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Recent experiments have uncovered evidence of the strongly coupled nature of the graphene: the
Wiedemann-Franz law is violated by up to a factor of 20 near the charge neutral point. We describe
this strongly-coupled plasma by a holographic model in which there are two distinct conserved U(1)
currents. We find that our analytic results for the transport coefficients for two current model have
a significantly improved match to the density dependence of the experimental data than the models
with only one current. We also discuss the origin of the two currents.

PACS numbers: 11.25.Tq, 71.10.Hf.

Introduction: It has been argued that graphene near
charge neutrality forms a strongly interacting plasma, the
Dirac fluid. It does not have well-defined quasiparticle
excitations, and amenable to a hydrodynamic description
[IHI0]. Evidence for such a Dirac fluid has appeared in
recent experiments [I1] on a violation of the Wiedemann-
Franz law (WFL) in extremely clean graphene near the
charge neutral point: the ratio of heat conductivity and
electric conductivity, £ = k/To, was found to be up to
20 times the Fermi liquid value.

The simplest hydrodynamic model [12], with point-like
and uncorrelated disorder and a single conserved U(1)
current, agrees with the overall experimental trends, but
has difficulty capturing the density dependencies of both
the electrical (o) and thermal (k) conductivities [13]. An
alternative hydrodynamic model, the “puddle” model,
with long-wavelength disorder in the chemical potential
and a single conserved U(1) current, led to a better agree-
ment with observations [13], but still left a room for im-
provement.

In this letter, we will explore a model with two con-
served U(1) currents, motivated by the possibility that
there is an extra current that carries mostly heat. Our
model will be formulated in holographic terms[14, [15], to
utilise the recent progress in the developoment of trans-
port calculation in gauge/gravity duality [16H26]. The
Dirac fluid in our model is described by an Anti de Sit-
ter (AdS) black hole in 3+1 dimensions, the holographic
dual of 241 dimensional system at finite temperature.
The momentum dissipation is treated using scalar ‘ax-
ion’ fields, which corresponds to weak point-like disorder.
We calculate electric, thermo-electric power and thermal
conductivities analytically. We find that, under the as-
sumption that the conserved charges @)1, Q2 are propor-
tional to each other, the theoretical results for the density
dependencies of the electric and heat conductivities can
now satisfactorily match the the experimental data in the
Dirac fluid regime.

One possible mechanism for the extra current is the
kinematic constraints of energy-momentum conservation
on the Dirac cone, which reduce the phase space of elec-
tron and hole scattering significantly [4], allowing elec-

trons and holes to form independent currents as far as
the relaxation time for mixing between the currents is
presumed to be is much longer than the Plankian relax-
ation time h/kpT, the time required for hydrodynamic
regime at work. It should be noted, however, that the es-
timates of electron and hole equilibration times are made
in quasiparticle framework [4], whose validity in hydro-
dynamic regime is just assumed here. We will see that
the kinematics on the Dirac cone also provide a reason
why the two charge densities can be proportional.

DC Transport with two U(1) fields : We start
from the action S = [ d'z\/=gL with two gauge fields
A,, B, a dilaton field ¢ and the scalar fields x1, x2 for
momentum dissipation:

L=R 5 [(06)" + 21(6)(0x1)" + 2(6)(0x2)’]
2(6) o W(S)
- Fe— 1 G*,

— V(o) (1)

where F = dA, G =dBand F? = F,,, " etc. We also
require positivity of ®;(¢), Z(¢) and W(¢). We take the
ansatz for background metric and the gauge potential as
1
u(r)
A= A(r)dt, B = B(r)dt. (2)
The gauge field A has the chemical potential and charge
density as its components of its near boundary expansion,
A(r) =1 — Q1/r + - -+ . Near the horizon at r = rq,
U~AdnT(r—rg)+--, Alr) ~Ay(r—mro)+---,
B(r) ~ By(r—ro)+---, 3)
for the regularity. If we take the axion solution, x; =
kx, x2 = ky, it provides momentum relaxation. From
now on, we set &1 = &y = ® for simplicity. The only
non-zero components in the Maxwell equations are that

for the tr-component of the field strengths whose first
integral give conserved charges,

Q1= V—gZ(¢)F'" = Z(¢)e" A'(r)
Q2 = V=gW(§)G" = W(d)e"B'(r). (4)

ds* = —U(r)dt* + dr? + e*") (dz? + dy?)



