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We present a mean-field theory of the ¢-J model on a square lattice that becomes exact in a partic-
ular large-N limit. A detailed study of the free-energy manifold is carried out for the case of filling
fraction v= 7 as a function of ¢/J. Over the manifold examined, the ground state is either an insu-
lating crystal of an N-hole bound state (for small ¢ /.J) or a normal Fermi liquid (for large ¢ /J). For
%SVS—, and ¢t =07%, states with the localized holes, and nonzero spin correlations restricted to

1
2

clusters of 4 or smaller, are global free-energy minima; in particular they are lower in energy than
the state with uniform flux ®=v, with staggered flux or a normal Fermi liquid.

I. INTRODUCTION

The #-J model has recently emerged as a viable phe-
nomenological model for the motion of holes in CuO,
layers of the high-temperature superconductors in the
La,_,Sr,CuO, family.! The constraint prohibiting dou-
ble occupancy of every site, however, makes the solution
of the model highly nontrivial. Considerable progress
has been made on understanding the properties of a small
number of holes.! An alternative approach has been to
extend the spin symmetry group of the electrons from
SU@2) to SUY) and to then perform a large-N expan-
sion.2~% An advantage of the latter approach is that it is
not restricted to filling fractions, v, near 1. We shall use
the large-N method to examine in detail a mean-field
theory of the t-J model at v=1. Some results will also be
presented for other rational values of v between 1 and 1.
Throughout, our emphasis shall be on determining global
free-energy minima; this strategy was fruitful in under-
standing the properties of undoped SU(N) antiferromag-
nets.

A few comments are in order here on the meaning and
validity of the large-N method. By adding biquadratic
exchange terms to the Hamiltonian? it is possible to ob-
tain a family of SU(N) models all of which have the same
SUQ2) limit. The particular large-N limit we shall use
here has no biquadratic exchange, and is closely related
to the ‘“fermionic” large-N limit used by Read and
Sachdev® for the case of the insulator at v= 1; the insulat-
ing ground state was found to possess strong spin-Peierls
ordering. By changing the representation of the SU()
spins it is possible to decrease the magnitude of the spin-
Peierls ordering until eventually the system undergoes a
transition to a Néel ordered phase.® The fermionic
large-N limit is well away from this transition and thus
does not clarify the nature of the destruction of Néel or-
der. However, for the insulator, it captures the correct
physics at distances much larger than the spin correlation
length.” The presumption of this paper is that the fer-
mionic large-N limit continues to do this at values of v
away from half filling. Thus our results will not shed any
light on the details of the destruction of Néel order by
doping,® but hopefully will capture the correct physics at
the longest length scales.

The t-J model studied in this paper is described by the
Hamiltonian,

H=—L > Pc,-tzC}zP +H-C-“% (_2_)6‘%!#0}:3‘:19‘ » (1.1
ij

N & “
where the ¢;, are fermion annihilation operators, the
sums over [,j extend over all nearest-neighbor links on
the square lattice, there is an implied sum over repeated
spin indices o, over 1,...,N (N=2 for the high-
temperature superconductors) and P is the projection
operator that maintains the constraint

N
2
at every site (N even). The Hamiltonian H is clearly in-
variant under global SU(N) spin rotations, and the fer-
mions transform under the fundamental representation of
SU(N). The large-N expansion proceeds™* by introducing
a boson b; at each site that counts the number of holes;
thus the constraint (1.2) is replaced by

N
2 H
and the hopping term in H takes the form

—(t/N) 3, befefb] .
(ij)
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The filling fraction v is determined by the global con-
straint

~ Scler=Nv, (1.4)
s i
where N; is the number of sites on the lattice.

We express the partition function Z associated with H
at inverse temperature 3 as follows:

Z [ DEDeD DDA exp [— fO”dﬂL,+L2)] . (L5
where
ob; dc/* N
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We have introduced a chemical potential u to fix the total

]

Lr=73
Cij)

i

The fictitious gauge field a;;
Qx'j |ij|exP(lazj)

It is clear now that upon integrating over the fermion
fields, the resulting effective action will be multiplied by a
prefactor V. In the large-N limit, therefore, the function-
al integral can be performed in the saddle-point approxi-
mation. This procedure is equivalent to determining the
mean values of the chemical potential i and the fields
Qij» 8;s #;, and A; that satisfy the constraints [(1.3) and
(1.4)] on the average and minimize the fermion free ener-
gy. We can use the gauge invariance of the action to
choose ¢;=0; in this gauge the values of all the a;; (and
not just the fluxes on each plaquette) become s1gmﬁcant

We note here that the physical electromagnetic gauge
field can be 1ntroduced by replacing the last term in L,

is the phase of Q,j, ie.,

by expli4; Q,j . The action now has the U(1) X U(1)
gauge invariance
c[tz —»c,-t,exp( —ia;—if;)
i~ ta;,
(1.9)
a;—a;to;—a;,

Ay— Ay +B—B; .

