. We will primarily be interested in Na

B

. This is a spin triplet and is even

under time reversal. The simplest microscopic operator with this property is the vector chirality

operator C

ij

= S

i

⇥ S

j

, where i and j are nearest-neighbours. The linear combination of C
ij

’s

within a unit cell which transform in the same way as N
B

can be written

C
s

(x) =
X

(ij)2hex(x)
C

ij

, (57)

where the sum is taken around the hexagon at x following the convention in Fig. 1. As we indicated

in Sec. I, C
s

is precisely the DM interaction.

Similar reasoning suggests that the B-type currents, J
B,µ

(r), correspond to the spin operator

and the spin currents. First, the space group symmetry acts on S

i

in the same way as it acts on

J

B,0; in particular, both S

z and J

B,0 are invariant under spatial rotations and odd under time

reversal. It’s not surprising then that J
B,x

and J

B,y

correspond to spin currents. They are both
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(a) Current in x-direction. (b) Current in y-direction.

FIG. 9: Bond ordering of bond order and vector chirality operators corresponding to the

topological currents, J j

top, and the spin currents Ja,j

B

(r) in the x and y directions respectively.

Our convention is that in C

ij

= S

i

⇥ S

j

, the ith site points towards the jth. The double arrows

in (a) identify the bonds which are weighted twice as strongly as others, while the absence of

arrows on the horizonal bonds in (b) implies that they do not contribute at all.

even under time reversal and are spin triplets. As with N

B

, this suggests a linear combination

of nearest-neighbour vector chirality operators, C

ij

, as their natural microscopic counterpart.

Like J j

top, they must transform as vectors under spatial rotations, implying that the C
ij

’s should

correspond to the J

B,j

in the same way the P
ij

’s correspond to J j

top:

C
x

(x) =
X

ij2hex(x)
ex
ij

C

ij

, C
y

(x) =
X

ij2hex(x)
ey
ij

C

ij

, (58)

where ex
ij

and ey
ij

are given in Eq. (55) and shown in Fig. 9. In fact, since we assume that fermion

bilinears and topological currents are the only relevant operators of the CFT, all disorder coupling

to the C
ij

’s is taken into account by random fields coupling to N

B

, J
B,x

, and J

B,y

. In particular,

modulo the caveats we have already discussed, the low energy theory of the kagome AF with weak

disorder of the form

HDM
dis =

X

hiji
JDM
ij

ẑ · S
i

⇥ S

j

(59)

where JDM
ij

are su�ciently weak random variables, should be described by fixed line of Sec. IIID.

Unlike N

B

, the remaining two bilinears in Eq. (56) carry valley indices. The bilinear N i

A

rep-

resents a set of three spin triplets and is odd under time reversal. Focusing on the z component in
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spin space, N i,z

A

, three magnetic ordering patterns can be identified, each with a crystal momentum

at a di↵erent M point in the Brillouin zone. Under rotations about the z-axis, the N i,z

A

’s transform

into one another. Disorder resulting from magnetic defects could couple to bilinears of this form,

but the fixed line resulting in Sec. IIID is particularly unlikely to occur. Except in cases of extreme

anisotropy, we do not expect disorder to exclusively couple to a single momentum channel. Simi-

larly considerations hold for N i

C

. These operators are spin singlets and, like J j

top, can be associated

with bond ordering patterns P
ij

[3, 5]. In this case, two 3-dimensional irreducible representations

of bonds transforming in the same way as N i

C

are identified, and, again, each ordering pattern

within an irreducible representation is distinguished by having a crystal momentum at each of the

three M points. The same arguments hold for the microscopic analogues of J i,a

A,µ

and J i

C,µ

.

V. FLAVOR CONDUCTIVITY

The flavor conductivity is a universal observable of the CFT; for the case of the kagome anti-

ferromagnet, this conductivity is interpreted as a spin conductivity. By the usual arguments, we

expect this conductivity to also be a universal observable along the fixed line with U(1)⇥SU(N)

symmetry found in Sec. IIID. Because of the presence of continuously variable critical exponents

along this line, we also anticipate the flavor conductivity to be continuously variable.

