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ABSTRACT

The large-N limit of the 2+1 dimensional CPN−1 model exhibits hedgehog-like instanton

saddle points in its disordered phase. We determine the structure of these saddle points

and evaluate the action, Score of a charge-q instanton. We find that limξ/a→∞ limN→∞

Score/N = 2%q ln(ξ/a) where the order of limits is significant. Here a is the lattice spacing,

ξ is the spin correlations length, and %q are a set of universal constants: %1 = 0.062296 . . .,

%2 = 0.155548 . . .. Free charge-q instantons therefore occur with a density ∼ a−3(ξ/a)−2N%q

in the disordered phase. Moreover the length scale, ξC , with which correlations of U(1) gauge

field, Aµ, decay exponentially, is ξC ∼ a(ξ/a)N%1 . The length ξC is also the scale at which

the matter fields, zα, experience a confining linear potential. Consequences for spin-Peierls

ordering in two-dimensional quantum SU(N) antiferromagnets will be discussed elsewhere,

and are briefly noted for completeness.
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I. Introduction

Zero temperature properties of two dimensional quantum antiferromagnets have recently

been the focus of intense theoretical and experimental interest [1, 2]. This is due in part to the

discovery of high temperature superconductivity in doped antiferromagnets like La2−xSrxCuO4

and Y Ba2Cu3O6+x [3]. It is by now well known that the semiclassical limit of a two-

dimensional SU(2) antiferromagnet is described at long wavelengths by the relativistic,

three-dimensional O(3) non-linear sigma model [4, 5], with the spin-wave velocity playing

the role of the velocity of light c. However, this mapping ignores Berry phase terms which ac-

company topologically non-trivial spin configurations [4, 6]. For the square lattice, the Berry

phases are zero when the spin, S, is an even integer; the results of this paper can be directly

applied to the antiferromagnets only for these special spin values. Upon considering SU(N)

antiferromagnets for arbitrary N , it is found that their semiclassical limit is described at long

wavelengths by the CPN−1 model [7, 8, 9, 10]. (For N = 2, the CP 1 model is equivalent to

the O(3) non-linear sigma model [11, 12].) There is again an important restriction on the

representation of SU(N) which causes the Berry phase terms to vanish [7]. This paper shall

examine properties of instantons in the disordered phase of this three dimensional CPN−1

model in the large N limit. We will also discuss applications of the results to the disordered

phase of the SU(N) antiferromagnet for the special representations with vanishing Berry

phases. The application of the results of this paper to other representations is discussed in

detail elsewhere [9]. We note that instanton effects in fermionic large-N theories of SU(N)

antiferromagnets have also been considered recently [13, 14]. Interest by one of us (S.S.)

on the issues addressed in this paper is a direct consequence of questions that arose in a

collaboration with N. Read [7, 8, 9].
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The d-dimensional CPN−1 model is defined by the action

Sz =
N

2g

∫
ddx

[
|∂µzα|2 − |z∗α∂µzα|2

]
(1.1)

where the zα are N -component complex fields which satisfy the fixed length constraint

∑N
α=1 |zα|2 = 1, x is the spacetime co-ordinate (time is measured in units of c), a is the

lattice spacing of the underlying antiferromagnet, and g is a coupling constant which is

inversely proportional to the spin-wave stiffness. A familiar renormalization group analysis

in d = 2 + ε dimensions [16, 7] yields the following scaling equation for g̃ = gΛd−2 when the

ultra-violet cutoff Λ is changed to Λe−l

dg̃

dl
= −εg̃ +Kg̃2 + · · · (1.2)

where K is a phase space integral. Thus for small, positive ε and g̃ < gc = ε/K, g̃ flows to

zero at long wavelengths indicating that the system is in the magnetically ordered phase. At

g̃ = gc, there is a second-order phase transition leading to the destruction of magnetic order;

for g̃ > gc, there is a runaway flow to strong coupling

The ordered phase of the d = 3 CPN−1 model displays topologically non-trivial ‘hedge-

hog’ instantons [6, 7]. These are tunnelling events which change the ‘skyrmion- number’

of an equal-time zα configuration. A charge q = 1 instanton, centered at x = 0, has the

following field configuration at distances much larger than the lattice spacing:

zα = Uα cos
θ

2
eiφ + V α sin

θ

2
. (1.3)

Here U, V are a pair of arbitrary N -component orthonormal vectors and the space-time co-

ordinate xµ has been written in terms of spherical co-ordinates (r, θ, φ). For the case N = 2,

we define the O(3) field nµ = z∗σµz where σµ are the three Pauli matrices and obtain the

field configuration nµ = xµ/x which points radially outward from the origin. Because of the
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presence of a non-zero spin-stiffness, the hedgehogs are tightly-bound in pairs [6] and do not

affect significantly the low-energy properties of the magnetically ordered phase.

In the disordered phase, the vanishing of the spin-stiffness liberates the instantons and

they are expected to have many important consequences for the properties of the antifer-

romagnet [6, 7, 8, 9]. We postpone further discussions of these consequences until Section

I.A. We shall first describe the new results obtained in this paper on the the structure of the

instantons in the large N limit. This may be obtained by expressing the partition function

in the following form [11, 12]:

Z =
∫
Dz̃αDAµDλ exp(−S)

S =
1

g

∫
d3x

[
|(∂µ − iAµ)z̃

α|2 + iλ(|z̃α|2 −N)
]

(1.4)

We have introduced the rescaled field z̃ =
√
Nz, the gauge-field Aµ arises from a Hubbard-

Stratanovich decoupling of the quartic term, and the field λ which enforces the fixed length

constraint. The action is quadratic in the z quanta, which can therefore be integrated out,

yielding

Z =
∫
DAµDλ exp(−NSeff )

Seff = Tr ln
[
−(∂µ − iAµ)

2 + iλ
]
− i

1

g

∫
d3xλ (1.5)

In this, and all subsequent functional expressions, we will assume that a Pauli-Villars regula-

tor with mass Λ has been used to control the ultraviolet divergences; a lattice regularization,

with lattice spacing a ∼ 1/Λ will be used in the numerical calculation. In the large-N limit,

the functional integral is dominated by saddle points of Seff . The saddle point with Aµ = 0

has been examined in Refs. [11, 12]: the field iλ acquires spacetime independent saddle

point value iλ = ∆2 given by

∆ = Λ− 4π

g
. (1.6)
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As noted above, Λ is the mass of the Pauli-Villars regulator. Two-point correlations of the

zα field decay exponentially with a correlation length ξ

ξ =
1

∆
(1.7)

We see from Eqn (1.6) that for g < gc = 4π/Λ, the saddle point with exponentially decaying

correlations does not exist and the system undergoes a transition to the ordered phase. To

understand the structure of the fluctuations in the disordered-phase we expand Seff about

the saddle point. At long distances (� 1/∆) this yields [11, 12]

Seff =
1

4e2

∫
d3rF 2

µν (1.8)

where Fµν = ∂µAν−∂νAµ and e2 = 48π∆: this is simply the action of a massless U(1) gauge

field. The fluctuations of the λ field are massive and can be neglected.

It was pointed out to us by N. Read that the action of the instantons cannot be reliably

estimed by the effective action in Eqn (1.8), and it is necessary to return to the full expression

for Seff in Eqn (1.5) and search for saddle points with a non-zero expectation value of

Fµν . The field configuration with a charge-q instanton centered at x = 0 has Aµ = Aiµ

with [17, 18, 8, 9]:

εµνλ
∂Aiν
∂xλ

=
q

2

xµ
x3

(1.9)

This is the vector potential of a Dirac monopole at x = 0 and is completely determined (upto

gauge transformations) by the requirements of spherical symmetry and flux conservation.

The monopole has total flux 2πq emerging from it. An important property of the saddle

point is that field iλ now becomes position dependent: we write iλ = ∆2 + V (r) where

spherical symmetry implies that V depends only upon the radial co-ordinate r. The function

V (r) is determined by the saddle-point equation

1

i

δSeff
δλ

= 〈x| 1

−(∂µ − iAiµ)
2 + ∆2 + V (r)

|x〉 − 1

g
= 0 (1.10)
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which imposes the constraint 〈|zα|2〉 = 1 at every point in the presence of the monopole.

The complete determination of V (r) is an intractable problem; we will show in this paper

that it is sufficient to determine the asymptotic values of V (r) for large and small r. We find

V (r) ∼


− q2

48∆2r4
r � 1

∆

−αq
r2

1

Λ
� r � 1

∆

(1.11)

The universal set of constants, αq, are determined implicitly by the following equation

∞∑
`=q/2

 2`+ 1√
(2`+ 1)2 − q2 − 4αq

− 1

 =
q

2
(1.12)

where q > 0 and the sum over ` extends over the values q/2, q/2 + 1, q/2 + 2, . . .. We

determine numerically α1 = 0.1998063111524528 . . . and α2 = 0.3978297544915455 . . .. The

relationship αq ≈ q/5 is found to hold to an accuracy of better than 1.4% for all q < 100.