In the large-N limit, the b; bosons Bose condense,
(b;Y=1/N89,, leading to a breaking of the internal U(1)
gauge symmetry associated with a;. The physical elec-
tromagnetic gauge symmetry associated with 3; is, how-
ever, unbroken. Bose condensation of the b; bosons
thegrefore does not imply the existence of superconductivi-
ty.

Having established our notation, we are now in a posi-
tion to present the new results established in this paper.
The most extensive analysis has been carried out for v=1
and some results have been obtained for other rational
+Sv=1. Wediscuss these two cases in turn.

A v=1

{a) For ¢t <0.3J the global ground state, over the mani-
fold examined, is shown in Fig. 1. We have a; =0,
§;=0.25, and @, <0.5Q,. The state is an insulator with
a fermion excitation gap of Q,—2Q,. For t=0", we
have Q,=0 and Q,=J /4; each plaquette surrounded by
the @, bonds can therefore be interpreted as a
N -hole bound state. For finite values of ¢, therefore, an

appealing interpretation of the insulating state is that of a
crystal of an N -hole bound state.
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number of electrons. The field Q,-j arises from a
Hubbard-Stratonovich decoupling of the exchange term.
Further analys1s is simplest in terms of the shifted field
Q= Q,j +1b; b /N and the decomposition b;

_\/NSIexp(qu,) whence .L, takes the form

%[]Qij[2—21Q,-j|t1/8,~8jcos(¢,-—¢j—a,-j)+t2618j]4QijciLcJ?) : (1.8)

(b) At t =0.3J, the system undergoes a first-order tran-
sition to a normal metallic Fermi liquid. The metallic
states has a;=0,Q,; uniform on all the bonds and
8;,=0.25. Iti 1s globally stable for all £ > 0.3J.

(c) The commensurate flux state introduced by
Hasegawa et al.'® and Lederer et al.!' would correspond
to a state with sum of a;; around a plaquette equal to
2m®=1q/2. Such a state was found as a metastable sad-
dle point of the free energy only at t =0. For nonzero ¢
the state immediately developed a modulation in the
values of |Q,~j|. Moreover the flux distribution becomes
nonuniform and is no longer pinned at the commensurate
value. Hasegawa er al. and Lederer et al. have pointed
out the existence of a cusp in the total energy as a func-
tion of a uniform flux through the lattice; however, there
is no such cusp towards variations in |Q;;|, thus explain-
ing the instability of the commensurate flux state at
nonzero t.

(d) Staggered®’ and nonuniform flux states are also
found as saddle points of the free energy. It has already
been noted in Ref. 2 that the Fermi-liquid state is lower
in energy than the staggered flux state at v=1. We find
here that the staggered and nonuniform flux states are al-
ways higher in energy than all of the states discussed un-
der points (a), (b), and (c).

B. ;<v=<1]

Because of the complexity of the free-energy minimiza-
tion problem, our analysis was restricted to t =07. An

Q1

FIG. 1. Insulating crystal ground state for filling factor v=1+
and t <0.3J. The dark bonds take the real value Q,, while the
light bonds take the value 0, < @, /2.
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attractive set of saddle points for these values of v were
proposed recently by Hasegawa et al.'° and Lederer
et al.!! consisting of states with flux ®=v piercing each
plaquette. We found that these flux states were lower in
energy than states with nonuniform or staggered flux.
However, states with a nonuniform charge distribution
and localized holes were always found to be the global
minima of the energy. (Note, however, that for the spe-
cial case of v=1 already considered, the localized-hole
state has a uniform charge distribution.) Moreover, the
mutual fermion spin correlations in these localized-hole
states were zero except those taken on clusters of sizes
less than or equal to four sites. Further analysis of the
localized-hole states at nonzero values of ¢ is clearly
necessary and is currently being carried out (see Sec. IV).

The rest of the paper is organized as follows. In Sec. II
we present additional details of the calculations for v=1,

while in Sec. III we present details for other values of v. -

Finally, in Sec. IV we reiterate the conclusions and
present some speculations.

