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We study electrical transport in a strongly coupled strange metal in two spatial dimensions at
finite temperature and charge density, holographically dual to Einstein-Maxwell theory in an asymp-
totically AdS4 spacetime, with arbitrary spatial inhomogeneity, up to mild assumptions including
emergent isotropy. In condensed matter, these are candidate models for exotic strange metals with-
out long-lived quasiparticles. We prove that the electrical conductivity is bounded from below by a
universal minimal conductance: the quantum critical conductivity of a clean, charge-neutral plasma.
Beyond non-perturbatively justifying mean-field approximations to disorder, our work demonstrates
the practicality of new hydrodynamic insight into holographic transport.

Introduction.— Novel condensed matter systems such
as graphene near half-filling [1], cold atomic gases [2],
and the ever elusive strange metal phase of the high-
Tc superconductors [3–5], are experimentally realizable
strongly interacting many-body quantum systems. In
many of these systems, macroscopic observables are gov-
erned by quantum critical physics. One such observable
is the electrical conductance at finite temperature, den-
sity and disorder. Unfortunately, there are few reliable
theoretical methods for such strongly coupled regimes.
Some recent work has advocated the memory matrix for-
malism [6–9], in combination with hydrodynamic insight
[10]. These methods may be used directly in microscopic
models [11–13]. However, this approach is perturbative
in disorder, and may not be adequate for understanding
non-Drude physics in strange metals [14].

The advent of gauge-gravity duality [15–17] has al-
lowed for controlled, non-perturbative transport compu-
tations in a strongly interacting quantum system. The
quantum dynamics is holographically encoded in the clas-
sical response of a black hole in an asymptotically anti-de
Sitter space time in one higher dimension. These systems
have large N matrix degrees of freedom, but we focus
on correlators of charge currents in this paper. Correla-
tion functions of simple macroscopic observables are con-
trolled by symmetries and often do not sensitively depend
on the underlying large N matrix model. Early e↵orts to
compute transport coe�cients entirely from holography
were stymied by a simple theorem: a Galilean-invariant,
charged fluid has zero electrical resistance (currents are
obtained at no energy cost by changing reference frame).
Recently, numerical approaches to general relativity ad-
vanced to the point where the transport problem can be
solved in numerically constructed black hole backgrounds
which break translational symmetry [18–26], giving finite
electrical conductivity � at finite density. Perturbative
analytic approaches were developed in [27–29]; they are
equivalent to the memory matrix formalism [30].

To access the “strongly disordered” regime, massive

gravity [31–34] and other methods [35–43] with similar
phenomenology have been developed. See [44] for older
approaches based on Dirac-Born-Infeld theory. We re-
fer to these models as “mean-field disordered”, as the
geometry is completely homogeneous, despite the fact
that momentum relaxes, and so microscopic translational
symmetry has been broken. Holographic mean-field dis-
ordered insulators, where �(T ) ⇠ T

p with p > 0, are
not disorder-driven: i) � saturates at a finite value for
fixed T independent of the disorder strength (e.g. [39]);
ii) insulating behavior in these models is caused by the
depletion of charge carriers as T ! 0. Hence, this broad
class of holographic approaches predicts the absence of a
disorder-driven metal-insulator transition. So far, there
has been no explicit confirmation of this prediction.
Our letter verifies this prediction of mean-field disor-

dered models. In doing so, it gives an explicit example
of an “incoherent metal” (but not insulator) in a dis-
ordered, isotropic system. We derive a universal lower
bound on the conductivity of certain quantum field theo-
ries in two spatial dimensions, which are holographically
dual to (classical) Einstein-Maxwell theory, a bulk the-
ory with no free parameters. Our bound is independent
of temperature, the average charge density and its fluc-
tuations. The new technical developments we exploit are
non-perturbative hydrodynamic methods [45] along with
an exact reduction of the holographic transport problem
in the Einstein-Maxwell system to a hydrodynamic linear
response problem in an inhomogeneous fluid [46]. Both
techniques generalize and we expect that our qualitative
result ruling out disorder-driven insulators is generic and
holds in more complicated holographic models.
Results.— We consider classical solutions to the 3+1

dimensional Einstein-Maxwell system with a negative
cosmological constant. The action of this theory is

