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1. Introduction

The strange metal phase of the hole-doped cuprate superconductors is the most important realization of
quantum matter not amenable to a quasiparticle description [1, 2]. Apart from the well-known linear in
temperature (T) resistivity, the strange metal has a Hall angle tan(fyg) ~ 1/7? [3, 4]. This combination
cannot be reproduced in a Boltzmann theory of charge-carrying quasiparticles with a long lifetime; such
a theory yields a tan(fy) inversely proportional to the resistivity, and so these observations rule out the
transport of charge by any fermionic quasiparticle, and not just those with the same quantum numbers
as the electron.

A general hydrodynamic approach to magnetotransport in strange metals was introduced by Hartnoll
et al. in [5], and compared to Nernst measurements in the strange metal of the cuprates. The main
assumption of their theory, apart from the absence of any quasiparticle excitations, was that there was
a slow mode associated with the decay of the total momentum. Such a slow mode is indeed invariably
present in proposed field-theoretic models of strange metals [6, 7], and the decay arises from perturbations
which break the continuous translational symmetry of the field theory (umklapp scattering or impuri-
ties). Combining this momentum mode with reasonable assumptions on the diffusion of the conserved
U(1) charge and energy densities, general results were obtained by Hartnoll et al. [5] for the charge
and thermoelectric transport coefficients of a two-dimensional strange metal in the presence of a static
magnetic field, B. Note that we are using the phrase “charge density” here to refer to the conserved
density of a global U(1) symmetry. In the application to the cuprates, there are also long-range Coulomb
interactions associated with such a conserved density, and we will briefly discuss this in Section 4.1.

Blake and Donos [8] have recently argued that the magnetotransport framework of Hartnoll et al. is
compatible with the measurements of the longitudinal and Hall conductivities in the cuprates, and also
provided a solvable holographic model for magnetotransport in the presence of momentum relaxation.

However, an important concern is that the present derivations of the above results for strange metals
rely on models which are rather far removed from the microscopic situation in the cuprates. One approach
[5] begins from a quantum critical point with a relativistic structure, and then breaks Lorentz invariance
weakly by a chemical potential, the temperature, and the applied magnetic field; the equations were
then derived using a hydrodynamic gradient expansion restricted by the requirements of the positivity
of entropy production. The other approach [5, 8] uses holographic models of strange metals represented
by gravitational theories in a spacetime with an extra dimension, whose field theory duals are not well
understood.

In the present paper, we will provide a derivation for the equations for magnetotransport in a normal-
state metal using the memory matrix approach [9, 10, 11]. Although the memory matrix framework has
typically been applied to systems where the slow relaxation of momentum dominates magnetotransport
and the diffusion of conserved quantities is negligible, we generalize and study the case where the diffusive
dynamics is not negligible and must be consistently included in the memory matrix. In particular, we will
focus on the consequences of the diffusion of exactly conserved heat, as well as an exactly conserved U(1)
charge. Our main results may be found in (6) and (70), though there is a large amount of notation that
must be explained, and so we defer their presentation. Our assumptions on the momentum mode, and
the charge and energy diffusion will be the same as those in [5], but we will not assume any relativistic
structure on the underlying theory. Using certain assumptions, our results agree with those of [5], and
with the recent holographic papers [12, 13, 14], and shed light into a discrepancy between the two.
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FIGURE 1: An illustration of the connections between hydrodynamics, memory matrices, and holography.

Furthermore, our results can, in principle, be applied directly to microscopic models appropriate for the
cuprates [6, 7, 15, 16], as we will describe more completely in Section 7.

1.1. Transport Without Quasiparticles

Let us briefly review our current understanding of theoretical frameworks for describing transport in
strongly correlated systems without quasiparticles in two (or more) spatial dimensions. An overview is
also provided in Fig. 1.

The simplest way of describing transport without reference to quasiparticles is, in fact, a very old
framework — hydrodynamics. The modern understanding of hydrodynamics is that it describes the long
wavelength, long time dynamics of a system close to thermal equilibrium, when there are a small number
of conserved quantities [17]. We will be liberal, and also allow for some of these conserved quantities to
decay on long time scales, while still maintaining the name “hydrodynamics”. All we insist upon is that
this list of conserved quantities is finite; this is in contrast to the typical condensed matter paradigm of
a Fermi liquid, where occupation numbers at every single wave number are long lived quantities. For
non-Fermi liquids, it is believed that generic higher dimensional theories do not admit infinite families of
(nearly) conserved quantities at strong coupling.

Hydrodynamics proves to be a very powerful framework for describing the dynamics of systems without
reference to quasiparticles. However, we must emphasize that hydrodynamics is an incomplete description.
It provides a set of constraints that any (to date) reasonable (2+1)-dimensional quantum field theory at
finite density and temperature, which is approximately translation invariant, must obey, and a universal
framework within which we can interpret a microscopic calculation. But it does not give us particular
values or temperature dependence for any microscopic coefficients.

So now we need a way of obtaining microscopic coefficients. A traditional framework for doing this
is the memory matrix framework [9, 10]; see [11] for a thorough review. We will review it in this paper,
but for now we emphasize that it is in principle an exact, microscopic calculation. Its usefulness is that
it can be efficiently approximated in a hydrodynamic regime where there are only a few quantities which
do not quickly relax to thermal equilibrium.