II. v=

PNt

The bulk of the constrained free-energy minimization
was carried out using the periodic Q;; configuration
shown in Fig. 2. The ansatz shown guarantees that the
fermion densities at all sites are equal. For v=1 this im-
mediately fixes 8; =1 and considerably simplifies the con-
strained minimization problem. Moreover, the unit cell
of four sites in Fig. 2 is large enough to allow for states
with uniform flux 7/2 per plaquette. The free-energy
minimization was carried out using the downhill simplex
method'? as a function of the four complex variables Q,
Q,, @3, and Q,. At each step of the minimization the
chemical potential i was varied to fix the filling fraction v
at ;. Several random initial conditions were chosen,
making it reasonably certain that the global minimum of
the free energy has been found.

For t <0.3J, the global ground state had Q, real,
Q,=Q;,and @, =Q,. A schematic of this state is shown
in Fig. 1. The fermion dispersion relation can be easily
computed to yield the following four bands:

e =%10,e" +0,e 2|0 +0,e T . @.1)

TABLE I. Ground-state energy per fermion (E) for the insu-
lating crystal state as a function of ¢ /J. This state is the global
ground state for t <0.3J. Also shown are values of the effective
hopping parameters Q; and Q,.

t/J E/ Q. /7 Q. /7
0.0 —0.25 0.25 0.0

0.008 —0.254 0.252 0.003
0.012 —0.258 0.254 0.008
0.04 —0.270 0.260 0.019
0.12 —0.313 0.278 0.055
0.20 —0.357 0.294 0.088
0.30 —0.415 0.315 0.126
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FIG. 2. Ansatz for Q; configuration used in free-energy
minima search at v= %. The variables Q,, Q,, O3, and Q, are
independent complex numbers. '

At v= only the lowest of the four bands is fully occu-
pied. This leads to an indirect fermion band gap of
Q,—20Q,. The values of Q,, Q,, and the ground-state en-
ergy are shown in Table I as a function of ¢/J. Notice
that 2Q, <Q, for all t/J. The band gap is therefore al-
ways positive, and the state is insulating. At t =0, we
have @, =0; the holes are therefore in decoupled N tuples
occupying plaquettes of four sites. It is useful to define a
bond charge density pij by

py =< (clb; +c};bj )(cz‘abif'{'chbif))

where i, are nearest neighbors. The Q, bonds will clear-
ly have larger values of pij than the @, bonds. This oscil-
lation in bond charge density leads to a natural interpre-
tation of each Q, plaquette as a bound state of N holes.
We may therefore consider this minimum as a Bose crys-
tal of an N-hole bound state.

For ¢ >0.3J, the global ground state consists of Q; real
and Q,=Q,=@Q;=0Q,. This is clearly a metallic normal
Fermi liquid. An analysis of the optical and charge
transport properties of this state has been carried out by
Dombre et al.> A comparison of the energy per particle
of the Fermi liquid and insulating crystal states is shown
in Fig. 3.

We now turn to a discussion of the various metastable
saddle points. The most competitive of these was the
commensurate flux state of Hasegawa et al.!® and Leder-
er et al.!! (see Table II). A commensurate flux saddle
point was found for t =0 and had flux 2mv=7/2 through
each plaquette. However, for nonzero ¢, this state im-
mediately developed a modulation in the values of |Qy1
and the flux became nonuniform and moved off its com-
mensurate value. Moreover, this saddle point became un-
stable at t 20.016J (Fig. 3).

(2.2)
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FIG. 3. Energy per particle as a function of ¢/J at filling
v=1—. For t <0.3J the insulating crystal state shown in Fig. 1
is the ground state. For ¢ >0.3J, the Fermi-liquid state is the
ground state. Metastable saddle points corresponding to a stag-
gered flux state and commensurate flux states (®=v) exist only
for a small range of t/J. A nonuniform flux state discussed in
Sec. IT and Table II has not been shown for clarity.

Another saddle point shown in Table II is the nonuni-
form flux state; this state has flux 7 in half the plaquettes
and flux O in the remaining half. Again this state was
found to be unstable at all ¢ > 0.008J.

Finally, we also found saddle points with a staggered
arrangement of flux®’ that had the Q; complex but with
Q0,=0,=Q3=0,. At t=0 this state had zero flux and
was degenerate with the Fermi-liquid state. A metastable
state was found for 0<¢/J £0.12 with a nonzero flux
(see Fig. 3).

