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Abstract
We compute parameters characterizing many-body quantum chaos for a critical Fermi surface without

quasiparticle excitations. We examine a theory of N species of fermions at non-zero density coupled to a

U(1) gauge field in two spatial dimensions, and determine the Lyapunov rate and the butterfly velocity in

an extended random-phase approximation. The thermal di↵usivity is found to be universally related to

these chaos parameters i.e. the relationship is independent of N , the gauge coupling constant, the Fermi

velocity, the Fermi surface curvature, and high energy details.
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I. INTRODUCTION

States of quantum matter without quasiparticle excitations are expected [1] to have a shortest-

possible local thermalization or phase coherence time of order ~/kBT as T ! 0, where T is the

absolute temperature. Much recent attention has recently focused on the related and more precise

notion of a Lyapunov time, ⌧L, to many-body quantum chaos [2]: with some reasonable physical

assumptions on states without quasiparticles, it has been established that this time obeys a lower

bound [3]

⌧L � ~
2⇡kBT

; (1.1)

(henceforth, we set kB = ~ = 1). The lower bound is saturated in quantum matter states holo-

graphically dual to Einstein gravity [4], and in the SYK model of a strange metal [5–8]. Relativistic

theories in a vector large-N limit provide a weakly-coupled realization of states without quasipar-

ticles, and in these cases it is expected that ⌧L is much larger than the bound in Eq. (1.1) with

⌧L ⇠ N/T [9–11]. Fermi liquids, and related states, with quasiparticles have a ⌧L which is param-

eterically larger than Eq. (1.1) as T ! 0 [12, 13].

In this paper, we turn our attention to non-Fermi liquid states of widespread interest in con-

densed matter physics. The canonical example we shall examine is that of N species of fermions

at a non-zero density coupled to a U(1) gauge field in two spatial dimensions. Such a theory has a

Fermi surface in momentum space which survives in the presence of the gauge field1, even though

the fermionic quasiparticles do not. Closely related theories apply to a wide class of problems with

a critical Fermi surface, and we expect that our results can be extended to these cases too.

It has been recognized for some time [14] that the naive vector 1/N expansion of the critical

Fermi surface problem breaks down at higher-loop orders (beyond three loops in the fermion self

energy). This is in strong contrast to the behavior of relativistic theories at zero density in which the

vector 1/N expansion is well behaved. This indicates the large N theory of a critical Fermi surface

is strongly-coupled. Strong-coupling e↵ects have been examined by carefully studying higher loops,

or by alternative expansion methods [15–18], and in the end the results are similar to those in an

random-phase approximation (RPA) theory [19–21]. So far, the main new e↵ect discovered at

strong coupling is a small fermion anomalous dimension, but this will not be important for our

purposes here.

Here, we shall use an extended RPA theory to compute the Lyapunov time, and the associated

butterfly velocity vB [4, 22–28], for the critical Fermi surface in two spatial dimensions. As T ! 0,

1 The Fermi surface is defined by the locus of points where the inverse fermion Green’s function vanishes, and is

typically computed in the gauge ~r · ~a = 0: this yields the same Fermi surface as in the closely-related problem

of a Fermi surface coupled to Ising-nematic order.
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we find for the Lyapunov rate �L ⌘ 1/⌧L

�L ⇡ 2.48T (1.2)

which obeys the bound �L  2⇡T in Eq. (1.1). Notably the value of �L for the critical Fermi surface

is independent of the gauge coupling constant, e, and also of N . This supports the conclusion [14]

that this theory is strongly coupled in the N ! 1 limit. Our result for the butterfly velocity is

more complicated; as T ! 0

vB ⇡ 4.1
NT 1/3

e4/3
v
5/3
F

�1/3
. (1.3)

This depends upon both N and e, and also on the Fermi velocity, vF , and the Fermi surface

curvature, �.

Blake [24, 25] has recently suggested, using holographic examples, that there is a universal

relation between transport properties, as characterized by the energy and charge di↵usivities [29],

and the parameters characterizing quantum chaos vB, and �L. For the critical Fermi surface

being studied here, momentum is conserved by the critical theory, and so the electric conductivity

is sensitive to additional perturbations which relax momentum [28, 30]. However, the thermal

conductivity is well-defined and finite in the non-relativistic critical theory [31, 32] even with

momentum exactly conserved. So we may define a energy di↵usivity, DE, which we compute

building upon existing work [19, 33], and find

DE ⇡ 0.42
v2B
�L

. (1.4)

Notably, the factors of e, N , vF and � in Eq. (1.3) cancel precisely in the relationship Eq. (1.4).

This supports the universality of the relationship between thermal transport and quantum chaos

in strongly-coupled states without quasiparticles.

A simple intuitive picture of this connection between chaos and transport follows from the

recognizing that quantum chaos is intimately linked to the loss of phase coherence. As the time

derivative of the local phase is determined by the local energy, phase fluctuations and chaos are

linked to energy fluctuations, and hence thermal transport. On the other hand, other physical

ingredients enter into the transport of other conserved charges, and so we see no reason for a

universal connection between chaos and charge transport.