The main purpose of this paper is to clarify and sharpen the connections between the memory matrix
framework for transport, and hydrodynamic descriptions of transport. In particular, we will not need
to add a phenomenological momentum relaxation time in hydrodynamics, and compute this coefficient



separately using the memory matrix formalism. We will also point out the microscopic computations
which allow us to compute all phenomenological coefficients within hydrodynamics.

There has also been, in recent years, a third framework which allows for transport computations:
gauge-gravity duality. This allows one to study a strongly coupled “large N matrix” quantum field theory,
directly at finite temperature and density, in real time, by studying a classical gravity theory in one higher
dimension, in particular black hole backgrounds. Ref. [18] has recently shown the equivalence between
holographic and memory function calculations in zero magnetic field, in the regime where momentum
relaxation is slow (this provides the bottom arrow in Fig. 1). One advantage of holographic methods
is that the calculations are formally valid beyond the regimes of validity of hydrodynamics or memory
functions. However, we point out in this paper that a wide variety of holographic results for transport,
computed in regimes where hydrodynamics need not be valid, can nonetheless be understood within the
framework we derive.

1.2. Outline of the Paper

We will begin in Section 2 by recalling the main hydrodynamic results of [5] for electrical transport in a
simple manner, and using notation suitable for our memory matrix approach. The basic memory matrix
formalism will be introduced in Section 3, along with its physical interpretation. Section 4 contains our
main new results on magnetotransport in the memory matrix formalism under the simplifying assumption
that the diffusion of heat has decoupled from the diffusion of charge and relaxation of momentum: this
simplification will help us to elucidate many of the subtleties that arise in the memory matrix framework
when describing magnetotransport. Section 5 relaxes the assumption that heat diffusion decouples, and
Section 6 describes thermal and thermoelectric transport.

2. Hydrodynamics

Let us begin by computing electrical transport in a generic quantum field theory without quasiparticles,
describable by hydrodynamics, following the approach of [5]. More precisely, we focus on a theory with
exactly conserved energy and U(1) charge, and approximately conserved momentum, where the only
dynamics on long time scales are momentum relaxation on the time scale 7, and charge/energy diffusion
on the time scales A?/D, with A the wavelength of the fluctuation and D an eigenvalue of the generalized
diffusion matrix coupling heat and charge diffusion.’

We wish to compute the electrical conductivity matrix, defined as

We assume that we have an isotropic, parity-symmetric theory in two spatial dimensions, which constrains
Ozx = Oyy, (2&)
Oy = —Oyg. (2b)

Momentum conservation within a hydrodynamic framework — accounting for momentum relaxation —
gives us the equation
11 .
ol + 0, P = —Tz—l—QEz—i-BeZ]J] (3)

where Q is the background “charge” density, 7 is the momentum relaxation time, B is the external
magnetic field, P is the pressure and II, is the z-momentum density; a precise definition of Q, applicable

'Note that with momentum relaxation, there is no longer a propagating sound mode as k — 0, so indeed the dynamics of
charge and energy become governed by diffusion.



to lattice models, appears later in (27). We have assumed that the velocities relevant for hydrodynamics
are small and may be treated non-relativistically. As we are interested in perturbing the system with a
spatially homogeneous electric field, oscillating at frequency w, momentum conservation simplifies to

(—iw + 1) Méov; = QOE; + BQ’j(SJj (4)
T

where M is the analogue of “mass density” (namely, the momentum density at small velocities is Mdv;).
The memory matrix definition of M is in (26). The momentum relaxation time, 7, is — like all thermody-
namic coefficients — undetermined within hydrodynamics. Unlike thermodynamic coefficients like M and
Q, however, 7 is extrinsic and sensitive to the precise mechanism by which momentum relaxes, as we will
see explicitly within the memory matrix formalism.

(4) gives us an equation relating dv;, 6J; and 0 E; — our perturbatively small quantities within linear
response. 0.J; may be expressed in terms of dv; and JF;, in an isotropic and parity-symmetric (up to
magnetic fields) theory, as

0J; = Qdv; + Oq ((5E1 + Beijévj) . (5)

Here o is an intrinsic “quantum critical” conductivity which measures charge transport independent of
the momentum mode; a precise definition relating it to the charge diffusivity appears later. Combining
(4) and (5) we may relate 0.J; to JE;, and we find

(r! —iw)Mog + Q* + B03 (1 iw> , (6a)

Oxe = Q2B? + ((77! —iw)M + B%0)? T
_ 2(77! — iw)Moq + Q? + B%o2
Ty = Q?B? + ((77! —iw)M + B%0)?

T

BO. (6b)

The answer simplifies when B = 0 to the form o,, = 0 (by parity symmetry) and

Q’r
M(—fwr)’ @

Ogx = 0q +

Though in a system without Galilean invariance one might be concerned that the Qs in (4) and (5)
need not be the same, we will carefully define Q via the memory matrix framework and show that (6) is
indeed (at leading order) correct.

These results were first derived in [5], for the case of a quantum critical theory, and were argued in
[8] to be compatible with Hall angle measurements in the strange metal of the cuprates. In fact, the
structure here is identical, and is valid for any isotropic theory, whether or not it is Lorentz invariant.
We even need not assume that diffusive charge and heat fluctuations are decoupled (as would be the
case when the underlying theory has charge conjugation symmetry) — heat transport could only alter the
equations above if temperature gradients were non-vanishing, which (by assumption) does not happen.
It is a simple task to compute additional thermal and thermoelectric coefficients, but we will not do so
using hydrodynamics.