Sbulk =
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L is the AdS radius, e is the charge of the gauge field, and
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G is Newton’s constant; L = e = 16⇡G = 1 henceforth.
Note that e is not the unit of charge in the boundary
theory [10]. The bulk graviton is dual to the stress-energy
tensor of the holographic dual QFT, and the gauge field is
dual to a conserved U(1) (electrical) current. We consider
a static background geometry [46]:

ds2 = g

MN

dxMdxN = �U(r)V (r,x)dt2

+ U(r)�1
W (r,x)dr2 +G

ij

(r,x)dx
i

dx
j

, (2)

where x = (x, y) denotes the spatial directions in the
boundary theory (denoted with Latin indices i, j), t the
time coordinate, and r the bulk radial coordinate. This
background is supported by a non-vanishing gauge field:

A = �(r,x)dt. (3)

The background is not arbitrary: it obeys the Einstein-
Maxwell equations of motion. We shall not need its ex-
plicit form, but we assume that it asymptotes to AdS at
the boundary r = 1, and that it possesses a connected
black hole horizon at r = 0. For such a static black hole,
the Hawking temperature T of the black hole must be
constant and homogeneous since it has a Killing horizon
[47, 48]. This is the gravitational equivalent of the ze-
roth law of thermodynamics: an equilibrated system has
a constant temperature. Aside from requiring regularity
and constancy of T (all functions are finite at r = 0, and
U ⇡ 4⇡Tr + . . .), bulk fields can have arbitrarily large
spatial variations. Such spatially variations are sourced
by a boundary chemical potential �(x) = �(1,x), whose
explicit form again we shall not need. We take the spa-
tial dimensions of the dual theory to be compact and flat,
with metric �

ij

: x and y obey periodic boundary condi-
tions x ⇠ x+L and y ⇠ y+L. We denote (boundary) spa-
tial averages with E[· · · ]: namely, E[f ] = L

�2
R
d2x f .

The expectation value of the electrical current hjii in
the boundary theory dual to the Einstein-Maxwell sys-
tem, where i 2 {x, y}, will generically be non-zero when
a constant, static, external electric field E

i

is applied. In
the bulk, we add infinitesimal perturbations to the fields,
linear in E

i

. The direct current (DC) conductivity �ij is
a (boundary) linear response coe�cient:

E
⇥
hjii

⇤
⌘ J

i = �

ij

E

j

. (4)

As the boundary theory lives on flat space, there is no
trouble freely raising and lowering spatial indices for
boundary quantities such as �ij . In the thermodynamic
limit L ! 1, a disordered but on average isotropic the-
ory with time reversal symmetry has �ij = ��

ij .
What we prove in this letter is that for any holographic

system with the above assumptions,

� � 1

e

2
= 1. (5)

In the boundary theory, the conductivity � is measured
in units of q2/~, with q the U(1) charge of ji. Further-
more, � = 1 exactly for any uncharged black hole, even

with additional bulk matter, so long as it is uncharged
under the U(1) sector in (1), and no higher derivative
terms in F are included. Eq. (5) is neither valid in more
general Einstein-Maxwell-dilaton theories, where the F

2

term in (1) couples to the dilaton as well, nor in theories
with higher derivative terms. However, if deviations from
(1) are “small”, as they should be in well-defined higher
derivative theories, we similarly expect corrections to (5)
to be “small”, and that the conductivities do not vanish
when small higher derivative terms are included.
Our results have been anticipated by mean-field treat-

ments of disorder in holography. A particular example is
holographic massive gravity [33], with a consistent gravi-
ton mass m added to the bulk action (1), where [49]