We note that despite the attractive form of V (r), the extra centrifugal repulsion provided

by Aiµ(r) prevents the existence of any negative energy or bound states. We will show that

these asymptotic values of V (r) are sufficient to determine the dominant part of the instanton

action in the limit of large Λ/∆. We identify the difference between the saddle- point actions

with and without the instanton as the core-action Score of the instanton. We have therefore

from Eqn (1.4)

Score = NTr ln

[
−(∂µ − iAiµ)

2 + ∆2 + V (r)

−∂2
µ + ∆2

]
− N

g

∫
d3xV (r) (1.13)

We separate the dual difficulties in Eqn (1.13) due to the presence of the non-zero vector

potential and the space-dependent mass by performing the following decomposition

Score = N(S1 + S2) (1.14)

where

S1 = Tr ln

[
−(∂µ − iAiµ)

2 + ∆2

−∂2
µ + ∆2

]
(1.15)
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and

S2 = Tr ln

[
−(∂µ − iAiµ)

2 + ∆2 + V (r)

−(∂µ − iAiµ)
2 + ∆2

]
− 1

g

∫
d3xV (r) (1.16)

We will begin in Section II with the evaluation of S1, the functional determinant of due

to the vector potential Aiµ in the presence of a space-independent mass ∆. The determinant

will be evaluated by determining exactly all the eigenvalues of the requisite operators. The

system-size dependent contributions will be regulated by compactifying spacetime onto the

surface of a four-dimensional sphere: S3 (Section II.A). The eigenvalues will be used to

calculate S1 for q = 1 in Section II.B and for general q in Section II.C. We find in the limit

∆ � Λ

S1 = Υq ln
(

Λ

∆

)
+ C +O

(
∆

Λ

)
(1.17)

where Υq are a set of universal numbers and C is a constant which depends upon the details

of ultraviolet regularization procedure (for Pauli-Villars regularization C = 0). The numbers

Υq are given by

Υq =
q3

24
+

q

12
− Ωq (1.18)

with

Ωq =
q4

4

∞∑
`=q/2

1(√
(2`+ 1)2 − q2 + 2`+ 1

)2 (1.19)

We find Υ1 = 0.09680740430261567 . . ., and Υ2 = 0.2264273679853038 . . .. Finally in Section

II.D we perform a numerical evaluation of S1 by calculating the determinant on a lattice of

size 30 × 30 × 60. The result of the lattice regularization is in close agreement with Eqn

(1.17) thus offering independent evidence of the universality of S1.

Next Section III will address the evaluation of S2, the change in Score due to the presence

of the space-dependent potential V (r). We will begin in Section III.A by a determination

of the asymptotic forms of V (r) quoted above in Eqn (1.11). Because V (r) falls off as 1/r4
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at large r, the asymptotic form of the eigenfunctions of the two operators in S2 differ only

by the presence of a phase- shift η`(k) in the radial wave-function; here ` = q/2, q/2 + 1,

q/2+2, . . . is a quantum number characterizing the angular dependence of the wavefunction

and k is a radial ‘momentum’. We show in Section III.B that for an infinite system S2 can

be expressed solely in terms of the phase-shifts [15]:

S2 = − 2

π

∞∑
`=q/2

(2`+ 1)
∫ ∞

0
dkη`(k)

[
k

k2 + ∆2
− k

k2 + Λ2

]
− 1

g

∫
d3xV (r) (1.20)

where we have used a Pauli-Villars regulator to evaluate the integral over k. Note that the

second term in Eqn (1.20) is clearly of order Λ/∆; we show in Section III.B that the first

term in Eqn (1.20) contains a contribution which exactly cancels the leading Λ/∆ term in

the spatial integral of V (r). The phase-shifts are evaluated in Section III.C. We also show in

Section III.C that only the leading term V (r) ∼ −αq/r2 in the asymptotic form of V (r) at

small r contributes a ln(Λ/∆) term to S2. This permits an exact evaluation of the coefficient.

The final result for S2 has the form

lim
Λ/∆→∞

S2 = Ξq ln
(

Λ

∆

)
(1.21)

where the universal set of numbers Ξq are given by

Ξq = −
∞∑

`=q/2

(2`+ 1)

(
ν` − ν ′` −

αq
2ν ′`

)
(1.22)

with

ν` =

√(
`+

1

2

)2

− q2

4
; ν ′` =

√(
`+

1

2

)2

− q2

4
− αq (1.23)

We find Ξ1 = 0.02778477609820585 . . . and Ξ2 = 0.08466787712667854 . . ..

Recent studies of instantons in fermionic large-N theories of SU(N) antiferromagnets

also noted the presence of logarithms [13, 14]. As these theories have massless fermionic

excitations, the instanton action grew logarithmically with the size of the system. However
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these calculations were low-order perturbations in the field strength, and it remains to be

seen if the logarithm survives a full functional calculation of the type carried out in this

paper.

I.A Physical Consequences

We now briefly explore the consequences of our results on Score on the properties of the

CPN−1 model and quantum antiferromagnets. We emphasize that all of the results were

obtained in the limit N → ∞, while the ratio of the spin-correlation length to the lattice

spacing ξ/a ∼ Λ/∆ was fixed at a finite, but large value. It is not clear to what extent the

results continue to be valid in the opposite limit of fixed N but ξ →∞.

An immediate consequence of our results is the following estimate of the density nq of

free charge-q instantons in the disordered phase

nq ∼
1

a3
e−Score =

1

a3
e−N(S1+S2)

=
1

a3

(
ξ

a

)2N%q

(1.24)

where we have introduced the exponents %q which are given in the limit of large N by

2%q = Υq + Ξq (1.25)

We have %1 = 0.06229609020041076 . . . and %2 = 0.15554762255599117 . . .. Tightly bound

instanton-anti-instanton pairs occur in both the magnetically ordered and disordered phases,

and are not included in the above estimate. In obtaining this result we have glossed over

potential complications in changing the measure of integration from DAµ to the co-ordinates

of the instantons [17]: we have simply assumed that in a theory regularized with a lattice,

distinct instantons must be at least a distance a apart. In any event, such effects will not

change the value of the exponents to leading order in large N .
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We now consider the consequences of this density of instantons on the CPN−1 model.

Instantons are not expected to significantly alter correlation functions of the zα quanta:

these correlations decay exponentially with the length ξ. They however have significant

consequences for the correlations of the ‘electromagnetic’ field Fµν . These are described at

long distances by the action (1.8). We find it convenient to introduce the field Hµ

Hµ =
1

2
εµνσFνσ (1.26)

Equation (1.8) now implies

〈Hµ(k)Hν(k)〉(0) = e2
(
δµν −

kµkν
k2

)
(1.27)

where the (0) indicates that instanton effects have not yet been included. The singularity

at k = 0 leads to power- law decay of correlations in space-time. Instanton effects in 2+1

dimensional electrodynamics have been considered by Polyakov [17]. He found that they

transformed the field correlations to

〈Hµ(k)Hν(k)〉 = e2
(
δµν −

kµkν
k2 + ξ−2

C

)
(1.28)

Field correlations now decay exponentially with the length ξC . The central consequence of

the new results in this paper is that in the limit N →∞

ξC
a
∼
(
ξ

a

)N%1
(1.29)

The length ξC is also the scale at which oppositely charged z-quanta will experience an

attractive confining linear potential [17].

A crucial ingredient in Polyakov’s analysis [17] was the use of a 1/r interaction between

instantons. In the CP (N−1) model the interaction has this form only at distances larger than

ξ. The mean spacing between the instantons is of order n
−1/3
1 , which for sufficiently large
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N , is much larger than ξ. This justifies the use of Polyakov’s analysis in the context of the

CP (N−1) model.

Finally we briefly address the application of the results to two-dimensional quantum

SU(N) antiferromagnets. This issue is addressed in detail in Refs [8, 9], and for completeness

we restate the results here. It has been argued in these papers that the Berry phases

which accompany the instantons lead to the appearance of spin-Peierls order for certain

representations of SU(N). For the case of SU(2) antiferromagnets on a square lattice, these

representations correspond to all spins S which satisfy 2S (mod 4) 6= 0. The spin-Peierls

order parameter Ψ is found to have the following magnitude

〈Ψ〉 ∼
{
ξ−2
C for S = 1, 3, 5, 7, 9 . . .
ξ−4
C for S = 1

2
, 3

2
, 5

2
, 7

2
, 9

2
. . .

(1.30)

Use of Eqn (1.29) implies that 〈Ψ〉 is suppressed by a power of the spin-correlation length.

II. Calculation of S1

This section will present the details of the analytical calculation of S1, the functional deter-

minant defined in Eqn (1.15) with the space-independent mass ∆2. An important issue that

arises at the outset is the question of regularization of infrared and ultraviolet divergences.

Physically the ultraviolet fluctuations are controlled by the presence of an underlying lattice.