II. MODEL

We consider a single patch of a Fermi surface with N fermion flavors,  j, coupled to a U(1)

gauge boson in two spatial dimensions: this is described by the “chiral non-Fermi liquid” model [34]
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(Fig. 1a). The (Euclidean) action is given by

Se =

Z
d3k

(2⇡)3

NX

j=1

✓
 †
j(k)(�i⌘k0 + ✏k) j(k) +

1

2
�(k)(cb|k0|/|ky|+ k2

y)�(�k)

◆

+ e

Z
d3k

(2⇡)3

NX

j=1

Z
d3q

(2⇡)3
�(q) †

j(k + q) j(k),

✏k = vFkx + �k2
y , cb = e2/(8⇡vF�). (2.1)

This is derived from the action of a Fermi surface coupled to a U(1) gauge field with gauge coupling

constant e. We only include the transverse gauge fluctuations in the gauge ~r · ~a = 0, in which

cause the gauge field reduces to a single boson � representing the component of the gauge field

perpendicular to the Fermi surface. We have already included the one-loop boson self energy

in Se. Unless explicitly mentioned, we shall set the Fermi velocity vF and the Fermi surface

curvature � to unity in the rest of this work. These factors can be restored by appropriately

tracing them through the computations. An advantage of this model is that the one-loop scaling

structure of the boson and fermion Green’s functions is “exact”. As there is only a single patch,

the one-loop scaling structure is not destroyed by the coupling of di↵erent patches at higher loop

orders [15]. However, this theory is still not fully controllable via the large-N expansion: IR

divergences in higher loop diagrams, such as the three-loop fermion self energy, enhance their

coe�cients by powers of N . Ultimately, all planar diagrams must be taken into account [14]. A

version of this model that combines two antipodal patches of the Fermi surface is amenable to a

more controlled ✏ = 5/2�d expansion [17]. However, our analysis cannot be performed easily with

this dimensionally regularized construction, so we will restrict ourselves to the d = 2 RPA theory.

Despite its flaws, the RPA theory has correctly determined other physical features of this theory,

such as the scaling of the optical conductivity [21, 32] which agrees with the ✏ = 5/2�d expansion

[32].

The bare frequency dependent term in the fermion propagator is irrelevant in the scaling limit

and is hence multiplied by the positive infinitesimal ⌘. However, the presence of this term might

lead to crossovers in the quantities that we compute at high temperatures. The above action is

invariant under the rescaling

kx ! b�1kx, ky ! b�1/2ky, k0 ! b�3/2k0,

e ! e,  ! b2 , �! b2�. (2.2)

The coupling e is thus dimensionless, and the dynamical critical exponent is z = 3/2.

Since we will need to perform all computations at finite temperature, it is imperative that we

understand what the finite-temperature Green’s functions are. In the above patch theory, the
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FIG. 1. (a) Fermi surface patch and coordinate system (b) The complex-time contour C used for evaluating

out-of-time-order correlation functions. It contains forward and backward time evolution along two real

time folds separated by i�/2, and imaginary time evolution between the folds.

gauge boson does not acquire a thermal mass due to gauge invariance [35]. However, we will

nevertheless add a very small “mass” by hand to use as a regulator. The boson Green’s function

then is

D(k) =
|ky|/N

|ky|3 + cb|k0|+m2
. (2.3)

This boson Green’s function may then be used to derive the thermally corrected fermion Green’s

function via the one-loop self-energy starting from free fermions [36] (Appendix A)

G(k) =
1

kx + k2
y � i

c
f

N
sgn(k0)T 2/3H1/3

⇣
|k0|�⇡T sgn(k0)

2⇡T

⌘
� isgn(k0)

µ(T )
N

, µ(T ) =
e2T

3
p
3m2/3

, (2.4)

(cf = 25/3e4/3/(3
p
3)) where µ(T ) is generated by m2 cutting o↵ an IR divergence coming from the

zeroth boson Matsubara frequency, and H1/3(x) is the analytically continued harmonic number of

order 1/3, with

Hr(n 2 Z+) ⌘
nX

j=1

1

jr
, Hr(z) = ⇣(r)� ⇣(r, z + 1). (2.5)

This thermally corrected Green’s function is not exact owing to the uncontrolled nature of the

large-N expansion. Higher (three and beyond) loop corrections to the fermion self energy also

contain terms that are ultimately of order 1/N , which will modify the self energy but should leave

the relative scalings of frequency, momentum and temperature unchanged [14]. The same is also

true for various other diagrams. As such, the numerical prefactors in the Lyapunov exponent and

butterfly velocity that we determine may not be exact, but we should be able to correctly deduce

their scaling properties.
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III. SCRAMBLING AND THE LYAPUNOV EXPONENT

To study out-of-time-order correlation functions, we define the path integral on a contour C

which runs along both the real and imaginary time directions, with two real-time folds separated

by i�/2 [7, 9] (Fig. 1b). The generating functional is given by

Z =

Z

C

D ̄D D�eiS[ ̄, ,�]. (3.1)

We will evaluate the index-averaged squared anticommutator [7, 9]

f(t) =
1

N2
✓(t)

NX

i,j=1

Z
d2x Tr

h
e��H/2{ i(x, t), 

†
j(0)}e��H/2{ i(x, t), 

†
j(0)}†

i
. (3.2)

This function is real and invariant under local U(1) gauge transformations of the  s. The staggered

factors of e��H/2 place two of the field operators on each of the real time folds. f(t) contains

the out-of-time-ordered correlation function h (t) †(0) †(t) (0)i that describes scrambling. The

anticommutators simplify the evaluation in comparison to the correlation function of just the four

fermionic operators. f(t) then measures how the operators “spread” as a function of time. At

t = 0, the anticommutators vanish for x 6= 0. At later times, the operators become non-local under

the time evolution, leading to a growth of the function. It is conjectured [3] that at short times

f(t) ⇠ e�Lt + ... , (3.3)

where 0  �L  2⇡T is the Lyapunov exponent. Our goal is to compute �L. At long times, which

we are not interested in, f(t) saturates to some finite asymptotic value. Formally, to precisely define

�L, we need the growing exponential in (3.3) to have a small prefactor. This can be provided here

by examining spatially separated correlators (which we shall do in Section IV), although not by

the large N limit. Operationally, for now, we will compute f(t) by using diagrams similar to those

employed in relativistic theories [9].