I, - <v=<

1 1
7 2

An important factor that considerably simplified the
constrained minimization calculations at v=1 was the
use of the ansatz shown in Fig. 2. This ansatz guaranteed
a uniform charge density and at the same time was gen-
eral enough to include the commensurate flux state. Such
an ansatz is no longer possible for t70 and l<v<1i.
Our results will therefore be restricted in this paper to
t =0. Further analysis of the nonzero ¢ case is in pro-
gress. All the subsequent discussion in this section impli-
citly refers to ¢t =0.
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FIG. 4. A typical ground state at ¢ =0. The effective hop-
ping parameter Q;; take the values J/2 on ever dimer, J/4 on
the_bonds surrounding the plaquettes and O everywhere else.
Each dimer has N fermions, and each plaquette has a total of N
fermions. The state shown has a total of 14N fermions on 42
sites. A periodic continuation of this state over the infinite lat-
tice would therefore correspond to a filling factor of v=—;-.

The global ground-state manifold was found to have a
large degeneracy at N=wow. For all {<v<l, the
ground-state energy was —0.25J per electron. A typical
ground state is shown in Fig. 4. It consists of an arbi-
trary arrangement of empty sites, dimers, and plaquettes.
All the Q; are chosen real. The dimer bonds have
Q;;=J/2; the bonds around a plaquette have Q,;=J/4
while all other Q;;=0. Each dimer or plaquette has ex-
actly N electrons on it. The ratio of the number of dimer,
plaquettes, and empty sites must be chosen to fix the
filling factor at v.

The most competitive metastable states were again the
commensurate flux states of Hasegawa et al.’® and
Lederer et al.!'! We show in Fig. 5 the difference in ener-
gy between these states and the ground state as a function
of v. They never become the lowest energy state. As was
the case for v=1_, it is expected that for 150 these states
will immediately develop oscillations in |Q;;| and lose the
pinning of the flux to a rational value. The staggered flux
state was also examined and was always found to be
higher in energy than both the localized hole and com-
mensurate flux states.

IV. CONCLUSIONS

The large-N expansion offers one of the few controlled
approximations for analyzing strongly correlated sys-
tems. It has been successfully used to understand the

TABLE II. Comparison of the ground-state energy per fermion (E) for various saddle points of the
free energy at ¢t =0 and v= } At t =0, the values of Q; are clearly arbitrary up to gauge transforma-

tions. ) ] )
State E/J o 0, /7 O/ Qu/J

Insulating crystal —0.25 0.25 0.0 0.25 0.0

Fermi liquid —0.216 0.164 0.164 0.164 0.164

Commensurate flux —0.233 0.171e™7® 0.171e/"7® 0.171e B8 0.171e =378

Nonuniform flux —0.230 0.169 0.169 0.169¢'""2 0.169¢°"?
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FIG. 5. Difference in energy per fermion between the com-
mensurate flux states with ®=v and the global ground state
(the localized hole or the “dimer” state) as a function of filling
factor v at t=0%. The ground-state energy per fermion is
E,=—0.25J. The staggered flux state was always higher in en-
ergy than both these states (E > —0.236J) off scale.

properties of insulating two-dimensional quantum
Heisenberg antiferromagnets.® It now appears that the
columnar spin-Peierls state found in the large-N limit,
also appears in frustrated SU(2) antiferromagnets. !> This
paper has presented the results of a large-N mean-field
theory of the #-J model on a two-dimensional square lat-
tice. As was the case at half filling, the emphasis has
been on the determination of the global ground states of
the mean-field theory.

Our most extensive results have been obtained for the
case of filling fraction v=1. Over the manifold of states

SUBIR SACHDEV 41

examined, we found that the global ground state for
t <0.3J was an insulator consisting of a crystalline ar-
rangement of an N-hole bound state. At ¢ =0.3J, the sys-
tem undergoes a first-order transition to a normal Fermi
liquid. The Fermi liquid is stable at N=o for all
t >0.3J, and its properties have been analyzed by Dom-
bre et al.’ A

The analysis for + <v <1 was considerably more com-
plicated. The results in this paper are restricted to the
case ¢t =0. The ground-state manifold had a large degen-
eracy with a macroscopic entropy. We found that states
with two fermion spin correlations nonzero only small
(four sites or less) clusters to make up the ground-state
manifold. The most interesting issue touched upon in
this paper is the precise manner in which this degeneracy
is lifted at nonzero t. An attractive possibility is that the
holes will form the bound states appearing at v=1; the
bound states can in turn Bose condense (N is even) or
form a regular crystalline arrangement. The commensu-
rate flux states introduced by Hasegawa et al.'® were
never found to be the global ground state for all  <v<l.
Since these commensurate flux states are designed to
maximize the exchange energy,!! the prognosis for them
becoming the global ground state at nonzero values of ¢ is
not good.
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