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The concept of T = 0 quantum phase transi-
tions has emerged as an overarching theme in
strongly correlated electron physics [1–9]. The
nature of quantum fluctuations near the quantum
critical point, however, remains enigmatic [10].
How well does the quantum criticality account for
finite temperature properties? How high in tem-
perature does the e↵ect of the quantum critical
point persist?[10, 11] The dearth of appropriate
model materials has not permitted experimental-
ists to address these fundamental questions even
for the transverse field Ising chain (TFIC), a cel-
ebrated textbook example of quantum criticality
[6]. Here we use NMR (Nuclear Magnetic Res-
onance) to map the evolution of quantum spin
fluctuations in CoNb2O6 [12–14], which has re-
cently been proposed as an ideal model material
for the TFIC [15, 16]. We will demonstrate that
the e↵ect of the quantum critical point persists to
a remarkably high temperature, T ⇠ 0.4J , where
the exchange coupling J is the only energy scale
in the problem.

The TFIC Hamiltonian is deceptively simple [6];

H = �J
X

i

(�z

i

�z

i+1 + g�x

i

), (1)

where J (> 0 for ferromagnetic Ising chains in CoNb2O6)
represents the nearest-neighbor spin-spin exchange inter-

action, �z(x)
i

is the z(x)-component of the Pauli matrix
at the i-th site, and the dimensionless coupling constant
g is related to the transverse magnetic field h? applied
along the x-axis as g = h?/h

c

?, where hc

? is the criti-
cal field (hc

? = 5.25 ± 0.15 Tesla in CoNb2O6, as shown
below). Since �z

i

and �x

i

do not commute, the classical
Ising Hamiltonian for g = 0 becomes the quantum TFIC
Hamiltonian for g > 0. The QCP (Quantum Critical
Point) is located at g = 1, where the applied field is tuned
precisely at hc

?; a magnetic field greater than hc

? coerces
the magnetic moments along its direction and destroys
the T = 0 ferromagnetic ground state. See Fig. 1(a) for
the generic theoretical phase diagram of the TFIC [6, 17].
In spite of its apparent simplicity, the TFIC served as the
foundational model for the quantum Monte Carlo simula-
tions [18], and continues to attract attention in quantum
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information theory [19].

A major advantage of working with the TFIC as a
model system for testing the fundamental ideas of QPT’s
(Quantum Phase Transitions) is that, in the absence of
a transverse magnetic field (g = 0), the thermodynamic
properties of the Ising chain can be rigorously solved at
arbitrary temperatures [20]. Even in a finite transverse
field (g > 0), the TFIC is well understood at T = 0 [18,
21], and QC (Quantum Critical) scaling theory extended
the T = 0 results to finite temperatures [6, 17].

Our primary goals here are to (a) experimentally test
the phase diagram of the TFIC in Fig. 1(a) above T = 0,
and (b) demonstrate that the e↵ect of the QCP persists
to T ⇠ 0.4J , based on NMR measurements of CoNb2O6.
NMR is a powerful low energy probe, and good at prob-
ing the physical properties near QCP’s [22–28]. In what
follows, we take advantage of the hyperfine interactions
between Co electrons and 93Nb nuclear spins. Based on
the measurement of the nuclear spin-lattice relaxation
rate 1/T1 at the non-magnetic 93Nb sites, we map the
evolution of low energy quantum fluctuations of Co spins
near the QCP. See Supplementary Information for the
details of NMR data acquisition.

We show the crystal structure of CoNb2O6 in Fig. 2
[29]. The Co-O-Co chains propagate along the c-axis, and
the easy axis of the Co moments lies within the ac-plane
[12, 13]. The ferromagnetic super-exchange interaction
between the nearest-neighbor Co ions is estimated to be
J = 17 ⇠ 23 K, based on ESR [14] and neutron scattering
[15] measurements. The inter-chain couplings between
adjacent Co chains are antiferromagnetic [12, 15], weaker
than J by an order of magnitude [14, 15], and frustrated
[12, 16]. This means that the three-dimensional (3D)
magnetic long range order induced by inter-chain inter-
actions, which tends to mask the e↵ects of the 1D QCP of
the individual Ising chains, is suppressed; the 3D order-
ing temperature is as low as T 3D

c

= 2.9 K even in h? = 0
[12, 13]. Combined with the modest J , CoNb2O6 is an
ideal model material for the TFIC, but was overlooked for
three decades. Very recently, Coldea et al. demonstrated
that the application of h? along the b-axis induces a QPT
from the 3D ordered state to a paramagnetic state above
the 3D critical field, hc,3D

? = 5.5 Tesla [15, 30].