� =
1

e

2
+

4⇡Q2
0

S0m
2
, (6)

where Q0 is the homogeneous charge density of the dual
theory, and S0 is the homogeneous entropy density. This
formula also obeys (5), with the bound saturated on un-
charged black holes (Q0 = 0). This result anticipates (5),
but its reliability for all values of m is surprising. While
the quantitative equivalence between massive gravity and
explicitly disordered models has been shown in the limit
where bulk deformations which break translation invari-
ance are perturbatively small [28–30], it has been an
open question whether or not such models are sensible
in the limit of strong disorder. This letter points out
that some predictions of mean-field disorder in hologra-
phy are quantitatively correct. Such justification is useful
for a large body of recent holographic work which relies
on this approximation to model strong disorder.
A heuristic understanding of our bound follows from

hydrodynamic considerations, first emphasized in [45]: if
the theory thermalizes on short length scales compared
to the correlation length of disorder, a theory with lo-
cally positive quantum critical conductance cannot be
an insulator. The remarkable results of [46] suggest that
this hydrodynamic intuition is mathematically sound in
holographic models, regardless of the wavelength of dis-
order. This formalism, which allows us to derive (5),
may be a consequence of the holographic large N limit
which neglects quantum fluctuations, and has no lattice
UV cuto↵. Our result contrasts with conventional lat-
tice realizations of quantum critical models, which are
always insulators at strong enough disorder. In lattice
models, our bound may be realized at intermediate dis-
order scales, and our theory may be compared in this
regime with quantum Monte Carlo computations of the
conductivity � [50].
Our holographic models may serve as a candidate the-

ory for an incoherent metal with badly-broken transla-
tional symmetry [14]. Incoherent metals are proposed
states whose conductivities are intrinsically bounded
from below. Remarkably, our holographic models do have
bounded electrical conductivity. [14] argued that the dis-
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appearance of a Drude peak in the finite frequency con-
ductivity of some experimental systems may be evidence
for such an incoherent metal. Our work demonstrates
that Einstein-Maxwell systems transition from coherent
metals (where momentum is long-lived and there is a
sharp Drude peak in the conductivity) to incoherent met-
als, which remain conductors despite substantial local in-
homogeneities. This defies the conventional phenomenol-
ogy for strong disorder, and indicates the potential utility
of our approach. To make further connection to exper-
imentally realized bad metals, � ⇠ T

�1 is required [5],
instead of � ⇠ T

0. Our explicit realization of incoherent
metals serves as an important first step.

Finally, we note that finely tuned models with discon-
nected black hole topologies [51, 52] exist, but we do not
allow for this: randomly disordered black holes appear to
stay connected and have uniform temperature [23, 25]. A
fragmented black hole may be a holographic many-body
localized [53] state, and may evade our bound.

Technical Details.— The remainder of this letter con-
tains the proof of (5). We begin by re-interpreting phys-
ically the results of [46]. They found, following the gen-
eral membrane paradigm technique of [24, 54], that if the
asymptotic expansion of G

ij

and � near the horizon is

� = rS(x)Q(x) + · · · , G

ij

= �

ij

(x) + · · · , (7)

with S(x) = V (0,x), whilst a constant infinitesimal elec-
tric field E

j

(note index is lowered) and its thermal
analogue ⇣

j

(similar to to �@
j

log T ) are applied to the
boundary theory, then the following equations hold (we
change notation from [46]):

r
i

�
TSvi

�
= r

i

�
Qv

i + �q

�
E

i � @

i

µ

��
= 0, (8a)

Q(E
j

� @

j

µ) + S(T ⇣
j

� @

j

⇥) + 2⌘rir(ivj) = 0, (8b)

with covariant derivatives taken with the metric �
ij

. The
coe�cients µ, ⇥ and v

i

are interpreted as the chemi-
cal potential, temperature (di↵erence) and velocity of an
emergent horizon fluid, and may be expressed in terms of
perturbations of the bulk fields [46]; their specific forms
are irrelevant for our purposes. ⌘ = �q = 1 and S = 4⇡
are constants. It is, however, helpful to not substitute
these explicit values in just yet, as in the form (8) it is
straightforward how to apply the formalism of [45]. Eqs.
(8a) encode heat and charge conservation in a fluid with
a constant entropy density S, variable charge density Q,
and constant isotropic quantum critical thermoelectric
conductivities �q = 1, ↵q = ̄q = 0, living on a curved
space with metric �

ij

. Eq. (8b) is the analogue of the
Navier-Stokes equation for an isotropic, relativistic fluid
with shear viscosity ⌘ (the value of bulk viscosity is not
important, due to incompressibility (8a)).