The flavor conductivity is determined by the two point correlators at zero external momentum

of the following currents:

Jx

za

(p) = i ̄�zT a�x (p), Jx

sa

(p) = i ̄T a�x (p), Jx

?a

(p) = i ̄�xT a�x (p) = i ̄�yT a�x (p). (60)

The diagrams which contribute toO(g
t,z

, gA,z

, 1/2N) are shown in Fig. 10. To this order, a non-zero

gE will not contribute. We recall from the discussion at the end of Sec. IIID that the dimensions of

the currents Jx

za

and Jx

sa

are fixed at 2, implying that their correlators will contain no divergences.

Furthermore, an inspection of the diagrams in Appendix D shows that the scaling dimensions

of Jx

a? remain unaltered to the order we are considering. Appendix F outlines how Figs. 10a

to 10e are calculated, and also verifies that counter term diagrams do not contribute. The photon

27



q + p

q

µ, r,↵

⌫, s,�

(a)

q + p

q + k

q

k

q + k + p

µ, r,↵

⌫, s,�

z

z

(b)

q + p

qq

k

q + k

µ, r,↵

⌫, s,�

z z

(c)

q + p

q + k

q

k

q + k + p

µ, r,↵

⌫, s,�

z, j

z, j

(d)

q + p

qq

k

q + k

µ, r,↵

⌫, s,�

z, j z, j

(e)

q + p

q + k

q

k

q + k + p

µ, r,↵

⌫, s,�

�

�

(f)

q + p

qq

k

q + k

µ, r,↵

⌫, s,�

� �

(g)

FIG. 10: Diagrams which contribute to the current-current correlator.
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contributions, Figs. 10f and 10g, are determined in Ref. [34]. Combining these results, we find

hJx

za

(p0)J
x

zb

(�p0)i = hJx

sa

(p0)J
x

sb

(�p0)i

= �
ab

|p0|
⇢
� 1

16
+

a
�

2N
+ aVgt,z + a⌃(gt,z + 2gA,z

)

)

= �
ab

|p0|
⇢
� 1

16
+

a
�

2N
+ c(aV + a⌃)� (8aV + 6a⌃)gA,z

�
(61)

and

hJx

?a

(p0)J
x

?b

(�p0)i = �
ab

|p0|
⇢
� 1

16
+

a
�

2N
� aVgt,z + a⌃(gt,z + 2gA,z

)

�

= �
ab

|p0|
⇢
� 1

16
+

a
�

2N
+ c(�aV + a⌃) + (8aV � 6a⌃)gA,z

�
(62)

where aV, a⌃, and a
�

are derived from Figs. 10b and 10c, Figs. 10d and 10e, and Figs. 10f and 10g

respectively. The two disorder contributions are equal,

adis = a
V

= a⌃ =
1

96⇡
, (63)

and the photon contribution is [34]

a
�

=

✓
�0.0370767 +

5

18⇡2

◆
. (64)

From the Kubo formula, it follows that the DC conductivities are

�
z

(0) = �
s

(0) =
1

16
� a

�

2N
+ 2adis(c� 7gA,z

),

�?(0) =
1

16
� a

�

2N
+ 2adisgA,z

· (65)

In both flavor channels, disorder suppresses the conductivity and, except when gA,z

= c/8, and

g
t,z

= 0, the singlet and spin-z channels are a↵ected more strongly. This is physically reasonable

since we naturally expect transport to decrease most in channels which can couple directly to

disorder.

VI. CONCLUSION

This paper examined the influence of quenched disorder on the 2+1 dimensional CFT of 2N

massless two-component Dirac fermions coupled to a U(1) field. The existence of this CFT can
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be established for su�ciently large N by the 1/N expansion, and we combined the 1/N expansion

with a weak disorder expansion.

For generic disorder, our renormalization group analysis shows a flow to strong coupling, and

so we were unable to determine the fate of the theory. However, if we restrict the disorder to obey

certain global symmetries, then we were able to obtain controlled results.