While this is the procedure used in the numerical evaluation of Section II.D, we use here the

gauge-invariant Pauli-Villars regularization. The Pauli-Villars mass Λ will then be of order

the inverse lattice spacing 1/a. The infrared divergences may be controlled by evaluating the

functional determinants in a finite system, taking their ratio and then letting the system size

go to infinity. A possibility that immediately suggests itself is to use a spherical cavity about

the instanton-center of radius R and demand that the eigenfunctions vanish on the surface of

the sphere. However this procedure leads to eigenvalues depending upon the zeros of Bessel
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functions of irrational order and we have been unable to evaluate the subsequent sum over

the eigenvalues. The method we shall use is to place an instanton anti-instanton pair on

opposite poles of S3, the surface of a four-dimensional sphere of radius R. The eigenvalue

equation

−
(
~∇− i ~Ai

)2
Ψσ(u) = εqσ(R)Ψσ(u) (2.1)

will be solved exactly. Here ~∇ is the gradient operator on S3, ~Ai is the vector-potential of

an instanton anti-instanton pair of charges ±q located on the north and south poles, u is a

co- ordinate on S3 and εqσ(R) is the eigenvalue on a sphere of radius R. Thus the eigenvalues

in the absence of instantons are represented by by ε0σ. In both cases the index σ is used to

order the eigenvalues in ascending order. We introduce the quantity

Dm(Nmax, R) =
Nmax∑
σ=1

ln

[
εqσ(R) +m2

ε0σ(R) +m2

]
(2.2)

which calculates the action over the Nmax lowest eigenvalues from both sets. The action S1

is then clearly given by

S1 =
1

2
lim
R→∞

lim
Nmax→∞

[
D∆(Nmax, R)−DΛ(Nmax, R)

]
(2.3)

where, as noted before, the Pauli-Villars mass Λ is of order 1/a. The order of the limits two

limits above cannot be interchanged.

II.A Eigenvalues on S3

We will use angular co-ordinates (ψ, θ, φ) with 0 ≤ ψ, θ ≤ π and 0 ≤ φ < 2π to represent

points on the surface of a sphere. The angles θ, φ are analogous to those used in spherical

co-ordinates on R3, while ψ measures geodesic distance from the south pole. If we embed

S3 in R4, the four Cartesian co-ordinates will be

R(cosψ, sinψ cos θ, sinψ sin θ cosφ, sinψ sin θ sinφ) (2.4)
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and the metric on S3 is given by

ds2 = R2dψ2 +R2 sin2 ψ(dθ2 + sin2 θdφ2) (2.5)

We place an instanton of charge q (q > 0) at ψ = 0 (south pole) and of charge −q at ψ = π

(north pole). A convenient choice for the vector potential associated with this configuration

is

Aiφ =
q

2R sinψ

1− cos θ

sin θ
(2.6)

with Aiθ = Aiψ = 0. We have then

(~∇− i ~Ai)2 =

1

R2 sin2 ψ

∂

∂ψ

(
sin2 ψ

∂

∂ψ

)
+

1

R2 sin2 ψ

 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

(
∂

∂φ
− i

q

2
(1− cos θ)

)2


(2.7)

The operator in the curly brackets is precisely the operator that was diagonalized by Wu

and Yang [19] in their paper on the wavefunctions of an electron in the presence of a Dirac

monopole. Its eigenfunctions are the ‘monopole harmonics’ Yq/2,`,m and the eigenvalues are

`(`+1)− (q/2)2 where ` = q/2, q/2+1, q/2+2, . . . and the degeneracy of each eigenvalue if

2`+1. These monopole harmonics also appeared in Marston’s [14] analysis of instanton effects

in fermionic large-N theories of SU(N) antiferromagnets. The problem of diagonalizing the

operator in Eqn 2.7 is therefore reduced to that of diagonalizing

1

R2 sin2 ψ

∂

∂ψ

(
sin2 ψ

∂

∂ψ

)
+

1

R2 sin2 ψ

{
`(`+ 1)− q2

4

}
(2.8)

If we change variables to cosψ = y, the equation for the eigenvalue ε becomes[
d2

dy2
+

3y

y2 − 1

d

dy
− `(`+ 1)− q2/4

(y2 − 1)2
− R2ε

y2 − 1

]
w(y) = 0 (2.9)

where w is any function which is integrable at the poles (y = ±1). This differential equation

is of the hypergeometric type and can be readily solved using standard techniques [20]. The
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condition that w be integrable simultaneously at y = ±1 quantizes the allowed values of ε

εm,` =
1

R2

m+

√
(2`+ 1)2 − q2 − 1

2

m+

√
(2`+ 1)2 − q2 + 3

2

 (2.10)

where m = 0, 1, 2, 3 . . . is a non-negative integer. We introduce the integer n = ` +m, and

obtain the result for the eigenvalues εn,` in its final form

εn,`(R) =
1

R2
(n− γq(`)) (n− γq(`) + 2) (2.11)

where

γq(`) =
q2/2√

(2`+ 1)2 − q2 + 2`+ 1
, (2.12)

n = q/2, q/2 + 1, q/2 + 2, . . .∞, ` is restricted to the values ` = q/2, q/2 + 1, . . . n and the

degeneracy of each state is 2`+ 1.

We may obtain the eigenvalues in the absence of the instantons by putting q = 0 in the

expressions above. The eigenvalues are independent of ` and take the values

ε0n =
1

R2
n(n+ 2) (2.13)

and the degeneracy of the n’th state is
∑n
`=0(2`+ 1) = (n+ 1)2.

II.B S1 for q = 1

In this section we will use the eigenvalues computed in Section II.A to explicitly compute

the core-action S1 for the special case q = 1. The generalization to arbitrary values of q will

be presented in Section II.C.

We show in Fig. 1, a schematic of the eigenvalues both with and without the instantons.

In the presence of the instantons, eigenvalues with the same value of n but differing values of

` cluster together into separate groups. Each cluster is shown as a shaded block, along with

the total number of states in the cluster. In the absence of the instanton, the eigenvalues
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are independent of ` and are therefore shown as a single line. In the evaluation of Dm,

the eigenvalues have to be placed in a one-to-one correspondence in the argument of the

logarithm: we use the pairing shown in Fig. 1 which splits the states in cluster with quantum

number n equally between the states with n− 1/2 and n+ 1/2. Other pairings can also be

used and the final answer is independent of the specific choice.

An important issue which arises now is the placement of the ultraviolet cutoff Nmax. The

value of Dm(Nmax, R) will clearly be dependent on this choice, but the arbitrariness should

disappear after the Pauli-Villars subtraction. We will choose Nmax such that the all states

in the presence of the instanton in clusters with quantum number n ranging from 1/2 to

Nmax − 1/2 are included. (There is a slight abuse of notation here: we are now using Nmax

to denote the total number of clusters and not the total number of states.) We see from Fig.

1 that a little less than half of the degenerate states with n = Nmax without the instanton

will be included. Later in this section we will state the result of a calculation which has

the upper cutoff chosen to include all degenerate states in with every value of n ≤ Nmax

without the instantons: in this case only half of a cluster of states with the instanton with

n = Nmax + 1/2 will be included. The change in the cutoff will change the value of Dm but

will leave S1 unchanged.

In the flat space limit (R→∞), it can be shown [21] that the cutoff procedures discussed

above are equivalent to choosing a hard-cutoff in momentum space with wavevector Λ =

Nmax/R

Using the first of the cutoff procedures outlined above we obtain

Dm(Nmax, R) =
Nmax−1/2∑
n=1/2

n∑
`=1/2

(
`+

1

2

)ln
 εqn,`(R) +m2

ε0n−1/2(R) +m2

+ ln

 εqn,`(R) +m2

ε0n+1/2(R) +m2


(2.14)

We how insert the expressions for εn,` and ε0n obtained in Section II.A and perform an
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expansion in inverse powers of R. This is equivalent to expanding Dm in inverse powers of

m2 + (n+ 1)2/R2. Performing this on the first term of Dm we obtain

Nmax−1/2∑
n=1/2

n∑
`=1/2

(
`+

1

2

)
ln

 εqn,`(R) +m2

ε0n−1/2(R) +m2

 =

Nmax−1/2∑
n=1/2

n∑
`=1/2

(
`+

1

2

) [
− 1

R2

2(n+ 1)γ1(`)− n− 3/4

(n+ 1)2/R2 +m2
+

1

2R4

(n+ 7/4)2

((n+ 1)2/R2 +m2)2

]
+O

(
1

R

)
(2.15)

All omitted terms in the expression can be shown to be of order 1/R or smaller.

We examine first the sum over `. Expressions of the form
∑n
`=q/2(2`+ 1)γq(`) are in Eqn

(2.15) (with q = 1) and in many of the subsequent analyses. From the definition of γq(`) in

Eqn (2.12) we obtain

n∑
`=q/2

(2`+ 1)γq(`) =
q2

4

n∑
`=q/2

4`+ 2√
(2`+ 1)2 − q2 + 2`+ 1

=
q2

4

n∑
`=q/2

1 +
q2(√

(2`+ 1)2 − q2 + 2`+ 1
)2


=

q2

4

(
n− q

2
+ 1

)
+ Ωq +O

(
1

n

)
(2.16)

where we have introduced the set of irrational numbers Ωq defined by

Ωq ≡
∞∑

`=q/2

q4

4

1(√
(2`+ 1)2 − q2 + 2`+ 1

)2 (2.17)

We have Ω1 = 0.02819259569738433 . . . and Ω2 = 0.2735726320146962 . . . The O(1/n) in

Eqn (2.16) can be shown to contribute to Dm only at order 1/R.