We remarked previously that the dynamics which governs o;; is the only dynamics in the system
occuring on long time scales. However, the expressions for o;; are rather complex! This is because there
are four slow time scales in the problem: the slow driving time scale 1/w, and the three time scales
associated with the specific quantum field theory, and its realization: 7, 1/wc, and 1/wq, where w, is the
cyclotron frequency

- W? (8)



and wq is a “quantum frequency” given by

_ <
-~ Moy’ ©)

Waq

Within hydrodynamics, and the memory function formalism, we only work to leading order in w — but to
all orders in the dimensionless numbers wr, w/w., w/wq.

As 77! scales with the strength of the coupling to the operator which breaks translational symmetry
(as we will explicitly see later), and w. ~ B, it is evident in what physical limit these two quantities would
be perturbatively small. It is less clear how wq would generically be perturbatively small. One mechanism
is that the densities of the theory (Q and M) are small (with Q/M, the strong-coupling analogoue of
the fixed charge-to-mass ratio of the electron, fixed). Another is that oq is anomalously large — though
this should not be a consequence of weak coupling (i.e., long-lived quasiparticles), for our framework to
be valid.

We should also comment that recently, this result has been obtained holographically at w = 0 [§]
(though it is not expressed in terms of thermo/hydrodynamic quantities) in a set-up which is formally
valid even when 7 is comparable to 7, — the time scale associated with microscopic dynamics, and the
breakdown of hydrodynamics. The limiting case (7), also at w = 0, is found in various holographic set-ups
in [19, 20, 21]. It is an interesting question whether or not this is a pathological feature of the holographic
mechanism of strong momentum relaxation, or a signature that the “hydrodynamic” regime of strongly
coupled transport persists far beyond our first expectations.

3. Memory Function Formalism

Let us now briefly review the memory function framework. As we emphasized in the introduction, the
method works best when quasiparticles are not long-lived, and the only conserved (or approximately
conserved) quantities are charge, energy and momentum. In recent years this has become a method of
choice for studying transport in condensed matter systems without quasiparticles [5, 22, 6, 7], including
using gauge-gravity duality [23, 24, 25, 26, 27]. We work in units with i = 1.

Let us consider the set of operators A, B, C, ... in a time-translation invariant theory, and correlation

functions of the form
1T

Can(t — ) = (A(®)|B(0)) = T / ax {AmiBoy) (10)
0

with averages over thermal and quantum fluctuations denoted in (---). The Laplace transform of this
expression can be shown to be

T .
Cap(2) = = [Gip(2) - Gip(i0)]. (11)
The retarded Green’s function (in real space) is defined as:

Glip(x,t) = i0(t){[A(x,t), B(0,0)]) (12)

where © is the Heaviside step function. The momentum dependence of the Green’s functions have been
suppressed in (11) as we will only be interested in the conductivities, evaluated at zero momentum. As
standard, we take z to lie in the upper half of the complex plane. We are only computing thermoelectric
transport coefficients, for which GR 5(w — 0) ~ iwo 4p, with 045 strictly finite; thus for us, G%5(i0) = 0
and can be neglected. Up to the overall factor of temperature, we recognize C4p(z) in (11) as a generalized



conductivity between the operators A and B, gap. Some formal manipulations on a Hilbert space of
operators using the inner product (10) give

745(2) = 7Can(z) = xaclM(2) + N — isXlchxos, (13)
where x4p is the static susceptibility between the operators A and B:?
xan = Glia(w=0) = £(41B) (14)
the memory matrix Map is defined as
Map(2) = % (4latz - aLa)"a|B) , (15)

L = [H, o] is the Liouvillian operator with H the Hamiltonian, q is the projection operator

1 _
9=1-=> xapl4)(Bl (16)
AB
and
Nap = XAaB = ~XAB- (17)

Note that N4p vanishes identically in a time-reversal invariant theory.
We will show that for the magnetotransport problem of interest in this paper, the memory matrix
effectively truncates to a 6 x 6 matrix, given as m = M + N — iwy in (56).

3.1. Hydrodynamic Interpretation

The usefulness of the memory function formalism arises when the infinite dimensional matrix M has a
finite number of parametrically small eigenvalues. This allows us to truncate the matrix to a small, finite
dimensional object.

To give some physical intuition into (13), let us consider the dynamics of long-lived conserved quantities
from the viewpoint of hydrodynamics. Let X4 denote quantities which are conserved on very long time
scales, and let U4 be the conjugate thermodynamic variable. For simplicity, we define X 4 by shifting X 4
by a constant so that in equilibrium, (X 4) = 0. In thermodynamics, we can then relate

X4 =xaBUs, (18)

where x is the same static susceptibility matrix as before, and we drop expectation values within hydro-
dynamics. The transport equations read

X4 =—-MapUp — NapUp + Fa, (19)

where N4p, as before, is the static susceptibility between A and B, Myp is a (for now arbitrary, but
symmetric) matrix which denotes the weak relaxation of X4 into an external bath, and Fy4 is an external
driving force. Now, we relate F)4 to the “thermodynamic field” E4 which drives X 4 by

Fa=xaBEB. (20)

Differing conventions appear in the literature [28]. This definition of the (overall sign of the) retarded Green’s function
is much more standard [24, 26] and is the common choice in condensed matter physics.