For disorder respecting time reversal and the full SU(2N) flavor symmetry of the CFT, we found

in Sec. III B that all allowed disorder perturbations were marginal to the order we considered. Such

a result does not apply to the CFT of 2N free Dirac fermions: in that case, disorder coupling to a

randomly varying chemical potential leads to a flow to strong coupling [24]. However, once disorder

is allowed to break time reversal, we again find a runaway flow towards strong disorder, albeit at

a higher order in perturbation theory.

Our main results, in Sec. IIID, concerned the case in which disorder respects time-reversal and

U(1)⇥SU(N) symmetry. In this case, to leading order in 1/N , we found a non-trivial fixed line with

both interactions and disorder. This fixed line had continuously varying exponents, in particular

a dynamic critical exponent z > 1. It also had a continuously varying, but cuto↵ independent,

flavor conductivity.

We also discussed the possible relevance of our results to the spin-1/2 kagome lattice antifer-

romagnet. In this case, the U(1)⇥ SU(N) symmetric disorder corresponds to a randomly varying

Dzyaloshinkii-Moriya field, as we described in Secs. I and IV.
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Appendix A: General non-abelian subgroup of SU(2N)

In this appendix, we briefly discuss the RG flow which results upon breaking the flavor symmetry

from SU(2N)! G⇥SU(2N)/G, where G is a continuous non-abelian subgroup of SU(2N). The

most general form the disorder could take is

SG
dis[ ,  ̄] =

Z
ddx d⌧


MG

a

(x) ̄T a (x, ⌧) + iAG
ja

(x)T a�j (x, ⌧) + V G
a

(x)T a�0 (x, ⌧)

�
(A1)

where T a are the generators of G. Averaging over disorder, we assume

MG
a

(x)MG
b

(x0) =
µ�✏�

t

2
�
ab

�d(x� x0), MG
a

(x)AG
jb

(x0) = 0,

AG
ia

(x)AG
jb

(x0) =
µ�✏�A

2
�
ab

�
ij

�d(x� x0), MG
a

(x)V G
b

(x0) = 0,

V G
a

(x)V G
b

(x0) =
µ�✏�

v

2
�
ab

�d(x� x0), AG
ja

(x)V G
b

(x0) = 0. (A2)

We can study this theory in the same way we did in Secs. II B and IIIA. The Feynman rules will

be analogous to those shown in Fig. 3.

From the calculations in Appendix C, we see that only the diagrams in Figs. 12a and 12b, and

Figs. 13a and 13b contribute to the renormalization of �A. In particular, letting �A be the vertex

function whose spinor indices are proportional to i�j ⌦ i�
j

, we find
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where we’ve used the fact that

X
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⇥
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⇤
=
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where fabc are the structure constants of the algebra. It follows that

⇡�A = �
�
�2
t

+ 4�2A + �2
v

�
. (A5)

Appendix B: Fermion self-energy

In this section, we calculate the fermion self-energy diagrams given in Fig. 5.
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Self-energy contribution from photon: Fig. 5a
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and the fact that �µ�↵�
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Self-energy contribution from singlet mass disorder: Fig. 5b
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Self-energy contribution from SU(2) mass disorder: Fig. 5c

The contribution from the SU(2) mass disorder is the same, since the Pauli matrices square to

the identity:

Fig. 5c = g
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Self-energy contribution from scalar potential disorder: Fig. 5d
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µ

µ

= 2⇡�(q0) [i�
µ]

ab

[i�µ]
cd

FIG. 11: Feynman rules for diagrams without flavor indices. a, b, c, d on the graphs label the

spinor indices, and ` and m label the replica indices. The vertex on the left describes mass-like

disorders, such as M
s

(r) and M
t,a

(r), and the diagram on the right corresponds to the SU(2)

scalar and vector potential disorder, V
a

(r), and A
j,a

(r).

Self-energy contribution from vector potential disorder: Fig. 5e
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Appendix C: Diagrams without flavor indices

Since the spinor and flavor tructure of the interactions factor, it’s convenient to first calculate the

diagrams which correct the four-point interaction without reference to the fermion flavor indices.