In Fig. 3, we summarize the T and h? dependences of
1/T1. Notice that 1/T1 varies by more than three orders
of magnitude between h? = 3 and 9 Tesla. Quite gen-
erally, 1/T1 probes the wave vector k-integral within the
first Brillouin zone of the dynamical spin structure factor
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FIG. 1: Phase diagram and excitation spectra of the TFIC.
(a) A generic T � h? phase diagram of the TFIC encom-
passes three scaling regimes with distinct behaviors of the
spin-spin correlation length ⇠: RC (Renormalized Classical,
g < 1 hence h? < hc

?, and ⇠ ⇠ exp(+�/T )), QC (Quantum
Critical, ⇠ ⇠ 1/T ), and QD (Quantum Disordered, g > 1
hence h? > hc

?, and ⇠ ⇠ constant) [6]. The dashed and dot-
ted lines represent the crossover temperature from the QC
to RC regime at T ⇠ � and from the QC to QD regime
at T ⇠ |�|, respectively. An isolated 1D Ising chain would
exhibit ferromagnetic long range order only at T = 0 below
hc

?, but the 3D inter-chain couplings lead to a 3D order at
T > 0 up to hc,3D

? (> hc

?). (b) The spin excitation spec-
trum in the RC regime has two components, the quasi-elastic
peak at the origin (represented by a filled dot) and the prop-
agating domain walls (inset). The dispersion of the latter
is ✏(k) = J [2 � 2g cos(k) + O(g2)], with an excitation gap
� = 2J(1 � g) [6]. The quasi-elastic peak becomes a Bragg
peak when ⇠ diverges toward the 1D ferromagnetic long range
order at T = 0. (c) The spin excitation spectrum in the
QD regime, ✏(k) = Jg[2� (2/g) cos(k) +O(1/g2)] with a gap
|�| = 2|1� g| [6], arises from the propagation of flipped spins
(inset). Unlike the RC regime, there is no quasi-elastic peak.

S(k,!
n

) at the NMR frequency !
n

/2⇡ (⇠ 50 MHz):

1/T1 =
X

k

|a
hf

|2S(k,!
n

), (2)

where a
hf

is the hyperfine coupling between the observed
nuclear spin and Pauli matrices. In essence, 1/T1 mea-
sures the strength of Co spin fluctuations at the time
scale set by the NMR frequency. Our 1/T1 data at low
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FIG. 2: Structure and basic properties of CoNb2O6. (a) The
crystal structure of CoNb2O6. (b) Both magnetic CoO6 and
non-magnetic NbO6 octahedra form a chain along the c-axis,
as seen from the a-axis direction. The transverse field h? is
applied along the b-axis. (c) Magnetic susceptibility � of the
CoNb2O6 single crystal measured in 0.01 Tesla. (d) The 93Nb
NMR lineshape at 295 K obtained by the FFT of spin echo
signals. Since the 93Nb nuclear spin is I = 9/2, we observe 4
pairs of satellite transitions split by a quadrupole frequency
⌫b

Q

= 1.9 MHz, in addition to the central peak arising from
the I

z

= + 1
2 to � 1

2 transition.

temperatures exhibits two distinct field regimes. Below
h? ⇠ 5.3 Tesla, 1/T1 diverges gradually toward T = 0,
signaling the critical slowing down of Co spin fluctua-
tions in the RC (Renormalized Classical [2]) regime of
Fig. 1(a) toward the T = 0 ferromagnetic ground state
of each individual Ising chain. In other words, the spec-
tral weight of the Co spin-spin correlation function grows
at the quasi-elastic peak located at k = 0 in Fig. 1(b) be-
low h? ⇠ 5.3 Tesla. The Co spin-spin correlation length
⇠ along the chain grows as ⇠ ⇠ exp(+�/T ) in the RC
regime [6], where � is the gap in the spin excitation
spectrum as defined in Fig. 1(b). Accordingly, we expect
1/T1 ⇠ exp(+�/T ) for T ⌧ �. See Supplementary In-
formation for the details of the theory and data analysis
of 1/T1. In contrast, 1/T1 observed above h? ⇠ 5.3 Tesla
saturates and begins to decrease with temperature, sig-
naling the opening of a spin excitation gap in the Quan-
tum Disordered (QD) regime in Fig. 1(a). The behavior
of 1/T1 is therefore dominated by the thermal activa-
tion of spin excitations across the gap, |�|, as defined in
Fig. 1(c). Therefore we expect 1/T1 ⇠ exp(�|�|/T ) for
T ⌧ |�|. We have thus identified the 1D QCP of each
individual Ising chain as hc