Consider now the spatial average of the currents asso-
ciated with this horizon fluid:

J

i = E
⇥p

�Qv

i + �q
p
��

ij (E
j

� @

j

µ)
⇤
, (9a)

Q

i = E
⇥p

�TSvi
⇤
. (9b)

The Einstein-Maxwell equations imply that these spa-
tial averages are independent of the holographic radial
direction and that they encode the spatially averaged
charge and heat currents of the boundary theory. We can
therefore compute transport coe�cients in the disordered
boundary theory by solving a linear response problem in
the disordered horizon fluid for the electrical current J

i

and heat current Qi as a function of E
i

and ⇣
j

.
The holographic DC transport problem has thus re-

duced to a hydrodynamic computation in the framework
of [45] (after a straightforward generalization to curved
space). One direct consequence of hydrodynamics is On-
sager reciprocity: the thermoelectric conductivity matrix
is symmetric. This is distinct from positive-definiteness,
which was shown in [46].
We first compute the conductivity of uncharged black

holes, where Q = 0. Generically, this will only occur
when A = 0 in the background solution. In this case
charge and heat transport decouple and (8) simplifies to

@

i

�p
��

ij (E
j

� @

j

µ)
�
= 0, (10)

with ⇥ = v

i = 0 consistently set to vanish. (10) has a
unique solution for µ, up to an unimportant constant,
and is also unchanged by additional bulk matter so long
as it does not couple to the Maxwell term in (1).
As (10) is linear, we may write µ = µ

j

E

j

. It follows

that for some constants  j

i

and a (periodic) function  i:

p
��

ij

⇣
�

k

j

� @

j

µ

k

⌘
= ✏

ij

�
 

k

j

� @

j

 

k

�
(11)

with ✏

xy = �✏yx = 1, ✏xx = ✏

yy = 0. (11) is equivalent
to

� ✏

ij

⇣
�

k

j

� @

j

µ

k

⌘
=

p
��

ij

�
 

k

j

� @

j

 

k

�
, (12)

and taking another spatial derivative:

@

i

�p
��

ij

�
 

k

j

� @

j

 

k

��
= 0. (13)

Uniqueness and linearity fix

@

i

 

k =  

k

j

@

i

µ

j

. (14)

Combining (12) and (14), we find

p
��

ij

⇣
�

k

j

� @

j

µ

k

⌘
= �✏ij

�
�

m

j

� @

j

µ

m

� �
 

�1
�
k

m

. (15)

Contracting with E

k

and integrating over the torus, the
left hand side equals J i. Using (4), we find

✏

ik

 

j

k

= �

ij

. (16)

Eqs. (11) and (15) are only consistent if

det(�ij) = 1. (17)

This holds for any theory, regardless of the assumption of
isotropy. But if we further assume isotropy, we conclude

� = 1. (18)
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This confirms that the lower bound of (5) is satisfied
whenever the black hole is uncharged.

Eq. (18) is reminiscent of a known result that random
resistors arranged on a square lattice, with the logarith-
mic resistances symmetrically distributed around 0, have
an exact conductivity of 1 in the thermodynamic limit
[55]. If we suppose for simplicity that �

xy

= 0, then a
discretized approximation to the di↵usion equation (10)
would consist of resistors on a square lattice of resistance
R =

p
�

yy

/�

xx

when oriented in the x-direction, and re-

sistors of resistance R =
p
�

xx

/�

yy

when oriented in the
y-direction. In a theory which is on average isotropic, it is
clear that logR is symmetrically distributed around 0, for
every resistor. This gives a heuristic justification for (18).
Such exact results for resistor networks are rare. Like-
wise, we do not expect the generalization of (18) to higher
dimensional uncharged black holes to exactly match the
non-perturbative prediction of massive gravity.