We denote these generalized vertices with the Feynman graphs shown in Fig. 11. The set of

diagrams with only internal mass-like disorder and photon lines is shown in Fig. 12, while diagrams

with only gauge-like disorder and photon lines are shown in Fig. 13. Finally, Fig. 14 lists those

diagrams which have contributions from both mass and gauge-like disorder.

1. Diagrams with mass-type disorder and photon lines: Fig: 12

In this section, we evaluate the diagrams with only internal mass disorder and photon lines.

These are listed in Fig: 12.

33



(a) �j ⌦ �

j

�
� 1

4⇡✏

�
(b) �j ⌦ �

j

�
1

4⇡✏

�
(c) 1⌦ 1

�
1

2⇡✏

�
(d) 1⌦ 1

�
1

2⇡✏

�

µ

µ

(e) Convergent

µ

µ

(f) Convergent

µ µ

(g) 1⌦ 1
⇣
� 24g2

⇡

2(2N)✏

⌘

µ µ

(h) 1⌦ 1
⇣
� 24g2

⇡

2(2N)✏

⌘

⌫ µ

⌫ µ

(i) 1⌦ 1
⇣

16g4

⇡

2(2N)✏

⌘
⌫ µ

⌫ µ

(j) 1⌦ 1
⇣

16g4

⇡

2(2N)✏

⌘
µ

µ

(k) Cancels Fig. 12l
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FIG. 12: 4-point diagrams with photon and mass-like disorder internal lines. Below each

diagram, the divergent piece, if present, is given. (The factor of 2⇡�(q0) has been been

suppressed for simplicity.)

Two internal mass lines, no crossing: Fig. 12a
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FIG. 13: 4-point diagrams with photon and gauge-like disorder internal lines. Below each

diagram, the divergent piece, if present, is given. (The factor of 2⇡�(q0) has been been

suppressed for simplicity.)
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FIG. 14: 4-point diagrams with both mass-like and gauge-like disorder internal lines. Below each

diagram, the divergent piece, if present, is given. (The factor of 2⇡�(q0) has been been

suppressed for simplicity.) The tr [O
fl

] term in Figs. 14i and 14j indicates that once the action on

the flavour indices has been specified, a trace over this operator should be taken.

Two internal mass lines, with crossing: Fig. 12b
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Vertex correction from disorder: Figs. 12c and 12d
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The other vertex gives the same correction:
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One internal gauge-like disorder line and one photon line: Figs. 12e and 12f

The diagrams are both convergent. We see this by writing
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where we have assumed that q = (q0, 0). The same reasoning shows that Fig. 12f is convergent as

well.

Vertex correction from photon: Figs. 12g and 12h
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Similarly,
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FIG. 15: Fermion loop subdiagrams which appear in the O(g2
⇠

, g
⇠

/2N) bilinear counter terms.

Internal fermion loop with two photon legs: Figs. 12i and 12j

Because of the sum over N in the internal fermion loop, several two-loop diagrams contribute

to the order in perturbation theory we are considering. Since the frequency �-function which

renormalizes disorder must come entirely from the single disorder leg in Figs. 12i and 12j, we can

determine the divergence by sending zero (spatial) momentum through this diagram. Therefore,

it becomes easier to first calculate the vertices shown in Figs. 12i and 12j.

We have
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We note that since the photons are diagonal in flavour space, the mass disorder in the loop must
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also be diagonal. It follows that this diagram will only contribute to disorder coupling to the

singlet mass operator,  ̄ , and, for this reason, we have taken the flavour trace to be 2N . The full

diagram is then
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We set p = 0 and use an IR cuto↵. Then, we can take k
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Inserting this into the expression above, we find
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For the second diagram, we calculate the vertex in Fig. 15b.

Fig. 15b = �µ�✏g2
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This is identical to Eq. (C8) except with k ! �k and µ $ ⌫:
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It follows that
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Internal fermion loop with one photon and one disorder line: Figs. 12k and 12l

As above, we approach the two-loop diagrams by first calculating the relevant fermion loop

vertices, shown in Figs. 15c and 15d. We have
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Here, we leave the flavour index behaviour of the vertices arbitrary by letting O
fl

be a general

2N ⇥ 2N Hermitian matrix. Similarly
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Taking q ! �q and noting that tr[���µ���↵] = tr[�↵���µ��], this becomes
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It follows that the divergences in Figs. 12k and 12l cancel.