The approach described in Ref. [9] involves summing a series of diagrams to obtain f(t). The

simplest subset of these is a ladder series (Fig. 2), with the “rails” of the ladder defined on the

real-time folds, and the “rungs” connecting times separated by i�/2. The interaction vertices are

integrated only over the real-time folds as an approximation to minimize technical complexity;

more general placements are expected to make corrections to the thermal state that should not

a↵ect �L. The end result is that one uses retarded Green’s functions for the rails (since the real
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FIG. 2. The Bethe-Salpeter equation for f(!) at leading naive order in 1/N . Solid lines are fermion

propagators and dashed lines are boson propagators. The arrows indicate the directions of momentum

flow used in the equations in the text. For the fermion lines, advanced Green’s functions are used for the

upper rails and retarded ones for the lower rails, as can be seen from Eq. (3.2). The third diagram on the

right hand side is the same order in 1/N as the second despite having two boson propagators, because it

involves summing over the flavors j.

time folds involve both forward and backward evolution) and Wightman functions for the rungs [9]:

GR(x, t) = �i✓(t)Tr
⇥
e��H{ (x, t), †(0)}⇤ = �i✓(t)Tr

⇥
e��H{ (x, t+ i�/2), †(0, i�/2)}⇤

GR(k) =
1

kx + k2
y � i

c
f

N
T 2/3H1/3

�� ik0+⇡T
2⇡T

�� iµ(T )
N

,

DW (x, t) = Tr
⇥
e��H�(x, t)�(0, i�/2)

⇤
,

DW (k) =
B(k)

2 sinh �k0
2

= � 1

N

cbk0

sinh �k0
2

|ky|
(|ky|3 +m2)2 + c2bk

2
0

. (3.4)

(B is the boson spectral function). For an explicit derivation of the Wightman functions see

Appendix B. There are two types of rungs at leading order in 1/N : one is simply the boson

Wightman function. The other is a “box” that contains fermion Wightman functions and retarded

boson functions.

The first diagram in the ladder series which has no rungs is given by

f0(t) =
1

N

Z
d2x |GR(x, t)|2,

f0(!) =
1

N

Z
d3k

(2⇡)3
GR(k)GR⇤(k � !)

=
i

N

Z
dkydk0
(2⇡)2

1

i
c
f

N
T 2/3

h
H1/3

�� ik0+⇡T
2⇡T

�
+H1/3

⇣
� i(!�k0)+⇡T

2⇡T

⌘i
+ 2iµ(T )

N

. (3.5)

This bare term remarkably ends up being O(1). Since m is tiny, µ(T ) ! +1. In the time domain,

this thus describes a function that decays exponentially very quickly.
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We have the Bethe-Salpeter equation of the ladder series

f(!) =
1

N

Z
d3k

(2⇡)3
f(!, k)

=
1

N

Z
d3k

(2⇡)3
GR(k)GR⇤(k � !)


1 +

Z
d3k0

(2⇡)3
��e2DW (k � k0) +K2(k, k

0,!)
�
f(!, k0)

�
,

f(!, k) = GR(k)GR⇤(k � !)


1 +

Z
d3k0

(2⇡)3
��e2DW (k � k0) +K2(k, k

0,!)
�
f(!, k0)

�
, (3.6)

The � sign on the e2 comes from squaring the factor of i in the interaction vertex of S. This

factor of i is not present in the interaction vertex of Se. We need to solve this integral equation

to determine the behavior of f(t). We note that as in Ref. [9], the condition for f(t) to grow

exponentially is that the ladder sum be invariant under the addition of an extra unit to the ladder,

i.e.

f(!, k) = GR(k)GR⇤(k � !)

Z
d3k0

(2⇡)3
��e2DW (k � k0) +K2(k, k

0,!)
�
f(!, k0), (3.7)

We have

K2(k, k
0,!) = Ne4

Z
d3k1
(2⇡)3

DR(k1)D
R(! � k1)G

W
0 (k � k1)G

W
0 (k0 � k1). (3.8)

Here we use the bare fermion Wightman functions, as the self energy corrections will come in at

higher orders in 1/N . As the integral is free of IR divergences, the overall power of 1/N in this

contribution is not enhanced and this simplification should be safe. In the bare fermion Wightman

functions, we drop the frequency dependent term that is irrelevant at low frequencies by sending

⌘ ! 0, to preserve the quantum critical scaling

GW
0 (k) =

A(k)

2 cosh �k0
2

! ⇡�(kx + k2
y)

cosh �k0
2

. (3.9)