We now perform the remaining sums over ` in Eqn (2.15) and the second term in Eqn

(2.14), collect terms, and obtain the following expression for Dm

Dm(Nmax, R) =
Nmax−1/2∑
n=1/2

(
− 1

4R2

2(n+ 1)(n+ 4Ω1 + 1/2) + ((n+ 1)2 − 1/4))

(n+ 1)2/R2 +m2
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+
1

4R4

(n+ 7/4)2 + (n+ 1/4)2

((n+ 1)2/R2 +m2)2

[
(n+ 1)2 − 1/4

])
+O

(
1

R

)
(2.18)

Finally, we use the Euler-Maclaurian formula to evaluate the summation in the limit of large

Nmax.

Dm(Nmax, R) = −3R

4

∫ Nmax/R

0
dx

x2

x2 +m2
+
(

1

4
− 2Ω1

) ∫ Nmax/R

0
dx

x

x2 +m2

+
R

2

∫ Nmax/R

0
dx

x4

(x2 +m2)2
+ C +O

(
1

R

)
+O

(
mR

Nmax

)
(2.19)

Here C is an uninteresting constant independent of m, R, and Nmax which will not appear

in the final expression for S1. Performing the integrals we obtain

Dm(Nmax, R) = −Nmax

4
+
(

1

4
− 2Ω1

)
ln
(
Nmax

Rm

)
+ C +O

(
1

R

)
+O

(
mR

Nmax

)
(2.20)

We note that terms of the formmR appear at intermediate stages of the calculation. However

they cancel among themselves in the final result. A term of this form would have led to a R

dependence in the final answer for S1.

We use our result for Dm in the expression (2.3) for the core action to obtain

S1 =
(

1

8
− Ω1

)
ln
(

Λ

∆

)
(2.21)

This is the central result of this section. Notice that the constant C has disappeared. There

are also no correction of order ∆/M , but this is clearly an artifact of the Pauli-Villars

regularization. If we had used the second procedure for the placement of the ultraviolet

cutoff Nmax discussed earlier in this section we would have obtained

Dm(Nmax, R) = +
Nmax

4
+
(

1

4
− 2Ω1

)
ln
(
Nmax

Rm

)
+ C ′ +O

(
1

R

)
+O

(
mR

Nmax

)
(2.22)

From Eqn (2.3) it is clear that the expression for S1 would have been unchanged.

We can also conclude that the co-efficient of the ln(Λ/∆) term in universal and inde-

pendent of the Pauli-Villars regularization. The logarithm appeared from long-wavelength
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log-divergence of the integral over the normal modes n. A different regularization procedure

would then renormalize the value of Λ but will leave the co-efficient unchanged.

II.C S1 for Arbitrary q

The method of section II.B can be extended to obtain S1 for arbitrary q. However, as was

apparent from that section, careful account had to be taken of the ultraviolet divergences at

intermediate stages of the calculation. Having shown that a well-defined answer emerges at

the end of calculation for q = 1, we choose now to work with expressions that are finite in

the ultraviolet by taking derivatives with respect to m2. Consider:

− ∂2

∂(m2) 2
Dm(Nmax, R) =

Nmax∑
σ=1

{
1

(εqσ(R) +m2) 2
− 1

(ε0σ(R) +m2)2

}

≡ A(q, R)− A(0, R) (2.23)

where the second equation defines the quantity A(q, R). The bulk of this section will con-

centrate upon an evaluation of A(q, R) in inverse powers of R, upto order 1/R. The two m2

derivatives ensure that the sum converges in the ultraviolet. Thus, we can let Nmax go to ∞

in the expression for A(q, R). Thus

A(q, R) =
∞∑
σ=1

1

(εqσ(R) +m2) 2

=
∞∑
n= q

2

n∑
l= q

2

(2l + 1)
1[

m2 + (n− γq(l))(n− γq(l) + 2)/R2

]2 (2.24)

We decompose the denominator as:

m2 +
(n− γq(l)(n− γq(l) + 2)

R2
= µ+

1

R2
[−1− 2(n+ 1)γq(l) + γq(l)

2]

µ ≡ m2 +
(n+ 1)2

R2
(2.25)

where have introduced the label µ for brevity of notation. It is clear that for all values of

n, and R large, µ will be much larger than the remaining terms in Eqn (2.24). We therefore
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expand in inverse powers of µ and keep all terms which will be shown later to contribute to

A(q, R) upto order 1/R. This yields

A(q, R) =
∞∑

n=q/2

n∑
l=q/2

(2l + 1)

µ2

{
1 +

2

R2

(1 + 2(n+ 1)γq(l)− γq(l)
2)

µ

+
3

R4

(1 + 4(n+ 1)γq + 4(n+ 1)2γ2
q (l))

µ2
+ . . .

}
(2.26)

We first do the sum over l, using the following identities:

n∑
l=q/2

(2l + 1) = (n+ 1)2 − (q/2)2

n∑
l=q/2

(2l + 1)γq(l) = (
q

2
)2(n+ 1− q

2
) + Ωq −

(q/2)4

2(2n+ 3)
− . . .

n∑
l=q/2

(2l + 1)γq(l)
2 =

(q/2)4

2
ln(n+ 1) + Ω′

q + . . .

(2.27)

where the ellipses indicate terms higher order in 1/n which will modify A(q, R) at order

1/R2. The set of q-dependent numbers Ωq was introduced earlier in Eqn (2.17) and the new

set Ω′
q are defined by

Ω′
q =

q4

4

∞∑
l=q/2

(2l + 1)

 1(√
(2`+ 1)2 − q2 + 2`+ 1

)2 −
1

4(2`+ 1)2

 (2.28)

Inserting these expressions into Eqn (2.26) we get

A(q, R) =
∞∑

n=q/2

1

µ2

{
(n+ 1)2 − q2

4

}

+
∞∑

n=q/2

2

R2µ3

{
(n+ 1)2 − q2

4
+ 2(n+ 1)

[
q2

4

(
n+ 1− q

2

)
+ Ωq −

q4

32(2n+ 3)

]

− q
4

32
ln(n+ 1)− Ω′

q

}

+
∞∑

n=q/2

3

R4µ4

{
(n+ 1)2 − q2

4
+ q2(n+ 1)

(
n+ 1− q

2

)

+ 4(n+ 1)2

(
q4

32
ln(n+ 1) + Ω′

q

)}
(2.29)
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Once again we use the Euler-Maclaurin formula to convert the sums into integrals. As

the manipulations are tedious and not very illuminating, we merely present the final result.

A(q, R) =
R3π

4m
+

Rπ

8m3
+

1

m4

{
− q3

24
− q

12
+ Ωq

}
+

3π

32Rm5
+O

(
1

R2

)
(2.30)

Several cancellations occur at order 1/R: in particular all terms dependent upon Ω′
q have

dropped out. Notice also that the first two terms, which blow up as R → ∞, are q-

independent. This will case them to drop out of the final expression for S1. The q-

independence of the 1/R term is more unusual: we will comment on this later in this section.

Inserting our result for A(q, R) into Eqn (2.23) we obtain therefore

− ∂2

∂m2
Dm(R) =

1

m4

{
− q3

24
− q

12
+ Ωq

}
+O

(
1

R2

)
(2.31)

Integrating twice with respect to m2, we get

Dm(R) = 2
{
q3

24
+

q

12
− Ωq

}
ln

C1

mR
+ C2m

2R2 +O
(

1

R2

)
(2.32)

where C1 and C2 are dimensionless constants of integration, and the additional factors of

R are determined from purely dimensional considerations. Comparing with the results of

Section II.B for q = 1 (and equivalent calculations for arbitrary q) we may conclude that

C2 = 0 in the limit Nmax →∞. Finally, we insert this result into the expression (2.3) for S1

and obtain

S1 =
{
q3

24
+

q

12
− Ωq

}
ln

Λ

∆
+O

(
1

R2

)
(2.33)

which is precisely the result quoted in Eqn (1.17) of the introduction.

A property of this expression for S1 which appears unusual at first sight is the absence

of a 1/R term. In flat-space the long-distance action in Eqn (1.8) leads to a 1/R interaction

between instanton charges. On S3, the long-distance action (1.8) would be generalized to

Seff =
R3

4e2

∫
sin2 ψ sin θdψdθdφF 2

µν (2.34)
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We now insert (2.6), the expression for the vector-potential for an instanton-anti-instanton

pair on the north and south poles, into the expression above. The spatial integration is

cut-off at a geodesic distance 1/Λ′ from the poles. The long-distance estimate for the action

is then

Seff = 4πq2 Λ′

m
− 4πq3

3Λ′m

1

R2
+ . . . (2.35)

Notice the absence of a 1/R term. This result is therefore consistent with the full calculation

which yielded Eqn (2.33). Of course the long-distance action cannot accurately reproduce

the R-independent term arising from physics at distances shorter than 1/∆.

II.D Numerical Results

This section will present independent numerical verification of the results obtained in Section

II. The calculations will be performed in flat-space using a lattice regularization and thus

provide a strong verification of the form of S1 in Eqn. (1.17) and the universality of Υ1.