2. Diagrams with gauge-like disorder and photon lines: Fig. 13

Two internal gauge-like disorder lines, no crossing: Fig. 13a
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Two internal gauge-like disorder lines, with crossing: Fig. 13b
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Vertex correction from gauge-like disorder: Figs. 13c and 13d
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The other vertex gives the same correction:
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One internal gauge-like disorder line and one photon line: Figs. 13e and 13h

This situation is identical to the one in Eq. (C5) except for some � matrices: both Fig. 13e and

Fig. 13h are finite.

Vertex correction from photon: Figs. 13f and Fig. 13g

Fig. 13f = 2⇡�(p0)
16µ�✏g2

2N

X

⌫

Z
dDq

(2⇡)D
i�⌫

iq
↵

�↵

q2
i�µ

i(q + p)
�

��

(q + p)2
i�
⌫

1

|q| ⌦ �µ

= 2⇡�(p0)
16µ�✏g2

2N
i
X

⌫

�⌫�↵�µ���
⌫

⌦ �µ
Z

dDq

(2⇡)D

Z 1

0

dx
3

2

p
1� x

q
↵

q
�

� x(1� x)p
↵

p
�

[q2 + x(1� x)p2]5/2

= 2⇡�(p0)�
µ ⌦ �µ

✓
� 8g2

3⇡2(2N)✏

◆
+ finite. (C22)

Similarly,

Fig. 13g = 2⇡�(p0)�
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✓
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◆
+ finite. (C23)
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Internal fermion loop with one disorder and two photon legs: Figs. 13i and 13j

None of the gauge-like disorder terms are diagonal in the flavour indices. As we remarked above,

this is because the global U(1) current has scaling dimension 3, making it extremely irrelevant.

Therefore, the gauge-like disorder in Figs. 13i and 13j inserts an 2N ⇥ 2N traceless Hermitian

matrix into the fermion loop. Upon taking the trace, both vanish.

Internal fermion loops with two disorder and one photon leg: Figs. 13k and 13l

As we did for the two loop diagrams with mass-like disorder above, we first calculate the fermion

loop vertices. The vertices relevant to our diagrams are shown in Figs. 15e and 15f. We have
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, (C24)

where O
fl

is the matrix in flavour space coming from disorder vertices. Similarly, reversing the

direction of the fermion loop, we have

Fig. 15f = �µ�✏/2gp
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Noting that

tr [�µ1�µ2 · · · �µn ] = (�1)ntr [�µn�µn�1 · · · �µ1 ] (C26)

and taking q ! �q, we have
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We conclude that Figs. 13k and 13l cancel one another.
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3. Both potential and mass disorder diagrams

One internal mass-like and gauge-like disorder lines, no crossing: Fig. 14a
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One internal mass-like and gauge-like disorder lines, with crossing: Fig. 14b
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Mass disorder vertex correction from potential disorder: Figs. 14c and 14d

Fig. 14c = 2⇡(p0)1⌦ 1

✓
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◆
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and

Fig. 14d = 2⇡(p0)1⌦ 1

✓
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◆
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Potential disorder vertex correction from mass disorder: Figs. 14e and 14f

Fig. 14e =
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Similarly,
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Internal fermion loop with internal gauge and photon legs: Figs. 14g and 14h

In order to calculate Figs. 14g and 14h, we being by determining the subdiagrams in Figs. 15g

and 15h:

Fig. 15g = �µ�✏/2gp
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where O
fl

is the matrix in flavour space resulting from disorder vertices. Similarly, the other

diagram gives

Fig. 15h = �µ�✏/2gp
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where in the last line we took q ! �q. It follows that these diagrams cancel with each other.