(A is the fermion spectral function). There is a cosh instead of a sinh in the fermion Wightman

function (Appendix B). We then have

K2(k, k
0,!) =

e4

N

Z
d3k1
(2⇡)3

k2
1y

(|k1y|3 � icbk10 +m2)(|k1y|3 + icb(k10 � !) +m2)

⇥ ⇡2�(kx � k1x + (ky � k1y)2)�(k0
x � k1x + (k0

y � k1y)2)

cosh k0�k10
2T cosh k00�k10

2T

. (3.10)

Since there are no IR divergences, we drop the m2s. Doing the k1x integral followed by the k1y

one, this simplifies to

K2(k, k
0,!) =

e4

⇡N

Z
dk10

(✏k � ✏k0)2|ky � k0
y|3

(|✏k � ✏k0 |3 � 8icbk10|ky � k0
y|3)(|✏k � ✏k0 |3 + 8icb(k10 � !)|ky � k0

y|3)
⇥ 1

cosh k0�k10
2T cosh k0�k20

2T

. (3.11)
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Due to the sliding symmetry along the Fermi surface [15], we expect the eigenfunction that we are

interested in to obey f(!, k) = f(!, k0, ✏k). This can be proven by induction considering the series

of diagrams that we sum. We can then shift k0
x ! k0

x � k02
y followed by k0

y ! k0
y + ky and integrate

over k0
y

Z
d3k0

(2⇡)3
K2(k, k

0,!)f(!, k0) =
e4

24⇡
p
3c4/3b N

Z
dk0

0dk
0
x

(2⇡)2

Z
dk10

k10
�
(�ik10)1/3 � (i(k10 � !))1/3

�

(�ik10)4/3(i(k10 � !))1/3(2k10 � !)

⇥ f(!, k0
0, k

0
x)

cosh k0�k10
2T cosh k00�k10

2T

, (3.12)

and

� e2
Z

d3k0

(2⇡)3
DW (k � k0)f(!, k0)

= �e2

N

2

64 lim
m!0

Z
d3k0

(2⇡)3

0

B@|k0
y � ky|

f̃(!, k0
0, k

0
x)

c
b

(k00�k0)

sinh
�(k00�k0)

2

� 2cbT f̃(!, k0, k0
x)

(|k0
y � ky|3 +m2)2 + c2b(k

0
0 � k0)2

1

CA+
2µ(T )

e2

3

75 , (3.13)

where we added and subtracted terms to make the IR divergences explicit. If we expand the

numerator of the integrand in the above for k0
0 ! k0, we see that the integral is finite and free of

IR divergences.

Interestingly, both pieces of the kernel no longer depend on kx and k0
x. Thus we can integrate

both sides of the equation over kx and k0
x to get an equation for f̃(!, k0) ⌘

R
dk

x

2⇡ f(!, k0, kx). From

Eq. (3.5), we can see that the IR divergent piece / µ(T ) cancels out. The dependence on N also

cancels out. We finally get

e2 lim
m!0

Z
dk0

0dk
0
y

(2⇡)2
|k0

y|
f̃(!, k0

0)
c
b

(k00�k0)

sinh
�(k00�k0)

2

� 2cbT f̃(!, k0)

(|k0
y|3 +m2)2 + c2b(k

0
0 � k0)2

+
e4

24⇡
p
3c4/3b

Z
dk0

0dk10
2⇡

k10
�
(�ik10)1/3 � (i(k10 � !))1/3

�

(�ik10)4/3(i(k10 � !))1/3(2k10 � !)

f̃(!, k0
0)

cosh k0�k10
2T cosh k00�k10

2T

= cfT
2/3

✓
H1/3

✓
� ik0 + ⇡T

2⇡T

◆
+H1/3

✓
� i(! � k0) + ⇡T

2⇡T

◆◆
f̃(!, k0). (3.14)

As a matrix equation, this is of the form M(!)f̃(!) = 0. Since we are looking for a positive growth

exponent, we need to numerically find solutions of this equation on the positive imaginary ! axis.

The analytic continuations of the self-energies that we made are still valid as long as Im[!] > 0.

The largest solution will provide the growth exponent �L. We can see from the above equation and

from the quantum critical scaling k0, k
0
0 ⇠ T , ky, k

0
y ⇠ e2/3T 1/3 that �L / T and is independent of

e. The numerical solution to this equation is detailed in Appendix D. We find that

�L ⇡ 2.48 T, (3.15)
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which is well within the bound of Ref. [3]. We further see that �L is not suppressed by powers

of 1/N , unlike other vector models in the large-N limit [37]. This indicates that this theory is

strongly coupled at the lowest energy scales, even for large values of N .

At high temperatures, when NT 1/3/e4/3 ⇠ 1, we may no longer be able to neglect the bare

frequency dependent term in the fermion propagators. This would essentially amount to adding a

term ⇠ N!f̃(!, k0) to the right hand side of Eq. (3.14). Counting powers, we then might expect

�L ⇠ e4/3T 2/3/N . In Appendix C we consider a few higher order (in 1/N) corrections to the ladder

series and show that some of them are insignificant.