? ⇠ 5.3 Tesla.

In Fig. 4(a), we present the exponential fit of 1/T1 ⇠
exp(�/T ) with � as a free parameter. The fitting range
barely satisfies T < |�| near h? ⇠ 5.3 Tesla, and hence
we conducted a scaling analysis of 1/T1 to improve the
accuracy of �. We summarize the h? dependence of �
in Fig. 4(b). Remarkably, we found that � varies linearly
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FIG. 3: 93Nb NMR relaxation rate 1/T1. (a) The tem-
perature dependence of 1/T1 in h? applied along the b-axis.
All dashed lines interconnecting the data points are guides
for the eye. The black solid line represents a power-law fit,
1/T1 ⇠ 6.2⇥ 103 T�0.75 s�1. (b) A colour plot of 1/T1. The
dashed (dotted) line represents the expected crossover tem-
perature � (|�|) from the QC to RC (QD) regime, based on
the linear h? dependence of � estimated in Fig. 4(b). Also
shown (grey x) is the 3D ordering temperature T 3D

c

[30].

with h?. This linear behavior is precisely what we expect
from the theoretical prediction for the nearest-neighbor
quantum Ising chain, � = 2J(1 � h?/h

c

?) [6]. From
the intercepts of the linear fit with the horizontal and
vertical axes, we estimate hc

? = 5.25 ± 0.15 Tesla and
J = 17.5+2.5

�1.5 K, respectively, in excellent agreement with
earlier reports [14, 15].

We present the colour plot of 1/T1 in Fig. 3(b). Also
shown in Fig. 3(b) is the crossover temperatures, � and
|�|, based on the linear fit in Fig. 4(b). Our colour plot
visually captures the crossover from the QC regime to
the RC and QD regimes successfully. We are the first to
verify the theoretical T � h? phase diagram in Fig. 1(a)
for finite temperatures, T > 0, using an actual model
material.

Having established the phase diagram of the TFIC in
CoNb2O6, we are ready to test its quantum criticality in
the QC regime located between the RC and QD regimes.
At the 1D critical field hc

?, we applied QC scaling to
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FIG. 4: Estimation of the gap �. (a) The exponential fit
1/T1 ⇠ exp(�/T ) for representative values of h?. (b) • repre-
sents � as determined from (a), while N is based on the scal-
ing analysis (see Supplementary Information). Also shown is
a linear fit, � = 2J(1 � h?/h

c

?). From the fit, we estimate
hc

? = 5.25± 0.15 Tesla and J = 17.5+2.5
�1.5 K.

eq.(2), and obtained

1/T1 = 2.13 |a
hf

|2J�0.25T�0.75. (3)

We fitted the 1/T1 data observed at 5.2 Tesla to eq.(3)
with J = 17.5 K, and found |a

hf

/~|2 = 7.6 ⇥ 1014 s�2.
It is important to realize that our experimental data ex-
hibits the expected power-law behavior, 1/T1 ⇠ T�0.75,
up to ⇠ 7 K, which corresponds to ⇠ 0.4J . Our finding
therefore addresses an important and unresolved ques-
tion that has been facing the strongly correlated electrons
community for years: How high in temperature does the
e↵ect of the QCP persist? For the TFIC, the quantum
fluctuations originating from the zero temperature QCP
persist up to as high as T ⇠ 0.4J . Our experimental
finding is consistent with the earlier theoretical analysis
of the QC scaling function for the TFIC [11].
We mark the upper bound of the QC scaling regime,