Internal fermion loop with internal mass and gauge disorder and photon lines: Figs. 14i and 14j

We start by evaluating the fermion loop vertices in Figs. 15i and 15j. Actually, it’s not di�cult

to see that up to the photon vertex coupling, µ�✏/2g/
p
2N , these diagrams are identical to the
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vertices in Figs. 15a and 15a, determined in Eqs. (C8) and (C13):

Fig. 15i = Fig. 15j
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Proceeding as we did for this case, we have

Fig. 14i = Fig. 14j
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where tr [O
fl

] indicates that, in order to allow disorder vertices which are o↵-diagonal in the flavour

indices, we have not yet explicitly taken the trace over the flavours. Moreover, we sum over ⌫, �,

and ⇢ but not µ. With this in mind, we note

� i
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Performing the q, k, and x integrals, we obtain,

Fig. 14i = Fig. 14j
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Appendix D: 4-point diagrams contributing to fermion bilinear counter terms

The diagrams which contribute to the �-functions at O(g2
⇠

, g
⇠

/N) are shown in Fig. 6 and in

Tables. I through III. The divergences are based on the integrals determined in Sec. C and only

diagrams which do not vanish are shown. The label “n
d

” indicates the degeneracy of the diagram

or else the existence of a diagram with a nearly identical form.

Some of the diagrams result in divergences proportional to [�µ ⌦ �µ] [1⌦ 1] and would appear

to imply that disorder coupling to the U(1) gauge current Jµ is generated. While counter terms are
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µ

⌫

(a)

µ

⌫

(b)

FIG. 16: Diagrams which enter into the photon self-energy at leading order. (a) will not

renormalize the disorder and (b) vanishes.

technically required to render the theory finite, we emphasize that it is not necessary to consider

them since Jµ already has a large scaling dimension at the QED3 fixed point.

Appendix E: Diagrams renormalizing flux disorder, gE and gB

The renormalization of gE and gB result from terms in the photon self-energy which are propor-

tional to 2⇡�(p0). It follows that the usual 1/2N corrections to the photon propagator, like shown

in Fig. 16a, do not renormalize the flux disorder.

In order to renormalize gE and gB we must have a disorder line going through the middle. This

would allow a diagram like that shown in Fig. 16b. The trace over fermion flavours means that the

only disorder we could place between the two loops is the singlet mass-like disorder, with coupling

g
s

. This diagram is O(2Ng
s

) ⇠ O(1) and so thankfully it vanishes:
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where

Iµ(p) = �itr
⇥
�↵���µ
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We next consider the situation with two internal disorder lines. These lines must go between

the two bubbles otherwise they will be cancelled by a vertex or a field strength renormalization

and will not lead to a renormalization of the flux disorder. Furthermore, one of the internal lines

must correspond to a flux disorder interaction since otherwise the divergence will be cancelled by
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TABLE I: Feynman diagrams which determine the bilinear counter terms.
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TABLE II: Feynman diagrams which determine the bilinear counter terms.

one of the bilinear disorder counter terms we determined in the previous two sections. This leaves

the diagrams with one internal disorder line coupling to the topological current and one to the

mass since all other bilinear disorder types will vanish upon tracing over the flavour indices. These

diagrams are shown in Fig. 17. Depending on whether the internal indices (�, ⇢) are (0, 0) or (i, j)
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TABLE III: Feynman diagrams which determine the bilinear counter terms.
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FIG. 17: Diagrams which renormalizes the flux disorder at O(g
⇠

, g
⇠

/2N). Depending on whether

the internal indices are (�, ⇢) = (0, 0) or (i, j), the coupling constant are �gB or gE respectively.

the diagrams are proportional to �g4g
s

g
�

or g4g
s

gE respectively. They therefore contribute at the

same order as the diagrams in the previous two sections. We note that diagrams which two internal

flux disorder lines appear at a order in g
⇠

and 1/2N .