IV. THE BUTTERFLY EFFECT AND ENERGY DIFFUSION

A. Butterfly velocity

The out-of-time-order correlation function evaluated at spatially separated points describes the

divergence of phase space trajectories in both space and time. The function we will use to describe

this process is

f(x, t) =
1

N2
✓(t)

NX

i,j=1

Tr
h
e��H/2{ i(x, t), 

†
j(0)}e��H/2{ i(x, t), 

†
j(0)}†

i
, (4.1)

which is the same as the one we used to determine �L except for the integration over spatial

coordinates. This function should contain a traveling wave term that propagates with a speed

known as the “butterfly velocity” [26]. In order to compute this function we will need to evaluate

the ladder diagrams at a finite external momentum p. For simplicity, and since the component

of the Fermi velocity perpendicular to the Fermi surface dominates the one parallel to the Fermi

surface, we will take the external momentum to also be perpendicular to the Fermi surface. This

will allow us to determine the component of the butterfly velocity perpendicular to the Fermi

surface (vB?).

Repeating the same steps that led to the derivation of Eq. (3.14), we simply obtain

e2 lim
m!0

Z
dk0

0dk
0
y

(2⇡)2
|k0

y|
f̃(px,!, k0

0)
c
b

(k00�k0)

sinh
�(k00�k0)

2

� 2cbT f̃(px,!, k0)

(|k0
y|3 +m2)2 + c2b(k

0
0 � k0)2

+
e4

24⇡
p
3c4/3b

Z
dk0

0dk10
2⇡

k10
�
(�ik10)1/3 � (i(k10 � !))1/3

�

(�ik10)4/3(i(k10 � !))1/3(2k10 � !)

f̃(px,!, k0
0)

cosh k0�k10
2T cosh k00�k10

2T

= cfT
2/3

✓
H1/3

✓
� ik0 + ⇡T

2⇡T

◆
+H1/3

✓
� i(! � k0) + ⇡T

2⇡T

◆◆
f̃(px,!, k0) + iNpxf̃(px,!, k0).

(4.2)
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For small px, we expect the change in exponent ��L/T ⇠ �iNpx/(e4/3T 2/3). This implies that

f(x, t) ⇠ e�Lt
Z

dpx
2⇡

g(Npx, t)e
ip

x

(x�v
B?t), vB? ⇠ NT 1/3

e4/3
. (4.3)

The structure of the above equation indicates that chaos propagates as wave pulse that travels

at the butterfly velocity. The wave pulse is not a soliton and will broaden slowly as it moves

[26]. Note that this shows vB? ⇠ T 1�1/z, which can also be straightforwardly derived by using

the appropriate scalings of space and time, [x] = �1 and [t] = �z, and is also seen in holographic

models [24]. Numerically we find that ��L/T ⇡ �4.1(iNpx/(e4/3T 2/3)), giving

vB? ⇡ 4.1
NT 1/3

e4/3
(4.4)

(Appendix D).

This is again strictly valid only at the lowest temperatures, where NT 1/3/e4/3 ⌧ 1. Thus the

butterfly velocity cannot be arbitrarily large in the large-N limit. When NT 1/3/e4/3 ⇠ 1, the

structure of the fermion propagator indicates that there may be a crossover to a z = 1 regime, in

which vB? will become a constant independent of N and T .

With the scalings [y] = �1/2 and [t] = �z, we see that the component parallel to the Fermi

surface, vBk ⇠ T 2/3, which is smaller than vB? at low temperatures. Then the butterfly e↵ect will

be dominated by propagation perpendicular to the Fermi surface in the scaling limit.

B. Energy di↵usion

It has been conjectured, and shown in holographic models [24, 29] that the butterfly e↵ect

controls di↵usive transport. The thermal di↵usivity

DE =


CV

⇠ v2B
2⇡T

, (4.5)

where  is the thermal conductivity and CV is the specific heat at fixed density. In holographic

theories �L = 2⇡T , so a more appropriate phrasing of the above equation is DE ⇠ v2B/�L [38]. We

can compute CV using the free energy of the fermions (the contribution of the boson is expected

to be subleading at low temperatures [32])

F = �NT
X

k0

Z
d2k

(2⇡)2
ln G̃�1(k), CV = �T

@2F

@T 2
, (4.6)

where we use the one-loop dressed fermion propagator at zero temperature [15],

G̃�1(k) = kx + k2
y � i

c̃f
N
sgn(k0)|k0|2/3, c̃f =

3cf
2(2⇡)2/3

. (4.7)
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This computation is carried out in Appendix E. We obtain

CV =
10(22/3 � 1)

9(2⇡)2/3
�(5/3)⇣(5/3)T 2/3e4/3

�1/3

v
2/3
F

Z
dky
2⇡

, (4.8)

where we have restored the factors of Fermi velocity vF and Fermi surface curvature �.

The thermal conductivity  is finite in the DC limit as it is defined under open circuit conditions

where no electrical current flows. We have

 = ̄� ↵2T

�
, (4.9)

where ↵, ̄ are the thermoelectric conductivities and � is the electrical conductivity. The zero

frequency poles cancel between ̄ and the other term, yielding a finite  [32]. ̄ may be obtained

from the Kubo formula [39]

̄? = ��Re

lim
!!0

@

@!
ihJE

?J
E
? i(iq0 ! ! + i0+)

�
, (4.10)

with the energy current

JE
? (iq0) = �i

Z
d3k

(2⇡)3

⇣
k0 +

q0
2

⌘ @✏k
@kx

 †(k + q0) (k)

= �i

Z
d3k

(2⇡)3

⇣
k0 +

q0
2

⌘
 †(k + q0) (k). (4.11)