T ⇠ 0.4J , in Fig. 3(b) with a horizontal arrow. Such
a robust quantum criticality observed at finite tem-
peratures above the QCP is in stark contrast with the
case of thermally induced classical phase transitions;
the critical region of the latter generally narrows as
the phase transition temperature approaches zero, and
eventually diminishes at T = 0 [10]. Many authors have
constructed analogous colour plots for di↵erent param-
eters (such as electrical resistivity, as an example) for a
variety of strongly correlated electron systems, including
copper-oxide and iron-pnictide high T

c

superconductors
and heavy Fermion systems [8, 9]. The aim of these
authors was to build a circumstantial case that quantum
fluctuations persist at finite temperatures far above the
QCP. Fig. 3b is a rare example for the solvable TFIC
Hamiltonian, and the overall similarity to the case of
high T

c

cuprates and other exotic superconductors gives
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us hope that quantum fluctuations may indeed account
for the mechanism of exotic superconductivity.

[1] Hertz, J. A. Quantum critical phenomena. Phys. Rev. B
14, 1165-1184 (1976).

[2] Chakravarty, S. Halperin, B. I. and Nelson, D. R. Two-
dimensional quantum Heisenberg antiferromagnet at low
temperatures. Phys. Rev. B 39, 2344-2371 (1989).

[3] Millis, A. J. E↵ect of a nonzero temperature on quantum
critical points in itinerant fermion systems. Phys. Rev. B
48, 7183-7196 (1993).

[4] Chubukov, A. Sachdev, S. and Ye, J. Theory of two-
dimensional quantum Heisenberg antiferromagnets with
a nearly critical ground state. Phys. Rev. B 49, 11919-
11961 (1994).

[5] Goldman, A. M. and Markovic, N. Superconductor-
insulator transitions in the two-dimensional limit.
Physics Today 51(11), 39-44 (1998).

[6] Sachdev, S. Quantum phase transitions (1st Ed.). (Cam-
bridge University Press, Cambridge, 1999).

[7] Sachdev S. Quantum magnetism and criticality. Nature
Physics 4, 173-185 (2008).

[8] Gegenwart, P. Si, Q. and Steglich, F. Quantum critical-
ity in heavy-Fermion metals. Nature Physics 4, 186-197
(2008).

[9] Sachdev, S. and Keimer, B. Quantum criticality. Physics
Today 64(2), 29-35 (2011).

[10] Lonzarich, G. R. Magnetic quantum liquid enigma. Na-
ture Physics 1, 11-12 (2005).

[11] Kopp, A. and Chakravarty, S. Criticality in correlated
quantum matter. Nature Physics 1, 53-56 (2005).

[12] Scharf, W. Weitzel, H. Yaeger, I. Maartense, I. and
Wanklyn, B. M. Magnetic structures of CoNb2O6. J.
Magn. Magn. Mater. 13, 121-124 (1979).

[13] Hanawa, T. et al., Anisotropic specific heat of CoNb2O6

in magnetic fields. J. Phys. Soc. Jpn. 63, 2706-2715
(1994).

[14] Kunimoto, T. et al., Submillimeter wave ESR study of
magnetic excitations in the Ising ferromagnetic chain
CoNb2O6. J. Phys. Soc. Jpn. 68, 1703-1710 (1999).

[15] Coldea, R. et al., Quantum Criticality in an Ising Chain:
Experimental Evidence for Emergent E8 Symmetry. Sci-
ence 327, 177-180 (2010).

[16] Lee, S. Kaul, R. K. and Balents, L. Interplay of quantum
criticality and geometric frustration in columbite. Nature
Physics 6, 702-706 (2010).

[17] Sachdev, S. and Young, A. P. Low temperature relax-
ational dynamics of the Ising chain in a transverse field.
Phys. Rev. Lett. 78, 2220-2223 (1997).

[18] Suzuki, M. Relationship between d-dimensional quantum
spin systems and (d+1)-dimensional Ising systems. Prog.
Theor. Phys. 56, 1454-1469 (1976).

[19] Zhang, J. et al., Direct observation of quantum criticality
in Ising spin chains. Phys. Rev. A 79, 012305 (2009).

[20] Binney, J. J. Dowrick, N. J. Fisher, A. J. and New-
man, M. E. J. The theory of critical phenomena (Oxford
University Press, Oxford, 1992).