We use a cubic lattice of 2L× 2L× 4L points with lattice-spacing a and free boundary

conditions. The continuum operator −(∂µ− iAiµ)2 +∆2 is now regularized to the matrix Mij

of dimension 16L3 with site labels i, j. The matrix Mij is defined by

∑
i,j

z∗iMijzj ≡
∑
<kl>

∣∣∣∣zk − exp
(
i
∫ rl

rk

Ai(r) · dr
)
zl

∣∣∣∣2 + ∆2a2
∑
k

|zk|2 (2.36)

where zi is an arbitrary complex number associated with the site i, the sum over i, j on the

left-hand-side is a free sum over all sites on the lattice, and the sum over k, l on the right-

hand-side is over nearest-neighbor pairs of sites. The vector-potential Ai is determined in

the continuum and it is important that the line-integral be evaluated exactly; approximation

of the line-integral will spoil the invisibility of the Dirac string. If we define the matrix M0

as above but with Ai = 0 then clearly

S1 =
1

2
lim
L→∞

ln
detM

detM0
(2.37)
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Before describing the evaluation of determinants, we will specify the continuum gauge

potential Ai(r). We place the lattice in box, B, defined by the planes x = La, x = −La,

y = La, y = −La, z = −2La and z = 2La. A instanton of charge q = 1 was placed at

(x = 0, y = 0, z = −La) and of charge q = −1 at (0, 0, La). An infinite set of ‘image’ charges

were placed outside the box, B, so that the ‘magnetic field’ B = ∇ × Ai has a vanishing

normal component on the surface of B. As a result all the field lines emerging from the

positive charge at (0, 0,−La) end at the negative charge at (0, 0, La) without leaving the

box B - see Fig. 2. A two-dimensional section of the image charges and the box B is shown

in Fig. 2. The field B was determined by an Ewald sum [22] over the charges

B(r) =
′∑
i

qi
r−Ri

|r−Ri|3
(2.38)

where the sum extends over charges qi at the points Ri and the prime indicates that Ewald’s

method was used to obtain a convergent result. Finally, the vector potential Ai is determined

in the gauge Aiz = 0 by the integrals

Aix(x, y, z) =
∫ z

−L
By(x, y, t)dt ;Aiy(x, y, z) = −

∫ z

−L
Bx(x, y, t)dt (2.39)

The determinants of M and M0 were evaluated by a judicious modification of standard

methods [23]. We performed a Cholesky decomposition of the matrices M = R†R where all

the non-zero matrix elements of R are in upper- right triangle. The determinant of M is

then the square of the product of the diagonal matrix elements of R The calculations were

performed on sizes as large as L = 15. In this case M is matrix of order 54000 and it is

clearly impossible to store all the (54000)2 matrix elements of M . Crucial use of was made

of the fact that all the non- zero matrix elements of M are along 7 diagonal rows close to the

central diagonal of the matrix. (The use of open boundary conditions was crucial for this;

periodic boundary conditions would have produced non-zero entries along the edges of the
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matrix.) The routine for Cholesky decomposition made explicit use of the particular sparse

form of M and were optimized to minimize the total storage requirements. All of the above

operations were repeated for M0 and S1 was then evaluated using Eqn (2.37).

To obtain the infinite size limit of the determinants, two requirements have to be enforced:

(i) to minimize the O(a∆) corrections in the expression for S1 we require ∆a � 1; (ii) to

minimize interactions between instantons and finite-size corrections we require ∆a � 1/L.

These two requirements limit considerably the range of values of ∆a that can be examined

numerically. Numerical results for

S(L) = ln detM − ln detM0 (2.40)

as a function of L for a range of values of ∆ are shown in Table 1. For each value of ∆, we

fit S(L) to the functional form 2S1 + c1/L+ c2/L
2 where S1, c1 and c2 were arbitrary fitting

parameters. The probable error in the value of S1 was determined by two methods: (i) an

independent fit of S(L) to 2S ′1 + c′1/L+ c′2/L
2 + c′3/L

3 was performed and the error was set

to S1 − S ′1; (ii) for the larger values of ∆a, the point S(L = 15) was omitted in the fit and

the change in the value of S(L) was noted.

The final results for S1 are shown in Table 2. We test the theoretical predictions by

fitting S1 to the functional form α ln(β/∆a) at the four largest values of ∆a. We found the

best fit

S1 ≈ 0.094 ln
0.81

∆a
. (2.41)

The accuracy of the fit is shown in Fig 3. The predictions of Eqn (2.41) at the two smallest

values of ∆a (which were not used in determining the fitting parameters) are consistent with

the numerically determined points. The coefficient of the logarithm is remarably close to the

value of 0.0968 determined in Section II and is thus strong evidence for its universality.
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Finally, the data for S1 at the four largest values of ∆ were also fit to the functional

form S1 = α′ + β′/∆. The results are denoted by the dashed line in Fig 3. Note that

the predictions at the two smallest values of ∆a are now considerably different from the

theoretical predictions.

III. Calculation of S2

This section will calculate the modification of the core- energy, S2, due to the presence

of a space-time dependent potential V (r) (Eqn (1.16)). We will begin in Section III.A by

determining the potential V (r) necessary to maintaining a space-independent value of 〈|zα|2〉

in the region rΛ � 1. At distances r ∼ 1/Λ, the singularity in the field-strength Fµν at the

core of the instanton drives the density of the zα quanta to zero. A lattice regularization

clearly removes the singularity in the field. An alternative is embed the U(1) gauge group

of the CP (N−1) model into a compact Lie group which is spontaneously broken [17, 24].

The action S2 is not affected by the physics at these length scales, so we will concentrate

henceforth on length scales � 1/Λ.

In Section III.B we will, following ’t Hooft [15], derive an expression for S2 in terms

of the scattering phase-shifts of the potential V (r). Finally Section III.C will compute the

scattering phase shifts and obtain our final expression for S2. We note that, unlike Section

II, all calculations in this section will be carried out in flat three-dimensional space.

III.A Calculation of V (r)

We begin by introducing the operator M

M = −(∂µ − iAiµ)
2 + ∆2 + V (r) (3.1)
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and its Green’s function

MG(x, x′) = δ3(xµ − x′µ) (3.2)

The potential V (r) must be determined to constrain 〈|zα|2〉

〈|zα|2〉 = gG(x, x) = 1 (3.3)

where G(x, x) is regulated by an appropriate Pauli- Villars subtraction. We also introduce

the operator M0 as above but with V = 0, and the corresponding Green’s function G0. We

make the following expansions for G and G0 in spherical co- ordinates (r, θ, φ)

G(x, x′) =
∑
`,m

g`(r, r
′)Yq,`,m(θ, φ)Yq,`,m(θ′, φ′) (3.4)

and similarly for G0 but with the radial functions g0`. Then the radial functions satisfy(
d2

dr2
+

2

r

d

dr
− κ2

`

r2
−∆2 − V (r)

)
g`(r, r

′) = − 1

r2
δ(r − r′) (3.5)

with

κ2
` = `(`+ 1)− q2

4
(3.6)

The function g0` satisfies an identical equation, but with V = 0.

We now turn to the determination of G0. Standard methods can be used to solve the

differential equation for g0`:

g0`(r, r
′) =

1√
rr′
Iν`

(∆r<)Kν`
(∆r>) (3.7)

where we recall the constant ν` introduced in Eqn (1.23)

ν` =

√(
`+

1

2

)2

− q2

4
, (3.8)

r< (r>) is the smaller (larger) of r, r′, and Iν`
, Kν`

are modified Bessel functions [25]. The

boson density in the absence of V (r) is thus proportional to

G0(x, x) =
∞∑

`=q/2

2`+ 1

4πr
(Iν`

(∆r)Kν`
(∆r)− Iν`

(Λr)Kν`
(Λr)) (3.9)
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where we have explicitly displayed the Pauli-Villars regularization.

We will not be able to determine an exact solution for V (r), but as will become clear in

this section, it will suffice to determine the leading asymptotic term for V (r) at small and

large r. We will consider these two regions in turn in the following subsections:

III.A.1 Large r: r � 1/∆

We perform a direct evaluation of G0 by performing the summation over ` in Eqn (3.9) in

the limit of large r. The details of this calculation are shown in Appendix A. We obtain

G0(x, x) =
Λ−∆

4π
− q2

384π∆3r4
+O

(
1

∆5r6

)
+O

(
1

Λ3r4

)
(3.10)

It is however also possible to obtain this result by a simpler, more physical argument which

also has the virtue of allowing us to determine G and V (r). The crucial point is that in the

region r � 1/∆ we may consider the system as being placed in a uniform magnetic field of

strength B, given by

B =
q

2r2
(3.11)

All effects arising from the gradients of B are expected to be suppressed by powers of 1/(∆r).

In a uniform field, the eigenvalues of M0 split into Landau levels [26], and are characterized

by a momentum pz and a Landau level index n:

p2
z + (2n+ 1)B + ∆2 (3.12)

The Green’s function in a uniform field is easily determined and we find

G0(x, x) =
B

2π

∫ ∞

−∞

dpz
2π

∞∑
n=0

(
1

p2
z + (2n+ 1)B + ∆2

− 1

p2
z + (2n+ 1)B + Λ2

)
(3.13)

Evaluating the sum over n by the Euler Maclaurian expansion we find

G0(x, x) =
Λ−∆

4π
− B2

96π∆3
+O

(
B3

∆4

)

=
Λ−∆

4π
− q2

384π∆3r4
+O

(
1

∆4r5

)
(3.14)
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which agrees completely with the directly evaluated expression (3.10) upto order 1/r4.