E 4 should be interpreted as “the net U,” imposed on the system. Combining these equations together
at frequency w, we obtain
Xa=o0capEp (21)

where o 4p is given by (13).
One aspect of the memory function framework that is now much clearer is the physical role of the
memory matrix. Defining the memory matrix as

Map = T35XCB, (22)
in an undriven, time reversal invariant theory (where N = 0), we find
Xa=-T5X5 (23)

Evidently, the memory matrix encodes relaxation times for the average values of the operators A of
interest. It is now evident why we choose the operators A, B, ... to be almost conserved quantities. In
this case, the matrix 7! will have parametrically small eigenvalues, and as the memory matrix enters
the conductivity via an inverse, these quantities will dominate the conductivity.

This derivation is rather abstract, so let us give a simple example to clarify the thermodynamic
structure of these equations: the dynamics of a point particle of mass m on a one dimensional line,
subject to weak friction, but no potential energy. In this case, the momentum p is long lived. The
thermodynamic conjugate variable is the velocity v, and so the susceptibility is simply the mass. Np, = 0,
as there is no generic proportionality coefficient between p and v, and so we are left with p = F' — M,,v.
Of course if M, = 0 we simply have Newton’s Law, F' = p = mv; otherwise, M, # 0 provides a frictional
force which dissipates momentum into an external bath.

It is also important to understand the role played by F' in this equation. To compute the “momentum
conductivity” o, of this particle, we can interpret the external driving by the force F' as actually external
“shaking” of the line with acceleration aext = F'/m. The conductivity relates the response of p to an
external source of the time derivative of its conjugate variable. We find at zero frequency:

p _mv  mF m?

— — -0 24
Qext Qext M, p Qext M, P ( )

in accordance with (13).

Of course, we are probably more familiar with electrical conductivity. In this case, the thermodynamic
conjugate variable to J is a gauge potential —A. And as —dA/dt = E, the electrical conductivity oy
relates the response of J to an external electric field E. In this case, as we will see in the next section,
the analogue of (19) become the hydrodynamic equations which describe the dynamics of charge and
momentum, which are a bit more cumbersome.

The usefulness of the memory function formalism beyond the hydrodynamic reasoning described above
is that we now have explicit expressions for the matrices M, N and y. In particular, this will allow us
to explicitly compute 7, the momentum relaxation time. We will describe more in the following section
what the components of this matrix actually look like.

4. Dynamics of Charge and Momentum

Let us now discuss how the memory function framework produces the magnetohydrodynamic electrical
transport described earlier. For simplicity, we assume that charge and heat diffusion are decoupled
processes at zero charge density — we relax this assumption in Section 5. There are two slow time scales



in the problem: the time scale over which momentum relaxes ty,om ~ 7, and the time scale over which
charge fluctuations diffuse away, tug ~ A?/D, with A the wavelength of the fluctuation; on the longest
length scales, tqig — 0o. Note that at finite charge density, there will be heat diffusion; however, the slow
diffusion of heat will not be linearly independent from the dynamics of charge or momentum. Our goal
is to compute the electrical conductivity matrix o;; at zero momentum, and small but finite frequency
w. There are four operators associated with the long lived quantities above which have spin 1 under
the SO(2) isotropy of the system: the momentum vector P, and charge density fluctuations Vn. This
suggests that our memory matrix should be a 4 x 4 matrix, as we should only keep track of the (zero
wave vector components) of these operators. Using the notation of the previous section, our goal is to
compute the conductivities 0, , = 04z and 0,5, = 04y-

4.1. Diffusive Transport

Let us begin with the case when the charge density Q = 0, and the magnetic field B = 0. As B = 0,
the time reversal symmetry breaking matrix N will vanish. In this case, hydrodynamics tells us that the
conductivity is governed solely by diffusive processes. Let us see how this arises in the memory function
framework. In this case, using the isotropy of the system, in order to compute o,,, we need only keep
track of operators with long time dynamics which are spin 1, and oriented in the z direction: these are
dzn and P, — both evaluated at zero wave vector.

To get started, let us compute the susceptibility matrices. Formally, we introduce a velocity v, as a
source term conjugate to the conserved momentum, so that Hamiltonian maps as

H[) — Ho — UIPI, (25)

where Hj is translationally invariant, and thus commutes with P,, the total momentum in the z-direction
(we will add terms responsible for momentum decay later). We may compute the susceptibilities x ap, by
studying (A),, — the response of the average value of A to a small external source of velocity [17]:

(Pr)v.

T =M, (26)

XP. Py =
where V' is the spatial volume of the sample. This formally defines the value of M; alternatively, M is
related to G%z p, via (14). Note that in the earlier relativistic formalism, M was equal to the sum of the
energy density and pressure, up to coefficients proportional to the (effective) speed of light. Analogously,

= Q, (27)

XPyJ, =

defines the charge density Q. As the perturbation (25) does not break translation invariance in n(x):

XPp0zn = 0. (28)

Identical results hold for the yy susceptibility matrices. By spatial parity symmetry, when B = 0, we find

XPrPy = X0zndyn = XPrdyn = XPydzn = 0. (29)

In fact, we now see there is a great simplification when Q@ = 0, because the P indices of the memory
matrix can play no role in the computation of 0., as xp,j, = 0. This is a bit fast; we will see explicitly
later that the necessary components of the memory matrix Mp, 4 do not vanish fast enough as Q — 0 to
spoil this argument.