We compute the conductivities using the one-loop dressed fermion propagators in Appendix E

(The boson again does not contribute directly due to the absence of an x-dependent term in its

dispersion). The simplest vertex correction vanishes due to the structure of the fermion dispersions

and other corrections are in general suppressed by powers of N . In this approximation ̄? is finite

and ↵? / hJE
?J?i (where J? is the charge current) vanishes, so ? = ̄?. Note that, in reality,

̄,↵, � would all be infinite and their combination into  would be finite, but the final finite value

of  should be qualitatively similar to the value obtained from our approximation. We obtain

? ⇡ 0.28
N2T 1/3

c̃f

v
8/3
F

�1/3

Z
dky
2⇡

, (4.12)

where we have again restored vF and �. Using Eqs. (3.15), (1.3), (4.5), (4.8) we then see that

DE
? ⇡ 0.42

v2B?
�L

. (4.13)

The factors of powers of T,N and e match exactly on both sides of the equation and that the

constant of proportionality is an O(1) number. This strongly indicates that the butterfly e↵ect is

responsible for di↵usive energy transport in this theory. The DC electrical conductivity is however

infinite due to translational invariance, and hence, unfortunately, such a statement cannot be made

for charge transport in this model. Note that the the hyperscaling violating factor
R dk

y

2⇡ [32] cancels

between ? and CV . However, if we consider k, this does not happen due to the additional ky

dependence in JE
k . Thus D

E
k will not be given by v2Bk/�L.
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V. DISCUSSION

We have computed the Lyapunov exponent �L and butterfly velocity vB for a single patch

of a Fermi surface with N fermion flavors coupled to a U(1) gauge field. At the lowest energy

scales, this theory is strongly coupled regardless of the value of N , and we hence find that �L is

independent of N to leading order in 1/N . The proposed universal bound of �L  2⇡T is also

obeyed. While the 1/N expansion is not fully controllable, it has nevertheless been capable of

correctly determining many physical features of this theory in the past. We find that the butterfly

velocity is dominated by propagation perpendicular to the Fermi surface, and that vB? ⇠ NT 1/3.

Most interestingly, we find that the butterfly e↵ect controls di↵usive transport in this model, with

the thermal di↵usivity DE
? / v2B?/�L. Our results are valid at the lowest energy scales, at which

the quantum critical scaling holds. At high temperatures, we might expect �L to cross over to a

slower T 2/3/N scaling, and that vB? simply becomes a constant independent of N and T . While

technically much more complex to obtain, it would be interesting to compare the results derived

from a more controlled calculation, such as the ✏ = 5/2 � d expansion for the two-patch version

of the problem, with our results. Finally, we note recent experimental measurements of thermal

di↵usivity in the cuprates [40] which find a strong coupling to phonons. It would be of interest to

extend the chaos theories to include the electron-phonon coupling.
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Appendix A: Self energies

The one-loop self energy graphs are shown in Fig. 3. The derivation of the one-loop boson self

energy is standard [15]

⇧(k) = �Ne2T
X

q0

Z
d2q

(2⇡)2
1

qx + q2y � iq0

1

(kx + qx) + (ky + qy)2 � i(q0 + k0)

= �Ne2
Z

d2q

(2⇡)2
nf (qx + q2y)� nf (kx + qx + (ky + qy)2)

q2y � (ky + qy)2 + ik0 � kx

=
Ne2

2|ky|
Z

dqy
(2⇡)2

q2y
q2y + k2

0

= �Ne2|k0|
8⇡|ky| + ⇧1 (A1)

The formally infinite piece ⇧1 is tuned away by the mass renormalization at the critical point,

giving the expression for the boson propagator in the main text.

FIG. 3. (a) The one-loop boson and (b) fermion self energies. These graphs are evaluated at a finite

temperature. The dashed lines are bare boson propagators and solid lines are bare fermion propagators.

The arrows indicate the directions of momentum flow used in the equations in the text.

The one loop fermion self energy is given by

⌃(k) =
e2

N
T
X

q0

Z
d2q

(2⇡)2
|qy|

|qy|3 + cb|q0|+m2

1

kx + qx + (ky + qy)2 � i(k0 + q0)

=
ie2

2N
T
X

q0

Z
dqy
2⇡

|qy|
|qy|3 + cb|q0|+m2

sgn(k0 + q0)

=
ie2

3
p
3c1/3b N

T
X

q0 6=0

sgn(k0 + q0)

|q0|1/3 + isgn(k0)
e2T

3
p
3m2/3N

=
2ie2sgn(k0)

3
p
3c1/3b (2⇡)1/3N

T 2/3

|n
k

|X

n
q

=1

1

n
1/3
q

+ isgn(k0)
µ(T )

N
(k0 = 2⇡T (nk + 1/2), q0 = 2⇡Tnq)

= i
cfsgn(k0)

N
T 2/3H1/3(|nk|) + isgn(k0)

µ(T )

N
= i

cfsgn(k0)

N
T 2/3H1/3

✓ |k0|� ⇡T sgn(k0)

2⇡T

◆
+ isgn(k0)

µ(T )

N
,

(A2)

which gives the expression for the fermion propagator in the main text.
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Appendix B: Wightman functions

The Wightman function for two operators A,B of concern to us is

GW
AB(x, t) = Tr[e��HA(x, t)B(0, i�/2)]