One can see that if e¥ ~ r2 in asymptotic region, Q;

corresponds to the number density of the boundary field
theory. To compute the transport coefficients, we turn
on small fluctuations around the background solution:

0G .y = e”(’“)(Shm(r),
OB, = tdf3(r) + 0b(r), (5)

(SGtx Zt(Sfl (T) + 5gm(7'),
0A, =té fa(r) + da(r),

as well as dy;(r)’s. We choose the functions f;(r) as

0f1(r) = =CU(r), 6fa(r)=—E1+ CA(r),
dfs(r) = —E2 + (B(r), (6)

such that the time ¢ does not appear in the equations of
motion of the fluctuations. Here, F1, F5 are thmo-electric
forces acting on Ji, Jo respectively and { = —VT/T. We
can define currents as [18],

L =V=gZ(p)F*",  Jp=/—gW($)G*"
d [ 6gi.(7)

Q=U(2t (U()) AW - B (7)

Notice that near the boundary, the heat current becomes
Q =T — p1 J; — o Jo. Moreover, these currents are con-
served along radial direction r. Therefore their boundary
values are related to that of horizon data:

Ji(00) = Ji(ro), J2(00) = J2(ro), Q(oo) = Q(ro). (8)
Then, the boundary value of currents are
Jl(OO) = —6”0Q16gt(2) + E1Z0

JQ(OO) = —€U°Q2(sgt(2) + E2W0
Q(c0) = —4nTdgy, 9)

where subscript 0 denotes the value at the horizon. 5g§2)
can be obtained by the horizon data from fluctuation
equation together with the regularity condition,

59\ = —(E\Qy + E2Qs + 47Te™() /(K2 ®p),  (10)

with ¢ = fg. Finally, we get the boundary current in
terms of the external sources:

47T Q 47T Qo (47T)2evo
= E E
Q 2o, O + 123, 2 + EX S
e Q7 e 1@ 4rT'Qy
Ji=1Z E E
1 ( o+ 120, ) 1+ 23 2+ 2, ¢,
e Q3 e Q1@ ArT Q2
= —_— E E .
J2 (Wo+ = ) 2t —2g 1+ 120, ¢
(11)

The eq. can be written in matrix form,

where J = ((Q), (J1), (Jo))T and S = (¢, By, Eo)T
are current and the external source multiplets respec-
tively. The transport coefficients are defined by

T a T d%T
OélT g1 1) = (13)
OéQT 1) g2

o; and «; are the (partial) electric conductivities and the

Seeback coefficients for the current J;. Since the compo-

nents of ¥ can be read off from 7 we now know all the
2

transport coefficients: o1 = Zy + 1&373%7041 = 4222@01,

etc. Notice that the matrix is real and symmetric, so
that the Onsager relations hold:

a; = (67N g = 0. (14)
K is defined by the response of the temperature gradient
to the heat current in the absence of other currents: set-
ting J; and Js to be zero in , we can express F/; and
E5 in terms of (. Substituting these to the first line of

, we get

=R — T@l(OqO'Q — azg) _ ng(CkQUl — Oll(S)

(15)

o102 — 66 o109 — 80

To discuss more explicitly, we consider a black hole solu-
tion with two charges:

U(r):er@—kj+i(Z Q2+ WoQ2), (16)
r 2 gp2 V0L 02)>
where myg is given by U(rg) = 0 and the temperature is

1 K ZQF  WoQ3
T=— (8rg— - — 2041 _ . 17
( T P BT (17)

The solutions of U(1) gauge fields are a(r) = g — %7
b(r) = ps — % For the finite vector norm g"”A,A, at
the horizon r = rg, we need p; = Q;/ro.