In the same spirit, we now evaluate G by assuming that the system is in a uniform

magnetic field B and a constant potential V . We find

G(x, x) =
Λ−

√
∆2 + V

4π
− B2

96π∆3
+O

(
V 2

∆3

)
+O

(
B3

∆4

)
(3.15)

Demanding that G satisfy the constraint gG(x, x) = 4πG(x, x)/(Λ−∆) = 1 we find

V ∼ − B2

12∆2

∼ − q2

48∆2r4
(3.16)

We have thus obtained the leading term in the asymptotic expansion of V at large r; all

subsequent terms will be suppressed by factors of 1/(∆r).

III.A.2 Small r: 1/Λ � r � 1/∆

The expression (3.9) for G0 now has to be evaluated using a small argument expansion for

the first term and a large argument expansion for the Pauli-Villars term. We use the results

in Appendix A for the Pauli-Villars term and the standard power series expansion for the

modified Bessel functions [25] for the first term. This procedure yields

G0(x, x) = lim
Lmax→∞


 1

4πr

Lmax∑
`=q/2

2`+ 1

2ν`

− [Lmax + 1− Λr

4πr

]+O(r∆2) +O
(

1

Λr2

)
(3.17)

where the term in the first square bracket arises from the small argument expansion of

Iν`
(∆r)Kν`

(∆r), and the second square bracket from the large argument expansion in Ap-

pendix A of the Pauli-Villars term in Eqn (3.9). Rearranging terms we find

G0(x, x) =
Λ

4π
− 1

4πr

 ∞∑
`=q/2

(
1− 2`+ 1

2ν`

)
+
q

2

 (3.18)

The coefficient of 1/r can be easily shown to be non-zero and negative. Thus in the absence

of V (r) there is a boson-density deficit ∼ −g/r at small r. The origin of this deficit can
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be understood to be the the extra centrifugal repulsion in the radial equation due to the

presence of the monopole: the angular quantum number begins at the value ` = q/2, unlike

` = 0 in the absence of the monopole.

We assert that the centrifugal repulsion may be compensated by an attractive potential

V (r) ∼ −αq
r2

(3.19)

at small r. For this potential G can be determined from the differential equation (3.5) and

we find

G(x, x) =
∞∑

`=q/2

2`+ 1

4πr

(
Iν′

`
(∆r)Kν′

`
(∆r)− Iν′

`
(Λr)Kν′

`
(Λr)

)
(3.20)

for small r where we recall the constant ν ′` introduced in Eqn (1.23)

ν ′` =

√(
`+

1

2

)2

− q2

4
− αq (3.21)

Proceeding as above for G0, we find that in the region of r under consideration

G(x, x) =
Λ

4π
− 1

4πr

 ∞∑
`=q/2

(
1− 2`+ 1

2ν ′`

)
+
q

2

 (3.22)

To leading order in ∆/Λ and r∆, the constraint gG(x, x) = 1 can be imposed by requiring

that the coefficient of the 1/r term in the above equation vanish. This leads to following

condition on αq
∞∑

`=q/2

 2`+ 1√
(2`+ 1)2 − q2 − 4αq

− 1

 =
q

2
, (3.23)

which was quoted earlier in Section I (Eqn (1.12)). We have thus completely determined the

leading term in V (r) at small r.

III.B Phase Shift Representation of S2

We begin this section by providing the missing steps between the expressions for S2 in Eqn

(1.16) and (1.20). This involves determining the relative phase-shifts of the operators in Eqn
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(1.16) and then expressing the determinant in terms of the phase shifts [15]. We consider

the eigenfunctions Ψk and eigenvalues k2 + ∆2 of the operator M

MΨk ≡
[
−(∂µ − iAiµ)

2 + ∆2 + V (r)
]
Ψk = (k2 + ∆2)Ψk (3.24)

and the operator M0 defined as above but with V = 0. In spherical co-ordinates we write

Ψk(x) =
Yq,`,m(θ, φ)f(r)√

r
(3.25)

where the Yq/2,`,m are the monopole harmonics [19]. We perform the identical decomposition

for M0 but with a different radial function f0(r). The radial eigenvalue equation becomes

d2f

dr2
+

1

r

df

dr
+

[
k2 − V (r)− ν2

`

r2

]
f = 0 (3.26)

The function f0 satisfies an identical equation but with V = 0. We temporarily quantize the

eigenvalues by demanding that the wavefunctions vanish on the surface of a large sphere of

radius R. To do this we need the large r behaviour of f and f0. As the potential V (r) falls

off as 1/r4 at large r, we may conclude from standard scattering theory [26]

lim
r→∞

f(r) ∼ 1√
r

sin
(
kr − νlπ

2
+
π

4
+ η`(k)

)
(3.27)

and

lim
r→∞

f0(r) ∼
1√
r

sin
(
kr − νlπ

2
+
π

4

)
(3.28)

where η`(k) is the phase-shift. The eigenvalue associated with the n′th zero of the sin will

be labeled by k(n). We have then

k(n)R− νlπ

2
+
π

4
+ η`(k(n)) = nπ

k0(n)R− νlπ

2
+
π

4
= nπ (3.29)

from which we may obtain

k(n)

k0(n)
= 1− 1

R

η`(k(n))

k(n)
(3.30)
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and the eigenvalue spacing δk = k(n+ 1)− k(n)

δk =
π

R
+O

(
1

R2

)
(3.31)

We now insert this information into the determinants

Tr ln
M
M0

=
∞∑

`=q/2

(2`+ 1)
∑
n

ln

(
k(n)2 + ∆2

k0(n)2 + ∆2

)

= − 2

π

∞∑
`=q/2

(2`+ 1)
∫ ∞

0
dkη`(k)

k

k2 + ∆2
+O

(
1

R

)
(3.32)

After regulating the integral by the Pauli-Villars method we obtain finally the expression

(1.20) for S2.

Before closing this section we will show how the term linear in V in the expression for S2

can be disposed of. We will show in the next section that there is a well defined expansion

for the phase-shifts, η`, in successive powers of V . This implies that a similar expansion

exists for S2. Let us introduce the functional A[Φ]

A[Φ] = Tr ln
[
−(∂µ − iAiµ)

2 + ∆2 + Φ
]
− 1

g

∫
d3xΦ (3.33)

then clearly

S2 = A[V ]−A[0] (3.34)

where V is determined by the constraint (1.10)

δA
δΦ

∣∣∣∣∣
Φ=V

= 0 (3.35)

We perform a functional expansion of A in powers of Φ

A[Φ] = A[0] +
∫
d3xA1(x)Φ(x) +

1

2!

∫
d3xd3yA2(x, y)Φ(x)Φ(y)

+
1

3!

∫
d3xd3yd3zA3(x, y, z)Φ(x)Φ(y)Φ(z) + · · · (3.36)
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where all functional derivatives are evaluated at Φ = 0. We now use Eqn (3.35) to obtain

A1(x) = −
∫
d3yA2(x, y)V (y)− 1

2!

∫
d3yd3zA3(x, y, z)V (y)V (z) + · · · (3.37)

Inserting this back into Eqn (3.36) forA and using Eqn (3.34) we obtain a modified expression

for S2

S2 = − 1

2!

∫
d3xd3yA2(x, y)V (x)V (y)− 2

3!

∫
d3xd3yd3zA3(x, y, z)V (x)V (y)V (z)+· · · (3.38)

Thus after expressing the phase shifts η` in successive powers of V

η` = η
(1)
` + η

(2)
` + η

(3)
` + η

(4)
` + · · · (3.39)

we obtain the quantity η̃` given by

η̃` = −η(2)
` − 2η

(3)
` − 3η

(4)
` + · · · (3.40)

which appears in our final expression for S2

S2 = − 2

π

∞∑
`=q/2

(2`+ 1)
∫ ∞

0
dkη̃`(k)

[
k

k2 + ∆2
− k

k2 + Λ2

]
(3.41)

III.C Calculation of Phase Shifts

We will begin by estimating the contribution of the large and small r regions of V (r) for

large ` and k/∆. For large ` we may safely use the semiclassical expression for the phase-

shift [26]

η`(k) =
∫ ∞

r0
dr

√
k2 − κ2

`

r2
− V (r)−

∫ ∞

r̃0
dr

√
k2 − κ2

`

r2
(3.42)

where r̃0 and r0 are the classical turning- points i.e. the points where the expressions under

the radical vanish, and κ` (∼ ` for large `) was defined in Eqn (3.6). From the results

in Section III.A it is clear that in the entire region r � 1/Λ V (r) can be written in the

31



form V (r) = ∆2F (∆r) where the function F (x) satisfies F (x) ∼ 1/x2 for small x, and

F (x) ∼ 1/x4 for large x. Inserting this functional form into the expression above, and

changing the variable of integration to ξ = kr/κ` we obtain

η`(k) = κ`

∫ ∞

ξ0
dξ

√√√√1− 1

ξ2
− 1

(k/∆)2
F

(
κ`
k/∆

ξ

)
− κ`

∫ ∞

1
dr

√
1− 1

ξ2
(3.43)