[21] Chakrabarti, B. K. Dutta, A. and Sen, P. Quantum
Ising phases and transitions in transverse Ising models.
(Springer-Verlag, Berlin, 1996).

[22] Imai, T. Slichter, C. P. Yoshimura, K. and Kosuge, K.
Low frequency spin dynamics in undoped and Sr-doped
La2CuO4. Phys. Rev. Lett. 70, 1002-1005 (1993).

[23] Mukhopadhyay, S. et al., Quantum-critical spin dynamics
in quasi-one-dimensional antiferromagnets. Phys. Rev.
Lett. 109, 177206 (2012).

[24] Vyaselev, O. Takigawa, M. Vasiliev, A. Oosawa, A. and
Tanaka, H. Field-induced magnetic order and simultane-
ous lattice deformation in TlCuCl3. Phys. Rev. Lett. 92,
207202 (2004).

[25] Kuehne, H. et al., Dynamics of a Heisenberg spin chain
in the quantum critical regime: NMR experiment versus
e↵ective field theory. Phys. Rev. B.83, 100407(R) (2011).

[26] Ning, F. L. et al. Contrasting spin dynamics between
underdoped and overdoped Ba2(Fe1�x

Co
x

)2As2. Phys.
Rev. Lett. 104, 037001 (2010).

[27] Nakai, Y. et al. Unconventional superconductivity and
antiferromagnetic quantum critical behavior in the
isovalent-doped Ba2Fe2(As1�x

P
x

)2. Phys. Rev. Lett.
105, 100703 (2010).

[28] Zhou, R. et al., Quantum criticality in electron-
doped Ba2Fe2�x

Ni
x

As2. Nature Communications 4, 2265
(2013).

[29] Husson, E. Repelin, Y. Dao, N. Q. and Brusset, H. Char-
acterization of di↵erent bondings in some divalent metal
niobates of columbite structure. Mat. Res. Bull. 12, 1199-
1206 (1977).

[30] da Silva Wheeler, E. M., Neutron Scattering from
Low-Dimensional Quantum Magnets (Ph.D. Thesis,
Oxford University, 2007).

Acknowledgements
T.I. and S.S. thank helpful communications with A. P.
Young, Y. Itoh, B. Gaulin, M. P. Gelfand and T. Sakai.
The work at McMaster was supported by NSERC and
CIFAR. S.S. acknowledges the financial support from
NSF.

Author contributions
A.W.K., M.F., and T.I. conducted NMR measurements.
T.J.M., A.W.K., and G.M.L. grew the single crystal, and
characterized its bulk properties. H.A.D. participated in
the crystal growth. S.S. derived the theoretical formulae
for 1/T1. T.I. conceived the project, and wrote the
manuscript with input from all authors.

Competing financial interests
The authors declare no competing financial interests.



5

Supplementary Information

1. NMR Measurements of 1/T1

We grew the CoNb2O6 single crystal from a stoichio-
metric mixture of cobalt and niobium oxides using a float-
ing zone furnace. We assessed the surface quality and
oriented the crystal utilizing Laue x-ray di↵ractometry.
Once the material was sectioned into oriented slices along
the a, b and c crystallographic directions, these were
individually scanned with the Laue di↵ractometer and
showed a uniform, single-crystalline structure. A small
section of the single crystal was ground into a powder and
analyzed using powder x-ray di↵raction which showed
only single phase cobalt niobate in the crystal within in-
strument resolution. The features present in the SQUID
magnetometry data matched previously published data
on this material. All the pictorial images of the crystal
structure in this paper were drawn using VESTA [S1].

For NMR measurements, we cut a piece of single crys-
tal with the approximate dimensions of 4 mm x 2 mm x
5 mm. We glued the crystal to a sturdy sample holder
made of machinable aluminum-oxide (MACOR ceramic)
with a thickness of ⇠ 3 mm to ensure that the crystal ori-
entation did not change at low temperatures. We found
that the strong magnetic torque applied to the crystal
by the external magnetic field could easily bend sam-
ple holders made of soft materials such as plexiglass or
plastic, and introduce noticeable systematic errors below
⇠ 10 K.