Bulk Maxwell self-duality [56] provides further physical
insight into (17). Define a bulk dual Maxwell tensor

FMN = �1

2
"

MNPQ

F

PQ

, (19)

with "rtxy = 1/
p
�g. Note that:

Frj =
1p
�g

✏

ji

F

ti

(20)

and that as r ! 1, (20) implies that (from the dual
Maxwell tensor) there is a constant dual current density
Ii = ✏

ij

E

j

in the boundary theory. r
M

F

Mi = 0, whose
spatial average leads to @

r

J

i = 0, is the Bianchi identity
for F , and implies @

r

E[F
it

] = 0. Using F at r = 0, [57]

E[F
it

] ⌘ E i = ✏

ij

J

j

. (21)

The spatially averaged dual electric field E
i

is indepen-
dent of bulk radius and may be evaluated at the horizon.
Denoting with r the dual resistivity tensor, we conclude
that E i = rijIj . Relating E and I to E and J leads to

J

i = �✏ijrjk✏klEl

. (22)

If we assume that the disordered boundary theory is
particle-vortex dual, then we expect r�1 = �. This as-
sumption, along with (22), leads to (17). Theories with
holographic duals with bulk Maxwell electromagnetism
thus appear to have remnants of particle-vortex duality
even when translational symmetry is strongly broken.

We now prove the bound (5) for charged black holes us-
ing a variational technique from [45]. In our holographic
model, the following inequalities are satisfied:

J̄ 2

�

 J̄ 2
T ̄

T�̄� T

2
↵

2
 E

h
2r(iVj)r(iVj)

p
�

+
�
J i �QVi

�
(J

i

�QV
i

)
p
�

⇤
, (23)

with ̄ the thermal conductivity when E

i

= 0, ↵ the
Seebeck coe�cient, both assumed to be isotropic, and
J i and Vi arbitrary vector fields such that

r
i

Vi = r
i

J i = 0, (24)

J̄ i = E
⇥p

�J i

⇤
, E

⇥p
�Vi

⇤
= 0. (25)

Note that J̄ i is the averaged current measured in the
boundary theory on our trial current J i, and so the in-
dex in J̄ i is raised and lowered with �

ij

. The second
inequality in (23) is satisfied only by the exact solutions
of the equations of motion, when

Vi = v

i

, J i = Qv

i + E

i � @

i

µ. (26)

Furthermore, the last constraint in (25) ensures there is
no net heat flow [45].
The inequality (23) follows from studying the power

that would be dissipated if we tried to force electrical
current J i, and velocity Vi, through the fluid. The fact
that the dissipated power is minimized by the true solu-
tion to the equations of motion is analogous to the fact
that the power dissipated in a resistor network, allowing
arbitrary current flows through each resistor, up to cur-
rent conservation, is minimzed on the true solution where
both of Kircho↵’s Laws are obeyed [58].
For any charged black hole, we may set Vi = 0, which

trivially satisfies our constraints. For J i, we choose

J i = E

i � @

i

µ̃ ⌘ J̃ i

, (27)

where µ̃ is the exact solution to the di↵usion equation
(10), using the metric �

ij

of the charged black hole. J̃ i

is the exact electric current that would flow upon appli-
cation of the electric field, if we remove all charge density
from the horizon fluid, but keep the same �

ij

. If J̃ i is
normalized by (25),

J̄ 2 = E
hp

�J̃ iJ̃
i

i
. (28)

To derive this result, we use that ↵ = 0 for an uncharged
black hole, along with (18) and the fact that the bound
(23) is saturated on the true electrical current for the un-
charged black hole, which is J̃ i, along with Vi = 0. The
ansatz J i = J̃ i and Vi = 0 is no longer the true solu-
tion when Q 6= 0, but we may still use it as a variational
ansatz; however, in this case, we expect ↵ 6= 0, and that
each inequality in (23) is strict. Using (28) in (23), we
obtain our main result, (5).
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