=
X

nm

hEn|B(0)|EmihEm|A(x, 0)|Enie��Ene��(Em

�E
n

)e�i(E
n

�E
m

)(t�i�/2)

=
X

nm

hEn|B(0)|EmihEm|A(x, 0)|Enie��Ene��(Em

�E
n

)/2e�i(E
n

�E
m

)t. (B1)

GW
AB(k,!) = 2⇡

X

nm

hEn|B(0)|EmihEm|
Z

ddxA(x, 0)e�ikx|Enie��Ene��(Em

�E
n

)/2�(! � (En � Em))

= 2⇡
X

nm

hEn|B(0)|EmihEm|
Z

ddxA(x, 0)e�ikx|Enie��En�(! � (En � Em))
e�(En

�E
m

) ⌥ 1

e�(En

�E
m

)/2 ⌥ e��(En

�E
m

)/2
,

(B2)

where the � sign is for bosonic operators and + sign is for fermionic operators. Using the definition

of the spectral function

SAB(k,!) = 2⇡
X

nm

hEn|B(0)|EmihEm|
Z

ddxA(x, 0)e�ikx|Enie��En�(!�(En�Em))(e
�(E

n

�E
m

)⌥1),

(B3)

we have

GW
AB(k,!) =

SAB(k,!)

2 sinh �!
2

(bosons),

GW
AB(k,!) =

SAB(k,!)

2 cosh �!
2

(fermions). (B4)

Appendix C: Higher order corrections

We consider the corrections to the ladder series of the main text coming from diagrams with

crossed rungs. We show that certain diagrams with crossed boson rungs vanish, and that diagrams

with crossed fermion rungs contribute to �L at higher orders in 1/N .

There are two simple types of crossed ladder insertions in the Bethe-Salpeter equation. The

first is shown in Fig. 4a and is given by

I1(k, k
0,!) = e4

Z
d3k1
(2⇡)3

DW (k � k1)D
W (k1 � k0)GR(k1)G

R⇤(k + k0 � k1 � !). (C1)

The integral over k1x vanishes as the DW ’s do not depend on k1x and GR(k1)GR⇤(k+ k0 � k1 � !)

has two simple poles both in the upper half-plane for the k1x integration. Thus this insertion

15



FIG. 4. (a), (b) The two simplest crossed ladder insertions in the Bethe-Salpeter equation. The first

vanishes, and the second contributes to �L at O(1/N). (c) A higher-order “maximally crossed” diagram

with boson rungs. Diagrams of this type also vanish for the same reason as (a).

contributes nothing. Other “maximally crossed” diagrams of the same type (Fig. 4c) also vanish

for exactly the same reason.

The insertion of Fig. 4b does not vanish. However, unlike the third diagram on the right hand

side of Fig. 2, the flavor indices on the two sides of the insertion are not decoupled. Thus, there is

no factor of N enhancement from an additional sum over flavors, and this insertion is smaller by

a factor of 1/N .

Finally, we must mention that, due to the uncontrolledness of the large N expansion, there will

be more complicated higher-loop insertions that, although naively down powers of N , will end up

contributing at the same order as the diagrams we considered in the main text. We do not know

how to systematically resum these kinds of diagrams in general, but the numerical values of these

higher loop diagrams might be significantly smaller than the ones already considered [15].

Appendix D: Numerical methods

Numerically, it is easier to solve Eq. (3.14) keeping the IR divergent term explicit.

e2
Z

dk0
0dk

0
y

(2⇡)2
|k0

y|
f̃(!, k0

0)

(|k0
y|3 +m2)2 + c2b(k

0
0 � k0)2

cb(k0
0 � k0)

sinh �(k00�k0)
2

+
e4

24⇡
p
3c4/3b

Z
dk0

0dk10
2⇡

k10
�
(�ik10)1/3 � (i(k10 � !))1/3

�

(�ik10)4/3(i(k10 � !))1/3(2k10 � !)

f̃(!, k0
0)

cosh k0�k10
2T cosh k00�k10

2T

=


cfT

2/3

✓
H1/3

✓
� ik0 + ⇡T

2⇡T

◆
+H1/3

✓
� i(! � k0) + ⇡T

2⇡T

◆◆
+ 2µ(T )

�
f̃(!, k0). (D1)

We keep m finite but small, such that m2 ⌧ T and m2/3 ⌧ T . The integration over k0
y is done

numerically. The integration over k0
0 then is discretized as a matrix multiplication, and the equation

is brought to a form M(!)f̃(!) = 0. For a given ! on the positive imaginary axis, we find the

eigenvalue of M with the smallest magnitude, which is easier to do than diagonalizing the entire

matrix. We then use the Newton-Raphson method to find values of ! on the positive imaginary
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FIG. 5. (a) Plot of the magnitude of the smallest eigenvalue for ! on the positive imaginary axis for

T = 1.0. (b) Plot of the magnitude of the entries of the corresponding eigenvector when �i! = �L. (c)

Plot of �L vs T . (d) Plot of Im[��L] vs Npx. The value of Re[��L] ⇠ (Npx)2 is very small when Npx is

small. This real part does not control the speed vB? at which the wave pulse of Eq. (4.3) travels, but will

lead to the broadening of the pulse as it travels. For all these figures, k0 2 [�15, 15], m = 0.02, the step

size dk0 = 0.005 and e = 1.0.

axis for which the smallest eigenvalue of M is zero or nearly zero within a small tolerance. A plot

of the magnitude of the smallest eigenvalue as a function of �i! is shown in Fig. 5(a). We see

that there is one zero for �i! > 0, which gives the value of �L. The corresponding eigenvector is

shown in Fig. 5(b). A plot of �L vs T is shown in Fig. 5(c).