We measured the 93Nb (I = 9/2) nuclear spin-lattice
relaxation rate 1/T1 primarily at the central transition
between the I

z

= + 1
2 and I

z

= � 1
2 energy levels. The

central transition is the strongest among all 9 peaks in
Fig. 2(d), and hence most advantageous in terms of the
signal intensity. We summarize the temperature depen-
dence of the NMR lineshape for the central transition in
Fig. S1. We applied an inversion ⇡ pulse prior to the
⇡/2� ⇡ spin echo sequence, and monitored the recovery
of the spin echo intensity M(t) as a function of the delay
time t. The typical width of the ⇡/2 pulse is ⇠ 1µs. An
example of the signal recovery of the central transition
observed at 130 K in h? = 3 Tesla is shown in Fig. S2, in
comparison to that observed for a fourth satellite transi-
tion between the I

z

= ± 9
2 and I

z

= ± 7
2 energy levels on

the higher frequency side.
We fitted these recovery curves to the solutions to the

rate equation [S2]:

M(t) = M(1)�A

9X

j=1

a
j

e�bjt/T1 , (1)

with three free parameters: M(1), A, and 1/T1. By
solving the coupled rate equations for I = 9

2 under
the appropriate initial condition, one can calculate and
fix the coe�cients as (a1, a2, a3, a4, a5, a6, a7, a8, a9) =
(0.653, 0, 0.215, 0, 0.092, 0, 0.034, 0, 0.06) for the central
transition and (0.001, 0.0112, 0.0538, 0.1485, 0.2564,
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the recovery curves by plotting 1 � [M(1) � M(t)]/A as a
function of t. The solid lines represent the best fit with 1/T1 =
1.99⇥103 s�1 for the central transition and 1/T1 = 1.96⇥103

s�1 for the fourth satellite transition, as described in the text.
Also plotted is the recovery curve observed for the fourth
satellite peak at 2 K in h? = 5.2 Tesla.

0.2797, 0.1828, 0.0606, 0.0061) for the fourth satel-
lite transitions, while (b1, b2, b3, b4, b5, b6, b7, b8, b9) =
(45, 36, 28, 21, 15, 10, 6, 3, 1) for both cases [S2]. Our re-
sults in Fig. S2 confirm that the best fit values of 1/T1

agree within ⇠ 2 % between the central and satellite
transitions.
When the relaxation rate exceeds 1/T1 ⇠ 2 ⇥ 103

s�1, accurate measurements of 1/T1 using the central
transition become increasingly di�cult because the
recovery curve M(t) is dominated by two extremely
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fast normal modes, 0.653 e�45t/T1 + 0.215 e�28t/T1 ; the
signal intensity, M(t), begins to recover at a time scale
comparable to the inversion pulse width. Accordingly,
measurements of 1/T1 using the fourth satellite transi-
tion becomes more advantageous in the low temperature,
low field regime, because its recovery curve is dominated
by slower normal modes, 0.256 e�15t/T1 +0.279 e�10t/T1 .
We present an additional example of the 1/T1 measure-
ment using the fourth satellite at 2 K and h? = 5.2
Tesla in Fig. S2.

2. Theoretical derivations of 1/T1 in the quantum
Ising chain

Here we will summarize the derivations of the theo-
retical expressions of 1/T1 in the TFIC. Our notation
will be the same as in [S3]. Some results will be specific
to the nearest-neighbor Ising model, but most are more
generally applicable to the vicinity of the quantum crit-
ical point of a generic one-dimensional Ising chain. In
general, the NMR relaxation rate is defined by

1

T1
= lim

!!0

2T

!

Z
dk

2⇡
|a

hf

|2 Im�(k,!) (2a)

=

Z
dk

2⇡
|a

hf

|2 S(k,! = 0) (2b)

=

Z +1

�1
dt |a

hf

|2 C(x = 0, t), (2c)

where a
hf

represents the hyperfine coupling between the
nuclear spin and the Pauli matrices �, as defined by the
hyperfine Hamiltonian Ĥ

hf

= Î · a
hf

· �̂. We define the
correlation function for Pauli matrices, and ~ = k

B

= 1
unless noted otherwise.