Next, let us compute xj,5,». The simplest way to proceed here is to choose a finite momentum regula-
tor, and then show that the transport coeflicients are independent of the choice of regulator, k;. We choose



n(x) = —n(k,)sin(k,z),> and this implies that the overlap with the current operator J, (k) cos(k,x), is
given by
(3) = —0Vi, (30

as the conjugate field to n is the chemical potential i (in the presence of long-range Coulomb interactions,
p should be replaced by the electrochemical potential [29, 30]). We conclude

XJpOpn = UQkx~ (31>

Crudely speaking, we think of fixing x and sending k, — 0 — one then finds that n(z) — —n(k,)k,x and

Jy = Jx(kz), so that we have a linear density fluctuation sourcing a constant, diffusive current. But it is

easiest to compute the memory matrix with the regulator explicitly finite.
It is a standard result that [17]

_ ook?

- DE? —iw’

for any quantum field theory which has a hydrodynamic limit, where n will obey a simple diffusion

equation at long wavelengths with diffusion constant D: 9yn = DV?n (recall we have assumed charge

and heat fluctuations decouple at @ = B = 0); for the case with long-range Coulomb interactions, (32)

refers to the irreducible density correlator i.e. the polarizability [29, 30]. We may now use (13) to obtain

My, no,n- By time reversal symmetry when B = 0, (0,n|0,n) = (0,n|P;) = 0; thus we take the abstract

projection operator ¢ =1 in (13). Using that [11]

Map(z) = % ?dw Im(GM, (33)

w(w —z)

G (K, w) (32)

—0o0
and regulating this integral, we obtain

oo Dk}

= DRz iy ke W (34)

where we have expanded to lowest non-trivial order in w, and

Xnn = % = lim lim Re [G, (k,w)] (35)

k—0w—0

is the static density-density susceptibility. The memory matrix formalism now gives

2 21.2
XJp0:n ookz 2
= T = =00+ O (w?). 36
Mazn&cn — WXnn UngQC ? ( ) ( )

Oxx

This is exactly what we should expect — the diffusive hydrodynamic coefficient o, is well-known to be the
electrical conductivity at @ = B = 0. And importantly, the regulator k, has decoupled from the answer.
We may thus safely take the limit k, — 0. By spatial isotropy, Xxj,0,n = XJ,8,n; €tc., and x 7,0,, = 0, etc.

4.2. Momentum Relaxation

Next, let us consider the case where @ # 0, and B = 0. We have already computed all relevant static
susceptibilities, so only the memory matrix M remains. Spatial isotropy implies that Mp,p, = Mp,9,, =
0, etc., and so we only need to compute My, ,p, and Mp, p,. Note that the diffusive form of My, ,5,, and

3The choice of sine waves instead of plane waves keeps things manifestly real, and so is a bit simpler.
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XJ,9,n from the previous subsection remains valid even with Q # 0, as momentum relaxation kills sound
propagation at the longest wavelengths, and charge is still conserved, though the value of oy may change.

We begin with Mp, p,. Let us consider for simplicity the case where the Hamiltonian of the system is
given in d spatial dimensions by

H = Hy — / d?x h(x)O(x), (37)

where Hyj is a translationally invariant Hamiltonian, and O(x) is an arbitrary operator in the quantum
field theory. h(x) is an arbitrary function which should depend on space, and be non-trivial in (almost)
all of the plane. We assume that h(x) is small, so that translational symmetry breaking is weak — we
will see that this is equivalent to the momentum relaxation time 7 being large. The operator P; is easily
computed to be

Py = i[H, P,] /ddxh X)(8:0)(x) (38)

The generalization to the case where multiple operators couple to x-dependent fields is straightforward.
We find

/ Im Gz%xPx( >)

Mp,p,(2) = (o —2)

1 G5 (ky, ko,
- dw /ddklddk m (Goolk, ko, ) h(k1)h(ko)k1okos. (39)
i w(w—2)

—0o0
As before, we have set ¢ = 1 in this equation: we assume the operator O is independent of d,n or P,. As h
is a small parameter, we may safely take G%O to be the Green’s functions associated with Hy; translation
invariance then implies that it vanishes unless k; + ko = 0. One finds [5, 24, 27, 18]

M : Im GR q,w
Mp, p (0) = — = lim [ dq|h(q)|?¢> (GBola,w))

T w—0 w

, (40)

up to a re-scaling of h(q) to absorb a factor of the spatial volume [18]. We will shortly see that the
7 defined here is equal to the 7 defined within hydrodynamics; with the memory function framework,
however, we now have an explicit expression for 7 in terms of the fields h. A similar formula holds for
Mp, p,. For simplicity, we will assume that the system is isotropic and so Mp,p, = Mp, p,.

We have focused on the w = 0 limit of Mp, p, (w). This can be justified on very general grounds.
Suppose that 7, is the microscopic time scale associated with the quantum dynamics of the system — for
example, in many quantum critical theories, we have 7, = 1/T. The Green’s function G%O is associated
with the quantum dynamics of the Hamiltonian Hy, and thus we obtain

GBo(w) = A + (wrn) ALY + (wrm)?A8) + - (41)
where, for a generic quantum field theory, the coefficients AS%), etc., have no anomalously large coefficients,
relative to any others. This implies that

./\/l

with C an O(1) constant, and thus the finite frequency corrections to Mp, p, are higher order in pertur-

bation theory. At wry, ~ 1, hydrodynamics and the memory function formalism (when truncated to a
finite set of operators) both cease to be good approximations for generic theories.