The subsequent analysis is different in the two regimes κ` ∼ ` ≥ k/∆ and ` ≤ k/∆ which

we consider separately

(i) ` ≥ k/∆

In this case the argument of F is always bigger than unity, and we may replace F (x) by its

asymptotic form ∼ 1/x4. We will analyze in general a functional form F (x) ∼ 1/xp (p ≥ 4)

to estimate the contributions of the leading and subleading terms of F (x). Integrals of the

form appearing in Eqn (3.43) have been examined in general in Appendix B. For the case

F (x) = c/xp, we identify in Eqn (B.1) the functions A(ξ) = 1− 1/ξ2, B(ξ) = c/ξp, X = ∞

and

ε = εp =

(
k/∆

κ`

)p−2
1

κ2
`

(3.44)

The parameter ε is always small for the parameter ranges under consideration and an ex-

pansion in ε can be safely performed. A typical term contributing to η
(2)
` is estimated to be

of order

η
(2)
` (k) ∼ κ`εp1εp2 ∼

(k/∆)(p1+p2−4)

`(p1+p2−1)
(3.45)

where p1, p2 ≥ 4. The expression (3.41) involves the sum
∑
`(2`+1)η

(2)
` (k). We estimate the

contribution of this term to the sum

∞∑
`∼k/∆

`η
(2)
` (k) ∼ ∆

k
(3.46)
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for all p1, p2 ≥ 4. Inserting this dependence into the integral over k in the phase-shift

expression for S2 (Eqn (3.41)) we see that the final result is finite in the limit ∆/Λ → 0.

Such contributions to S2 are subdominant to S1 and can be safely ignored. Thus there is no

contribution to the leading asymptotic result for the core action from the range ` ≥ k/∆.

(ii) ` ≤ k/∆

Now the argument of F is small except for ξ > (k/∆)/κ`. The contribution of the range

ξ > (k/∆)/κ` can be shown, as above, to be negligible; we will therefore concentrate on the

region ξ < (k/∆)/κ`. In this case we know from Section III.A that F (x) ∼ −αq/x2. As

in (i) we will consider the general functional form F (x) = c′/xs with s ≤ 2 to estimate the

contributions of leading and sub-leading terms in F (x). Comparing the expression for the

phase-shift (3.43) with the canonical form (B.1) in Appendix B we obtain A(ξ) = 1− 1/ξ2,

B(ξ) = c′/ξs, X ∼ (k/∆)/κ` and

ε = εs =

(
κ`
k/∆

)2−s
1

κ2
`

(3.47)

The parameter ε is small, except for the physically interesting case of s = 2 and small `: in

this case the quasiclassical approximation breaks down, and other methods will have to be

used. Continuing our analysis, but now with s < 2, we obtain from Eqn (B.7) the following

estimate for a typical term in the second-order phase-shift

η
(2)
` (k) ∼


κ`εs1εs2 ∼ (k/∆)(s1+s2−4)`(1−s1−s2) if 1 < s1 + s2 < 4

κ`εs1εs2X
(1−s1−s2) ∼ (k/∆)−3 if s1 + s2 < 1

(3.48)

As before, we will need the quantity
∑
`(2` + 1)η

(2)
` (k) in the expression (3.41) for S2. We

estimate the contribution of η
(2)
` (k) to this sum

k/∆∑
`=q/2

`η
(2)
` (k) ∼


(k/∆)(s1+s2−4) if 3 < s1 + s2 < 4

(k/∆)−1 if s1 + s2 < 3
(3.49)
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Inserting this dependence into the integral over k in the phase-shift expression for S2 (Eqn

(3.41) we see that, for al s1 + s2 < 4 the final result is finite in the limit ∆/Λ → 0. Thus

all the sub-leading terms in V (r) at small r have no contribution to the leading asymptotic

result for the core action from the range ` ≤ k/∆.

Thus the main conclusion of the rather involved calculations discussed so far in this

section is rather simple and remarkable: the only part of V (r) which can possibly contribute

a ln(Λ/∆) (or more divergent) term to the core action, S2, is the −αq/r2 term at small r.

The quasi-classical method breaks down for such a potential and a different method is used

below to obtain an exact expression for phase shift.

The strategy we shall follow is rather analogous to that used in Section III.A in the

calculation of V (r) and 〈|zα|2〉. We use the following form for V (r)

V (r) =


−αq
r2

for r < µ/∆

0 for r > µ/∆

(3.50)

where µ is a constant of order 1: the final answer will turn out to be insensitive to the

precise value of µ. In the presence of V (r) the eigenfunctions of the operator M (Eqn (3.1)),

introduced in Section III.A, have the form of Eqn (3.25) where the radial function f(r) is

f(r) = Jν′
`
(kr) for r < µ/∆ and f(r) = Jν`

(kr) + cYν`
(kr) for r > µ/∆. Here the Jν and

Yν are Bessel functions of order ν, the constant ν ′` was defined in Eqn (3.21), while ν` was

defined in Eqn (3.8). In the absence of V (r), the radial wavefunction f0(r) is Jν`
(kr). Using

the well known asymptotic form of the Bessel functions and definition of the phase-shift

η`(k) in Eqns (3.27) and (3.28) we obtain the following exact expression for the phase-shift

tan η`(k) =
J ′ν`

(µk/∆)Jν′
`
(µk/∆)− Jν`

(µk/∆)J ′ν′
`
(µk/∆)

Y ′
ν`

(µk/∆)Jν′
`
(µk/∆)− Yν`

(µk/∆)J ′ν′
`
(µk/∆)

(3.51)

This expression can be expanded in powers of αq and the entire series is equivalent, term

by term, to a power series expansion for the phase-shift in terms of V (r). This enables us
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to identify η
(2)
` , η

(3)
` , η

(4)
` . . . as defined in Eqn (3.39) and obtain the following closed-form

expression for the quantity η̃` defined in Eqn (3.40)

η̃`(k) = η`(k)− αq
dη`
dαq

(k) (3.52)

For the range of parameters `� k/∆, the result (3.51) simplifies to

η`(k) =
π

2
(ν` − ν ′`) (3.53)

=
π

2

√(`+
1

2

)2

− q2

4
−
√(

`+
1

2

)2

− q2

4
− αq

 (3.54)

and the quantity η̃`(k) is

η̃` =
π

2

(
ν` − ν ′` −

αq
2ν ′`

)
(3.55)

Note that η̃`(k) is independent of k and has the leading dependence ∼ 1/`3; this is consistent

with quasi- classical in Eqn (3.48) with s1 + s2 = 4. In the opposite limit ` � k/∆, it is

easy to show from (3.51) that both η` and η̃` are exponentially small in `. Before inserting

η̃` into the expression (3.41) for S2 we perform the sum over `, and obtain for large k/∆:

2

π

∞∑
`=q/2

(2`+ 1)η̃`(k) =
∼k/∆∑
`=q/2

(2`+ 1)

(
ν` − ν ′` −

αq
2ν ′`

)
+O

(
∆

k

)

=
∞∑

`=q/2

(2`+ 1)

(
ν` − ν ′` −

αq
2ν ′`

)
+O

(
∆

k

)

≡ −Ξq +O
(

∆

k

)
(3.56)

where the last equation defines the constants Ξq. We find Ξ1 = 0.027784776098205850 . . .,

and Ξ2 = 0.084667877126678540 . . .. Inserting this into the expression (3.41) for S2 we obtain

our final result

S2 = Ξq ln
(

Λ

∆

)
+O

(
∆

Λ

)
(3.57)
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IV. Conclusions

We recapitulate the main results of this paper. We examined instanton tunneling events in

the 2+1 dimensional CPN−1 model in the large N limit. This amounts to looking for saddle

points of the action

Seff = Tr ln
[
−(∂µ − iAµ)

2 + iλ
]
− i

1

g

∫
d3xλ (4.1)

which is a functional of the fields Aµ and λ. A charge q instanton at x = 0 has the gauge

field specified by

εµνλ
∂Aiν
∂xλ

=
q

2

xµ
x3

(4.2)

which is the vector potential of a Dirac monopole of with total flux 2πq. The saddle point

value of λ is given by

iλ = ∆2 + V (r) (4.3)

where ξ = 1/∆ is the spin correlation length and V (r) is an attractive potential determined

in this paper (Eqn (1.11)). The form of V (r) maintains the constraint on the matter fields

zα of the CPN−1 model.

After determination of V (r), the action Seff = Score/N was evaluated. We found

lim
ξ/a→∞

lim
N→∞

Score
N

= 2%q ln

(
ξ

a

)
(4.4)

where a is the lattice spacing, ξ is the spin correlation length, and the %q are a set of universal

numbers. We find %1 = 0.06229609020041076 . . . and %2 = 0.15554762255599117 . . ..

The core-action implies that free instantons occur with a density nqa
3 ∼ (ξ/a)−2N%q .