Ignoring coupling constants for the moment, for any give µ, ⌫, �, and ⇢, it’s easy to check that

the four diagrams being added in Fig. 17 all have the same value. Therefore, their sum is equal to

Fig. 17 = 4(�1)2(16)2
Z
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Noting that
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we define a function

Fµ�(k, p) =

Z
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⇥
�µ�↵������

⇤ q
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It follows that

Fig. 17 = 4(16)2 · 2⇡�(p0)
Z
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By dimensional analysis and gauge invariance, we know that any divergence arising from the sum

of these diagrams must take the form

Fig. 17 = Cµ⌫,�⇢ ⇥ 2⇡�(p0)p
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where Cµ⌫,�⇢ is a constant proportional to 1/✏. It follows that our problem can be significantly

simplified by di↵erentiating twice with respect to p, setting it to zero, and using a cutto↵ µIR to

regulate the IR divergence. That is
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up to finite pieces. Noting that we should only di↵erentiate with respect to p2 = p2
x

+ p2
y

, since

p0 = 0, we have
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where @
j

= @/@p
j

.

We start by finding Fµ�(k, 0):
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Here, we have set D = 3 since the integral is finite; we will continue to do so below. So the first

two terms in the derivative of Fµ�F⌫⇢ vanish, leaving only the third. We are left to find
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We separate this into two terms:
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The “A” contribution is
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The “B” part is slightly more complicated,
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and so we further separate this into three pieces:

[@
j

Fµ�(k, 0)]n
B

= �6 �
j⌘

tr
⇥
�µ�↵������

⇤ Z dDq

(2⇡)D

Z 1

0

dx
(1� x)2

[q2 + x(1� x)k2]4
fn

↵��⌘

(q, k), (E15)
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For the first part of [@
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which gives
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The second piece evaluates to
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Finally, the third part is
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Adding the three contributions, we find
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and, upon including [@
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We can now extract the divergence. When we only consider the magnetic disorder, the internal

indices in Eq. (E8) are fixed at (�, ⇢) = (0, 0). In this case, we have
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When we have (�, ⇢) = (i, j) we find
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Multiplying by the corresponding coupling constants, we obtain the counter terms cited in Eq. (43):
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FIG. 18: Subdiagrams which contribute to the flavour conductivity.

Appendix F: Current-current correlators

In this appendix we review our calculation of the Feynman diagrams shown in Figs. 10a to 10e.

Since no divergences are present in these diagrams, no counter-terms will be necessary.

1. Bare loop

The leading term is shown in Fig. 10a. It is simply
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where we used tr [T rT s] = �

rs

2
. Setting p = 0 and µ = ⌫ = x,we have
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2. Vertex diagrams

a. Contribution proportional to g

t,z

We begin by calculating the 1-loop vertex contribution shown in Fig. 18a:
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where
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The full diagram in Fig. 10b is then
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where ⌘
z

= +1 and ⌘
x,y

= �1.

We perform the integral over k in IV,0 and IV,d

and analytically continuing to d = 2+ ✏ spatial

dimensions:
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Performing the q integral, we have
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Plugging these into Eq. F5 and integrating over q0 we find,
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b. Contribution proportional to gA,z

The diagram in Fig. 10d vanishes. We can see this by noting that
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where I
��

(q0, p0) is defined in Eq. F4. The full diagram is therefore
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Noting that Fig. 10b has no epsilon pole, when ✏! 0, this diagram vanishes: Fig. 10d = 0.

3. Self-energy diagram

a. Contribution proportional to g
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The full diagram is therefore
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We see that the constant (and divergent) portion of I⌃(p0) integrate to zero since it is odd. The

term proportional to the log on the other hand, can be rewritten and solved:

Fig. 10c = g
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b. Contribution proportional to gA,z

This diagram is nearly identical to the previous one:

Fig. 10e = �1⇥ 2⇥ gA,z

tr[T rT s]tr
⇥
�a�b

⇤ Z d3q

(2⇡)3
tr


iq
↵

�↵

q2
i�ji�0i�

j

iq
�

��

q2
i�x

i(q + p)
⇢

�⇢

(q + p)2
i�x
�
q0I⌃(q0)

= 2⇥ 4gA,z

�rs�ab
Z

d3q

(2⇡)3
q0(q0 + p0)(q2 � q20)

[q20 + q

2]2 [(q0 + p0)2 + q

2]
I⌃(q0)

= �rs�ab · 2gA,z

|p0|
96⇡

· (F14)

where I⌃(q0) is given in Eq. F11.
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