11



Next, let us discuss Mp,5,,. In the case where the operator O is charge conjugation symmetric, this
matrix element vanishes by charge conjugation symmetry. We discuss the more general case in Appendix
A.

Putting everything together, we obtain o4, = 0 (by parity symmetry) and, since the memory matrix
is diagonal up to this point:

2 2 2
XT,0,n X7, P, — oo+ ot
Mo no,n — iwxnn  Mp,p, —iwxp,p, M(1 —iwT)

Opy = (43)
In a theory without momentum relaxation, we have 7 — oco; then the real part of the second term in
(43) is proportional to §(w). In such a theory we define o4 to be equal to o;, minus the delta function
contribution, and this definition can be used to compute o in a particular model of a strange metal.

4.3. Magnetic Fields

Finally, we allow for B # 0. We still demand that B is perturbatively small, so that w. is a perturbative
parameter. As each component of the memory matrix is first order within perturbation theory (we
will see this does not change when B # 0), it will suffice to consider only the B-dependent corrections
to the memory matrix — considering B-dependent corrections to the static susceptibilities is a higher
order correction. Furthermore, within the memory matrix, any B-dependent correction to a parity even
coefficient such as Mp, p, must be O(B2), which is second order in perturbation theory. The only matrix
which may admit first order corrections within perturbation theory that are linear in B is the time-reversal
non-invariant matrix N.

Let us consider the consequences of B # 0 on the matrix N, which relates to static susceptibilities.
The consequences of an external magnetic field are that

Pi= Bey i 4 (44)

with J%! the spatially integrated momentum current, where --- includes effects such as momentum
relaxation, that we have previously accounted for. The expression (44) represents the Lorentz force law,
and follows similarly to (38), though with some subtleties. The (zero momentum component of the)
canonical momentum operator P;(x) which generates translations is no longer equivalent to the physical
momentum:

Pi=PF, + /dZX nAg, (45)

where A g is the gauge potential due to the externally imposed magnetic field. Note that only P; is gauge
invariant. In addition, the Hamiltonian is altered to H — H + Hp, with

HB:—/d2xJ~AB. (46)
Now we evaluate P, using the convenient gauge choice Ap = —Byx:
P, =i[Hy+ Hp, P, =i [Ho + Hp, Py + /d2x nBy] —i[Hp, P.] + /d2x nBy + O(B?)

= —/d2x (=04 Jy — 1) By = —/d2x 0,J,By = /d2x BJ, = BJ,". (47)

As B is a constant, this relates the total current in the y direction to P, as claimed in (44). A similar
argument works for P, with the gauge Ap = Bxy.
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We can use (44) to find that the B dependent corrections to the matrix N, as Xp, 4 = Bxu,a for any
operator A, as an example. Using this logic, we find

Np,p, = =Np,p, = Xp,p, = —Bxus.p, = —BQ, (48a)
No,np, = —Nonp, = —Bxo,ns, = —Bk.oq. (48b)

In writing down these results we have used that xp,5,n» = xp,0,n = 0, which follows from translation
invariance of the thermodynamic state.
To recap: the “full memory matrix” m(w) at this order in perturbation theory is

k%O'Q 0 0 _BkCEUQ
0 kloq Bk,oq 0
1
m(w) = M(w) + N — iwy ~ 0 —Bkyoq, M (T - iw) -BQ . (49)
1
Bkioq 0 BO M ( - iw)
-

Along with x7,p, = XJ,P, = Q5 XJ,8,n = XJ,8,n = Oqkz, being the only non-vanishing static susceptibil-
ities, it is straightforward to invert m and obtain the main results displayed in (6), using (13).

5. Dynamics of Charge, Heat and Momentum

Let us now relax the assumption that heat transport has decoupled from the problem, and compute the
electrical conductivity using the memory matrix formalism. In fact, regardless of how many other long
lived scalar quantities we have — governed by diffusive transport — we will see that (6) continues to hold.*
In practice, the only additional conserved quantity is heat.

Let us suppose that we have currents Jr associated with long lived densities ngr(x); the chemical
potentials associated to these long lived densities are ug; the indices RS --- will refer to the conserved
charges, and indices ij - - - will refer to spatial indices as usual. Analogous to (30) we find

Jr=—%gsVus, (50)

with 3 a conductivity matrix. One finds analogously a susceptibility matrix xrs, and a diffusion matrix
Dpgg, with Jg = —DrsVng, obeying the Einstein relation

Y = Dy. (51)

Here we are multiplying together matrices with RS indices. These results are reviewed in [31]. The
analogous Green’s function to G%, is

(;R

NnRrNS

= (2D — iw) oy k2578, (52)
and so an analogous computation to before gives us
M, npoums = k3SRs (53)
Let the index @) denotes the conserved charge; thus

0q = XQQ- (54)

4Indeed, such conserved quantities cannot at zero momentum have any overlap with the electrical current, as the latter
is a vector and we have assumed rotational invariance in this paper.
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Denote with P the projection operator onto the @) index: i.e.,

0P = PYP. (55)
m generalizes to
k2XRs 0 0 —Bk;YRg
0 k2Y Rs BkyYRo 0
1
m ~ 0 —Bk,Yqr M < - iw> -BQ : (56)
T
1
Bk:¥qr 0 BQ M < — iw)
T
Our goal is to compute
Ot = XJ AMAEXB,» (57)

and to simply prove that this matrix product is independent of any additional conserved quantities. (It
is straightforward to carry out the remainder of the algebra and explicitly recover the conductivities.)