Instanton effects are known to lead to exponentially decaying correlation functions for the

gauge field Aµ [17] and a confining force between the z quanta. Our results imply that these
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phenomena occur at a length-scale ξC given by

ξC
a

=

(
ξ

a

)N%1
(4.5)

in the limit N →∞ with ξ large, but finite. Our results also have important consequences for

the disordered phase of two-dimensional SU(N) quantum antiferromagnets. In particular

the instanton action is a crucial quantity determining the magnitude of the spin-Peierls

ordering in this phase. These results are discussed in Refs [8, 9] and were briefly mentioned

in Section I.A.

An important question left unanswered in this paper is that of the critical behavior of the

transition between magnetically ordered and disordered phases of SU(N) antiferromagnets

and the CPN−1 model. This amounts to examining the limit ξ →∞ while keeping N fixed.

This paper has taken the limits in the opposite order and it is not clear that the limits

commute. An understanding of this issue requires examination of the 1/N corrections to

the instanton core-action. An important question which this analysis must settle is whether

terms higher order in 1/N are more singular in the limit ξ → ∞. Existing 1/N [27] and

2 + ε [16] expansion treatments of the transition in the CPN−1 model have simply ignored

the instanton tunnelling events.
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Appendix

A. Green’s functions in a monopole field

In this appendix we evaluate the Green’s function G0, obtained in Eqn (3.9), in the presence

of the monopole field Aiµ but with a space-independent mass ∆2. We will concentrate on

large r. We recall Eqn (3.9)

G0(x, x) =
∞∑

`=q/2

2`+ 1

4πr
(Iν`

(∆r)Kν`
(∆r)− Iν`

(Λr)Kν`
(Λr)) (A.1)

For large r, it will become clear from the following that the sum is dominated by large

values of `. This motivates use of the following large order/argument expansion of the

Bessel functions [25]

Iν(z)Kν(z) ∼
1

2
√
ν2 + z2

(
1 +

v1(t)

z2
+
v2(t)

z4
+ · · ·

)
(A.2)

with

v1(t) =
1

8(1 + t2)3
(1− 4t2)

v2(t) =
1

128(1 + t2)6
(27− 472t2 + 592t4 − 64t6) (A.3)

and

t =
ν

z
(A.4)

We begin by inserting the first term in the asymptotic expansion (A.2) into the expression

for G0. The resulting sum, J1, is given by

J1 =
1

4πr

Lmax∑
`=q/2

(2`+ 1)

 1√
(2`+ 1)2 − 4q2 − 4∆2r2

− 1√
(2`+ 1)2 − 4q2 − 4Λ2r2

 (A.5)

where we have introduced an upper limit, Lmax, on the ` summation which will eventually

be set to infinity. For large r, this sum can be evaluated in inverse powers of r by the Euler-

Maclaurian expansion. We omit the tedious, but straightforward, details and state the final
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result below. The term in the two curly brackets represent the contributions of the first and

second terms in Eqn (A.5) respectively

J1 =
{
Lmax + 1−∆r

4πr
+

1

96π∆r2
+

1

384π∆3r4

(
−q2 +

7

20

)
+O

(
1

∆5r6

)}
−
{
Lmax + 1− Λr

4πr
+O

(
1

Λr2

)}
(A.6)

Similarly the second term from Eqn (A.2) yields the following contribution, J2, to G0

J2 = − 1

96π∆r2
+

1

768π∆3r4
+O

(
1

∆5r6

)
+O

(
1

Λr2

)
. (A.7)

Finally the third term from (A.2) contributes J3

J3 = − 17

7680π∆3r4
+O

(
1

∆5r6

)
+O

(
1

Λr2

)
. (A.8)

Combining J1, J2, and J3, we obtain

G0(x, x) =
Λ−∆

4π
− q2

384π∆3r4
+O

(
1

∆5r6

)
+O

(
1

Λ3r4

)
(A.9)

which was the result quoted in Eqn (3.10). Note that the 1/r2 terms in J1 and J2 have

canceled against each other. Moreover for q = 0 the expression for G0 is independent of r:

this is clearly a consequence of the translational invariance of the system in the absence of

instantons. The fact that we have reproduced this trivial limit is a highly non-trivial check

on the correctness of our manipulations.

B. Phase Shift Integrals

In this appendix we present the expansion of the semi- classical phase-shift in powers of the

scattering potential. The integrals which occur in Section III.C can all be transformed into

the following canonical form

I =
∫ X

ξ0
dξ
√
A(ξ) + εB(ξ)−

∫ X

1
dξ
√
A(ξ) (B.1)
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where the integrands vanish at the lower limit of integration: A(1) = 0 and A(ξ0)+ εB(ξ0) =

0. We shall obtain an expansion of I in powers of ε

I = εI1 + ε2I2 + · · · (B.2)

We begin by determining ξ0 in powers of ε: a straightforward calculation yields

ξ0 = 1− ε
B(1)

A′(1)
+ ε2

B(1)

A′3(1)

(
A′(1)B′(1)− 1

2
A′′(1)B(1)

)
+ · · · (B.3)

We now introduce the new dummy variable of integration ξ̃ = ξ−(ξ0−1) in the first integral

and obtain

I =
∫ X−ξ0+1

1
dξ̃
√
A(ξ̃ + ξ0 − 1) + εB(ξ̃ + ξ0 − 1)−

∫ X

1
dξ
√
A(ξ) (B.4)

We now expand the integrand in powers of ε. The crucial advantage of this choice of variables

is that the coefficient of every power of ε is guaranteed to vanish at ξ̃ = 1; expansion of the

radical in powers of ε then necessarily yields integrals which are convergent at ξ̃ = 1. To

first order in ε we obtain

I1 =
∫ X

1
dξ̃

 B(ξ̃)

2
√
A(ξ̃)

− B(1)A′(ξ̃)

2A′(1)
√
A(ξ̃)

+
B(1)

√
A(X)

A′(1)
(B.5)

In this, and the subsequent equations we have assumed that A′(X) and B(X) can be safely

neglected. The second term in the integrand above is an exact derivative and we obtain the

final expected result [26]

I1 =
∫ X

1
dξ̃

B(ξ̃)

2
√
A(ξ̃)

(B.6)

A similar analysis can be performed at the next order in ε, yielding

I2 =
∫ X

1
dξ̃

− 1

8(A(ξ̃))3/2

(
B(ξ̃)− B(1)A′(ξ̃)

A′(1)

)2

+
1

2
√
A(ξ̃)

(
A′′(ξ̃)B2(1)

2A′2(1)
− B′(ξ̃)B(1)

A′(1)

)
(B.7)
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All the integrals are convergent at ξ̃ = 1. Note also that every term in second order in B. It

is clear that this procedure can be iterated to all orders to yield a well defined power series

in ε.
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Tables

∆a
0.15 0.20 0.25 0.30 0.35 0.40

6 0.2112 0.1712 0.1425
7 0.329 0.247 0.1966 0.1623 0.1368
8 0.430 0.301 0.232 0.1883 0.1573 0.1336

L 9 0.393 0.283 0.223 0.1834 0.1543 0.1317
10 0.367 0.272 0.217 0.1802 0.1525 0.1304
12 0.337 0.259 0.211 0.1767 0.1503 0.1291
15 0.316 0.251 0.207 0.1746 0.1491 0.1286

Table 1: Numerical results for the action, S(L), of a instanton anti-instanton pair

separated by a distance 2La in a box of 2L× 2L× 4L lattice points as a function of the

inverse correlation length ∆ (a is the lattice spacing). We reiterate that the mass ∆2 was

space- independent in the numerical calculation. The action was obtained by numerical

evaluation of the determinant on a lattice with lattice-spacing 1. The normal derivative of

the field on the surface of the box was made to vanish by placing image charges outside the

box (Fig. 2).

∆a 2S1

0.15 0.325± 0.023
0.20 0.269± 0.010
0.25 0.221± 0.009
0.30 0.185± 0.009
0.35 0.156± 0.008
0.40 0.133± 0.005

Table 2: Infinite L limit of the action of the instanton anti- instanton pair obtained by the

extrapolation procedure discussed in the Section II.D. Here S1 is the core-action of a single

instanton with a space- independent mass ∆2.

45



Figure Captions

1. Schematic of the eigenvalues of the operator (~∇− i ~Ai)2 on S3 in the cases ~Ai = 0 and

~Ai due to a instanton anti-instanton pair. The eigenvalues are labeled by a principle

quantum number n. In the absence of instantons, all states with the same value of n are

degenerate; the number of such states is denoted by d. In the presence of instantons,

states with the same value of n form clusters shown by the the shaded boxes; now d

denotes the total number of states in the cluster. Note that the spacing of the levels

is purely schematic and is not scaled to the eigenvalues.

2. Two-dimensional section of the configuration of instanton charges. A instanton anti-

instanton pair is placed inside the box B. An infinite set of image charges is placed

outside the box to ensure that the normal component of the field on the surfaces of B

is zero; the charge positions can be obtained by repeated translations of the fragment

shown above. All field lines emerging from the positive charge go to the negative charge

without leaving B.

3. The filled circles represent the action, 2S1, for an instanton anti-instanton pair obtained

by numerical evaluation of the determinant for the case of a space-independent mass

∆2. The full line is a fit of the function α ln(β/∆a) to the points with the four largest

values of ∆a; we find α = 0.094. The dashed line is a similar fit to the function

α′ + β′/∆.
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