The conductivities for any number of conserved cur-

rents can be calculated explicitly:

Q? - QiQy . s*T

0 =
2720 9ij 27.2 7
rgk rgk

[ Zz - )
i a e SN

with s = 4772 and Z; control the coupling of the A,.
For two currents case, Z1, Z> denote Zy, W respectively.
If we identify the total electric current as J = Y, J;
and thermo-electric force F; = E — TV (u;/T), we can
calculate the electric conductivity as

oJ 27,2712

where Z =3, Z; and Q =), Q;. Above formula check
the consistency of our transport formula under the virtual
division of a system into many subsystem, like electrons
belonging to sub-lattices A and B.



Finally we compare our result with the experimental
data. We consider two current case with linear relation
between the two charges,

Q2 = gQ1, (19)

whose justification will be discussed later. If we choose
Zo =Wy =1/3, k=3, T =017 and g = 3, we
can fit the experimental data for charge density depen-
dence of the conductivities near the charge neutral point
of graphene without leaving much room to improve as
one can see in Figure 1.

FIG. 1.

holography v.s the experimental data: £ = 3,9 =
3,T = 0.17 and Wy /e? = Zo/e? = 1/3. We rescale the z axes
by 100 to fit the experimental data.

Origin of two Currents in Graphene: What is
the nature and the origin of the extra current in the
graphene. There are a few attractive candidates. The
first idea is the effect of imbalance [4] between the elec-
trons and holes due to the kinematical constraints of the
Dirac cone. When there is such an deviation of electron
and hole density from their equilibrium value, then the
system has tendency to reduce the difference by creat-
ing/absorbing electron-hole pair:

e e +ht4+e, ht o ht+hT +e (20)
In such processes, energy and momemtum conservations
must hold. The point is that, for the graphene, the lin-
ear dispersion relation severely reduces the kinematically
available states [4]: If we define ¢ as a momentum mea-
sured from a Dirac point,

G =G¢+a@+a, gl =lel+ e+l (21)
which request the co-linearity of all momentum vectors
q1, *+ ,qs. Therefore available phase space is greatly re-
duced. Such kinematical constraints maintains the non-
equilibrium states and as a consequence, the two currents
Je, Jn behave independently for a long time compared

with the Planck time ~ %/kT, which is the time for hy-
drodynamics to work.

The net electric current J and total number current
J, which become neutral at Dirac point, are defined by
J=Jde+Jy, Jn=Je— Jp, respectively and their elec-
tric charge densities and number densities are related
by @1 = eny and Q2 = —eny. The total electric con-
ductivity o = g—é and k can be expressed in terms of

Q=0Q1+Q2and Q, := Q1 — Qa:
Q* (4mrd)2 T

= Z = .
=Wt T e P e QT 2) 2
(22)

where we used charge conjugation symmetry, Wy = Zj.

Now it is time to ask why we can set the proportional-
ity of the two charges as given in eq. . First, notice
that the presence of inhomogeneity can make this issue
subtle, because in that case we can create spatially sep-
arated electron-rich and hole-rich regions without break-
ing charge conservation. Such inhomogeneity is called
charge puddle. To avoid the issues involved in the trans-
port by puddle, we simply assume that well localized
puddles do not contribute transport or simply assume
that the system is homogeneous. Under such assump-
tion, the number densities of electrons and holes created
by thermal excitation is proportional to the net charge
density: for the fermi liquid case, out of total degree of
freedom (d.o.f) n ~ k2% ~ p?, excitable d.o.f is ~ kT - p,
because the excitable shell width is k7. But in hydrody-
namic regime, k7' >> p, therefore entire non-degenerate
charge distribution (NDCD) region is excitable. In fact
this is a typical situation of fermion dynamics described
by AdS black hole [27, 2§]. In summary, in case of the
hydrodynamic regime, the charge carrier density created
is proportional to total degree of freedom, Q, which is
the volume of the Dirac cone above the Dirac point.

We remark that due to strong Coulomb interaction,
the created electron hole pairs can form the bound state,
exciton. Such excitons in homogeneous graphene satisfies
the linear relations between the electric charge and the
exciton number. Although exciton in graphene has been
discussed extensively [29] B0], mosts are only for bi-layer
graphene. However, we expect that strong coulomb in-
teraction in Dirac Fluid regime of single layer graphene
should be able to make bound state. The abundance of
such excitons are remained to be verified experimentally.