A rather generic and useful result for us will be following formula from linear algebra. Suppose that
we have a block matrix

X Y
with X an m X m matrix, Y an m X n matrix, Z an n X m matrix, and W an n x n matrix. Then
-1 — (X —Yyw-iz)=t - Xly(W-2zxty)!
T\ Wz X —ywlz)7t W —-zXx"1ty) !
_ (X —-yw-1z)7t —(X -Yyw-iz)y-lyw-! (59)
T\ -(W-zXly)lzx ! (W —-Zzx-1ty)-! '

A tedious set of calculations, repeatedly imploying the identities above, leads to the following block

matrices in m—!:

m;ilpj =N (B?0q + M(77! —iw)) &;; + N BQeij, (60a)
M5 g = ,i&wmﬁfpkekja (60D)
M, = Z5RQ€ikmEjpj7 (60c)
My pdims = ]3% (S —NB*(M(77 —iw) + B%04)Prs) 6ij — NB>QPggeyj] - (60d)
where 1 (
61)

T Q2B 1 (Bog + M(r! — iw))®
To obtain (60d), the following identity, along with (55), is helpful (below ¢ is any constant):
c

S+ cEPY) =57t - 62
(2 + PR . (62)
Using (50), we find the electric current - conserved density susceptibilities to be

It is now a simple matter to see from (57) that the only component of Y rg that enters the final answer
is ¥gg = 0q; thus the magnetohydrodynamic result for the electrical conductivity matrix, given in (6),
is unaltered by the presence of additional conserved scalar charges.
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6. Thermal and Thermoelectric Transport

It is now clear how to extend our work to study thermoelectric transport. When describing thermoelectric
transport, one must specify a set of three matrices: o;; from before, the Seebeck coefficient(s) «;;, and

Kij, defined by:
Ji o Uij aij E]’
< Qi ) a ( Taij  Fij > ( —0;T > (64

with @; the heat current. We follow the notation of [5], where & is defined as the linear response coefficient
between the heat current and the temperature gradient at vanishing electric field; often in experiments
one measures the thermal conductivity r;j, the coefficient between the heat current and temperature
gradient at vanishing electric current, J; = 0. The two are related via

k=Fk—Tac o (65)

In the memory matrix framework, we have:
i T = XJ,AM 45X BQ, (66a)
FdijT = XQiAmZ}lBXBQj‘ (66b)

The new susceptibilities we need relate to the heat current. Letting the index H (in the notation of
Section 5) denote the diffusive scalar quantity heat, we obtain

XQi0np = Oij X HRKg. (67)

There is also a new susceptibility:
XQiP]- = (Sl'jTS. (68)

This serves as a definition of the new quantity, S, which plays a role of “entropy density”. Using the
results of (60) thermoelectric transport coefficients may now be computed. Denoting

Yug = aqT, (69a)
Yy = RQT, (69b)
we obtain
-1 _; 2
Qo = Oy = (M(7 iw) + Boq)aq + SQQM <1 — iw> ’ (70a)
Q2B? + (B%0q + M(1771 —iw))
iy =~y = 2T 1) £ S(QT 4 Bog oeM(rT ~iw)) (70b)
Q2B? 4 (B2%0q + M(17! — iw))
BQ -1 _ 3 82_B22 —92S B2
I_‘ixm - dey = /_QQ + ( 7a i M(T IW))( aQ). 2 QaQ T, (70(3)
Q?’B? + (B%0q + M(771 —iw))
2 B2 2 2) B2 -1 _
Fay = iy = Qs Qag + 2Saq(Boq + M(T lw))BT. (70d)

Q?B? + (B%0q + M(771 — iw))2

Together with (6), this forms the main result of this paper, and is the most general framework for
magnetotransport to date, applicable both to relativistic and non-relativistic systems.

If we specialize to a Lorentz-invariant quantum critical system deformed by a chemical potential (for
charge) u, we may compare to the results found in [5] using hydrodynamics. Using (note that we are

setting the effective speed of light to be 1)

Tag = —poq, (71a)

15



TS = M — pnQ, (71c)
we find agreement with the results of [5]. On the other hand, if we set aq = Rq = 0, then these results
agree with recent holographic calculations performed at w = 0 [12, 13, 14] — see also [32, 33]. This sheds
light into the differences between these papers and hydrodynamics, and suggests how one might go about
resolving this issue.

It can be helpful to study k;; instead of K;; — in the limit B = 0, @ # 0, 7 — oo, the former is not
singular while the latter is (see, e.g., [34]). k;; can easily be computed using (65), given our main results
(6) and (70):

N Q2 8% — 28 Q% — B2 Q%00
Q?B202 + (2 + M(t71 - iw)og)?
N M7 —iw)(028% — 208 aq0q — a3 Q?) — gad M? (771 — iw)?
Q?B202 + (Q2 + M(t71 - iw)oq)?
_ (2qQ — 008)”
Q2B20% + (Q2+ M(771 - iw)og)?