For the butterfly velocity, we solve Eq. (4.2) using the same technique as in the above. Now

�L is no longer purely real when Npx 6= 0, and we numerically find ��
L

�Np
x

for small Npx using the

slope of Fig. 5(d), leading to the result in the main text.
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Appendix E: Specific heat and thermal conductivity

The expression for the free energy may be rewritten as a contour integral, keeping in mind the

branch cuts in the fermion propagators along the real frequency axis

F =
N

2⇡i

Z 1

�1

dz

ez/T + 1

Z
d2k

(2⇡)2
(lnG�1(z+, k)� lnG�1(z�, k)), G�1(z±, k) = kx + k2

y ⌥
ic̃f
N

(⌥iz)2/3,

= �N

⇡

Z
dky
2⇡

Z 1

�1

dz

ez/T + 1

Z
dkx
2⇡

tan�1

✓
c̃f |z|2/3/(2N)

kx � (c̃f
p
3/(2N))sgn(z)|z|2/3

◆

�N

Z
dky
2⇡

Z 1

�1

dz

ez/T + 1

Z (c̃
f

p
3/(2N))sgn(z)|z|2/3

�⇤

dkx
2⇡

, (E1)

where we shifted kx ! kx � k2
y to eliminitate ky from the integral and ⇤ is some large cuto↵. The

kx integral over the tan�1 vanishes. Keeping only finite terms (which obey the quantum critical

scaling),

F = �c̃f
p
3

Z
dky
2⇡

Z 1

0

dz

2⇡

z2/3

ez/T + 1
. (E2)

Evaluating this integral and di↵erentiating with respect to T gives the expression for CV in the

main text.

We now turn to the computation of the energy current correlator required to determine ̄?.

The contribution which includes the resummation of the one-loop self energy corrections is

hJE
?J

E
? i(iq0) = N

Z
d2k

(2⇡)2
T
X

k0

G̃(k)G̃(k + q0)
⇣
k0 +

q0
2

⌘2

=
N2

2c̃f

Z
dky
2⇡

T
X

k0

�
k0 +

q0
2

�2 |⇥(k0)�⇥(k0 + q0)|
|k0|2/3 + |k0 + q0|2/3

=
N2

c̃f

Z
dky
2⇡

T

�⇡TX

k0={�|q0|}

⇣
k0 +

|q0|
2

⌘2

(�k0)2/3 + (k0 + |q0|)2/3 . (E3)

Where by {�|q0|} we mean the first fermionic Matsubara frequency above the bosonic Matsubara

frequency �|q0|. The sum can be converted into a (suitably regularized) contour integral

hJE
?J

E
? i(iq0) =

N2T 7/3

c̃f

Z
dky
2⇡

"Z 1

0

dz

2⇡i

1

ez + 1

0

B@

⇣
�iz + |q0|

2T

⌘2

(iz)2/3 +
⇣

|q0|
T

� iz
⌘2/3 �

⇣
iz + |q0|

2T

⌘2

(�iz)2/3 +
⇣

|q0|
T

+ iz
⌘2/3

1

CA

+

Z 0

�1

dz

2⇡i

(
1

ez + 1

0

B@

⇣
�iz + |q0|

2T

⌘2

(iz)2/3 +
⇣

|q0|
T

� iz
⌘2/3 �

⇣
iz + |q0|

2T

⌘2

(�iz)2/3 +
⇣

|q0|
T

+ iz
⌘2/3

1

CA

�
 
i
�
z(�iz)1/3 + z(iz)1/3

�

9 ((�iz)2/3 + (iz)2/3)3
q20
T 2

� 4iz

3 ((�iz)2/3 + (iz)2/3)

|q0|
T

!)#
. (E4)
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These integrals must be done numerically, and it is then easily seen that they reproduce the sum

correctly at bosonic Matsubara q0. When q0 ! 0, we find that

hJE
?J

E
? i(iq0) ⇡ �0.28

N2T 4/3

c̃f
|q0|
Z

dky
2⇡

, (E5)

which yields the result in the main text after analytic continuation.

For the conductivity ↵?, we have the charge current

J?(iq0) =

Z
d3k

(2⇡)3
@✏k
@kx

 †(k + q0) (k) =

Z
d3k

(2⇡)3
 †(k + q0) (k). (E6)

Then

hJE
?J?i(iq0) = iN

Z
d2k

(2⇡)2
T
X

k0

G̃(k)G̃(k + q0)
⇣
k0 +

q0
2

⌘

=
N2

2c̃f

Z
dky
2⇡

T
X

k0

�
k0 +

q0
2

� |⇥(k0)�⇥(k0 + q0)|
|k0|2/3 + |k0 + q0|2/3 = 0, (q0 = 2nq⇡T ) (E7)

and hence ↵? vanishes in our approximation.

The momentum integrals in the simple two-loop vertex correction to these contributions were

considered in Ref. [15] for the higher-loop renormalizations of the boson propagator. They found

that the momentum integrals in the vertex correction vanish, owing to the obtainment of terms

with denominators posessing poles on the same side of the real axis.
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