Discussions: In the presence of an extra current that
carries mainly heat, the violation of WFL is not direct
evidence of a Dirac fluid. However, the fact that such
a phenomenon is quantitatively well described by hydro-
dynamics and gauge/gravity duality, indicates that the
system is strongly correlated.

Disorder and the nature of axion: The axion provides
momentum dissipation only when both its gradient and
the vacuum expectation value of its dual operator, (Oy),
are nonzero. The latter is the analogue of charge density



in electric field as one can see from the Ward identity,
VUTMV = <OI> VHX(} + FBV <JV> . (23)

The role of the source field x(} = kxy is the chemical
potential of impurity and that of (O) is the density of
impurity. Therefore, k2 can be understood as the density
of the uniform impurity.

The puddle effect on the transport: One important
source of the disorder in graphene is known to be the
the charge density inhomogeneity, [11), 13, B1], which is
completely neglected here. Then why the theory could
match the experiment so well? A partial answer is that
while the DC conductivities directly depends only on the
average density of the impurity, as one can see from the
Kubo formula of the conductivity[32)]:

01(w) = lim — (Ji(q.w)J;(~q—w)),  (24)

q—0 1w

where J;(q) is the Fourier transform of the the current
operator J;(z). In leading order, the conductivity de-
pends only on the (Jp), the spatial average of the (J(x)).
Although both the imbalance and the inhomogeneity ef-
fects contribute to the details of transport coefficients, if
we use best fitting method, considering both effects can
generate double counting. Therefore it is quite possible
that there is no room for puddle effect after we consider
the more direct effect.

Other origins of the second current: We suggested
imbalacnce and excitons as possible sources for the ex-
tra current. Here we discuss other candidates. i) Spin
charge separation:This is the simplest to explain the phe-
nomena if such separation could be experimentally con-
firmed: the spinons are obviously the chargeless heat car-
rier and densities of spinnons and holons must be the
same and equal to the original electron density. i) val-
ley currents: Graphene consists of two sublattices A and

B and such electrons in each sublattice do not scatter,
hence they form two conserved currents. However, they
do not necessarily satisfy the linearity condition eq..
i1i) Phonon: At high temperature, the phonons are the
main heat carriers in carbon materials. However, there
are good reasons that phonon is not the main player in
the regime we are discussing [11].

Future directions: It would be interesting if we can ex-
tend our method to multilayered graphene and graphite.
Some holographic analysis for the latter was already re-
ported [26]. The thermo-electric power and magneto-
transport are also very interesting observable for the
Dirac Fluid regime. We note that some of the early data
began to be produced[33]. From the experimental side,
the abundance of excitons in single layer graphene is re-
mained to be verified experimentally.
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Appendix A: Mathematical Supplements

Here we collect some of the equations which are helpful
to check the formula in this paper. The action yields
equations of motion:

1 1
Ry — §gu1/£ — T =0, ﬁ(‘bi(¢)V#Xi) =
1 1
ﬁau(\/TQZ(Qﬁ)FW) =0, ﬁay(\/jgw(@G"”) =
1 G~ 99i(9) oV ()
1 ,0Z(¢) 1 _,0W(¢)
—ZFQ 96 —ZGQ 9% =0, (Al

0,

)

L CRCYORS S A ICRAICRY

2
W(9)
2

T,
i=1

Z(9)

JFTFQF,,A + GhGur.  (A2)

From the equations for metric and the dilaton, we can
solve for v”,U"”,U’ to give

1 !/ 2 /
~3 WP+ 8 0)),

6—21)

2ZWl(r)
+ P IW R + U)W ()~ ¢ ()],

U'(r) = {Q%W + Q27 + 2V ZW

o 6721)

2 2
0 = (Dot ) 4 4 U0 - 0 0)

z W

With the choices @, the Einstein equations for the fluc-
tuation becomes

20 (r)dgy, () = (27" k*®(0) + U(r) (' (r)? = ¢'(r)?)) 0gea (r)

—2e7"U(r)(Q10a'(r) + Q2 0b'())

R2U(r)®(9)
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(A3)

Ohya(r) = | EQr + B2Qu — e kU (r)20Y (r)

where we used the background solution In the presence of
the black hole horizon, every equations of motion should
be regular at the black hole horizon. The fluctuations
should behave[19]

E
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