Kez = Kyy = Kq

T (72a)

Koy = —Kyz BOT (72b)

Indeed in the 7 — oo limit, k4, is finite (only the first line contributes) so long as Q # 0. Note that if we
first set @ = 0, then k;, does become singular when 7 — oc.

7. Conclusions

This paper has developed a model of electric, thermal and thermoelectric transport in strange metals
which focuses on the influence of a long-lived momentum mode, along with the diffusion of charge and
heat. Such a long-lived momentum mode is found in essentially all condensed matter models of non-Fermi
liquids, including those obtained from lattice models appropriate for the cuprates [6, 7]. The influence of an
external magnetic field on such a mode is universally determined by a few thermodynamic susceptibilities:
this was established here by the memory matrix formalism, which can be applied to realistic models of
the cuprates.

Our results are not valid for systems with spontaneously broken global or gauge symmetries, such as
superfluids or superconductors. In this case, the Goldstone modes associated with the broken symmetry
must be consistently included within hydrodynamics, so we expect that they must also be included within
the memory matrix. Undertaking such task would be an interesting generalization of the present work.

The resulting B and T" dependence of 0;;, a;; and K;; was then reduced to the T dependence of the
momentum relaxation time 7, thermodynamic susceptibilities, and diffusive transport coeflicients derived
via Einstein relations: g, aq and Kq. An important feature of this approach is that very different
physical processes control the values of 7 and o, aq and Rq. Blake and Donos [8] argued that reasonable
assumptions for the T dependence of 7 and o (in particular, 7 ~ 1/T% and oq ~ 1/T) lead to an
appealing explanation of the data on the Hall angle on the cuprates [3].

The B dependence of o;;, o;; and K;; is explicit, as B is a perturbatively small parameter in this
framework. Their and our discussions have implicitly ignored the B dependence of o4, but this could be
important for understanding experimental thermo-electric data [35, 36].

In combination with other recent studies [6, 7, 15, 16], our results now provide a route to the compu-
tation of transport properties of strange metals using microscopically realistic models.

(i) For the theory of the onset of spin-density wave order in metals, there is a clear separation of the
degrees freedom responsible for the two terms in (7). The “lukewarm” regions of the Fermi surface far
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from the “hot spots” contribute to the second term in (7), associated with the slow decay of the momen-
tum mode: a computations of the values of Q, M, and 7 in this framework was provided in Ref. [7]. In
contrast, the “intrinsic” quantum critical conductivity, oq, in the first term of (7) is a property of the
particle-hole symmetric hot spot theory; the scaling limit of this theory has Q@ = 0, and so it provides a
direct computation of o [16].

(i) The same separation between the lukewarm and hot regions of the Fermi surface applies also to the
Higgs critical theory of Ref. [15], with their respective contributions leading to the two terms in (7).
(@ii) For the case of the nematic critical point in two-dimensional metals, the crucial role of the total
momentum mode was discussed in Ref. [6]. The field theory of this critical point was employed to com-
pute @, M, and 7, with weak disorder providing the source for momentum relaxation. There is not yet
a complete understanding of the value of o in such models.

With these B = 0 computations of Q, M, 7, and o4 in hand, then our present analysis shows that the
extension to weak B # 0 in (6) follows immediately, and can be made on quite general grounds.
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Appendix A. The Memory Matrix Element Mp 5 ,

Here we discuss the matrix element Mp, 5, ,, when the operator O which couples to the translational
symmetry breaking field is not charge conjugation symmetric. From the definition of the memory matrix,

1 Im (—iwGR o, kz,w
MPJ;awn S /dw/ddq h(q) ( OO0y ( )) : (73)
i w(w—2)

where we have related P, to O. Let us discuss the general structure of this Green’s function. In fact,
noting that z is just above the real axis, we find that

Mp, g, = / d?q h(q)Re (G(%aw(q, kz,0)) . (74)

We know that G%azn ~ h, as this Green’s function does not obey translation invariance, and thus must
be proportional to h. Furthermore, so long as charge is an exactly conserved quantity, and this Green’s
function is analytic in a neighborhood of k, = 0, we conclude that G%azn ~ hk,;. Thus we conclude that
Mp,o,n ~ h?ky.

Next, let us consider the corrections to the conductivity. For simplicity, we focus on the case where
B = 0, but similar considerations will hold in the more general case. The full memory matrix m is block
diagonal, and, considering only xz indices, is

hB  h%k,A
m= < Wiy A ook’ ) (75)

with A and B chosen as functions which are not perturbatively small. We find

. 1 ( ook? —h2k, A ) N ( 1/h’B —A/Bogk, ) (76)

T W2Bog — 2R\ —R2e, A B2B ) T\ —A/Bogk,  1/ook?

17



The correction to the conductivity as given in (7) is
00zg = ————. (77)

This is, in our limit, much smaller than either oo or Q>7/M. Logically, we should think of this as much
smaller than o since we argued previously that either o must be anomalously large, or Q must be very
small, in order for oq ~ Q*7/M to be possible. (If T is anomalously large and o, is negligible, then we
should generically expect do,, to also be negligible). Thus, it is consistent to ignore these corrections to
the memory matrix at leading order.
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