1. Renormalized Classical Regime

This region is characterized by an energy gap � ⇠
(g

c

� g) and a T = 0 ordered moment N
o

⇠ (g
c

� g)1/8.
The N

o

represents the ordered moment of an Ising chain
at T = 0, and should not be confused with the 3D ordered
moment induced by inter-chain couplings. By expressing
our results in terms of � and N

o

, they are generally valid
beyond the nearest-neighbor model. For the specific case
of the nearest-neighbor model, we have � = 2J(1 � g)
and N

o

= (1 � g2)1/8. The result for C(x, t) may be
found below (4.81) in Ref.[S3], and this leads to

1

T1
= |a

hf

|2⇡N
2
o

T
e+�/T . (3)

Notice that 1/T1 is expected to diverge exponentially,
even though there is an energy gap � in the excitation
spectrum of the domain-wall quasi-particles. This is be-
cause NMR is a low energy probe, and 1/T1 in the RC
regime is dominated by the low frequency spin fluctua-
tions associated with the quasi-elastic mode of the 1D
Ising chain induced by ferromagnetic short range order.

2. Quatum Critical Regime

Here, we have in imaginary time, ⌧ , from (4.106) in
Ref. [S3] that

C(x = 0, ⌧) = ZT 1/4 G
I

(0)

[2 sin(⇡T ⌧)]1/4
, (4)

where G
I

(0) = 0.858714569, and

Z = lim
�!0

N2
o

�1/4
; (5)

the value of Z is a general result upon approaching
from the ordered side, valid beyond the nearest-neighbor
model.
From (4), we have the local susceptibility in imaginary

time

�(x = 0,!
n

) =

Z 1/T

0
d⌧ ei!n⌧C(x = 0, ⌧). (6)

We evaluate the Fourier transform using (3.12), (3.22),
and (3.24) of Ref.[S4], and obtain

Im �(x = 0,!
n

) =
ZG

I

(0)

T 3/421/4
p
⇡�(1/8)�(5/8)

⇥ sinh(
!

2T
)|�(1

8
� i!

2⇡T
)|2. (7)

This gives us

1

T1
= |a

hf

|2 Z

T 3/4

G
I

(0)�(1/8)

21/4
p
⇡�(5/8)

= 2.13 |a
hf

|2 Z

T 3/4
. (8)

3. Quatum Disordered Regime

Here we can expect that 1/T1 diminishes exponentially
in the quantum disordered regime due to the excitation
gap, |�|, and so

1

T1
/ e�|�|/T , (9)

where now � < 0. However there is no explicit compu-
tation in the TIFC establishing this, and the pre-factor
is unknown. There is no low frequency quasi-elastic
mode, unlike the case of the RC regime.

3. Analysis of the 1/T1 data

We begin the analysis of 1/T1 in the QC regime. First,
we combine eq. (5) with the results for the nearest-
neighbor model, � = 2J(1�g) and N

o

= (1�g2)1/8, and
obtain Z = J�1/4. We also introduce the hyperfine cou-
pling A

hf

between the nuclear spin I and electron spin

S through the hyperfine Hamiltonian Ĥ
hf

= Î · A
hf

· Ŝ.
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That is, a
hf

= SA
hf

, and the Co2+ is in a high-spin
state with S = 3/2 due to the e↵ects of the crystal field.
Recalling that 1/T1 measured with an external magnetic
field applied along the crystal b-axis probes the fluctu-
ating hyperfine fields along the a- and c-axes, we may
rewrite eq.(8) as

1

T1
= 2.13 S2

|A(a)
hf

/~|2 + |A(c)
hf

/~|2

2

~
(k

B

J)1/4(k
B

T )3/4
,

(10)
where we show ~ and k

B

explicitly. From the best
fit of the 1/T1 data observed at 5.2 Tesla to eq.(10),
we estimated the hyperfine form factor as |a

hf

/~|2 =

|SA
hf

/~|2 = S2 |A(a)
hf /~|2+|A(c)

hf /~|2
2 = 7.6⇥ 1014 (s�2), us-

ing J = 17.5 K. As shown below, A
hf

is proportional to
ḡµ

B

, where ḡ is the g-factor and µ
B

represents the Bohr
magneton. Therefore |a

hf

|2, and hence 1/T1, is propor-
tional to (ḡµ

B

S)2. Physically, this is related to the fact
that the fluctuating hyperfine field is generated by Co2+

magnetic moments.
We can check the consistency of the fit based on the

measurements of the NMR frequency shifts, K(↵) =
A

(↵)
hf (0)

ḡµB
�(↵) + K

(↵)
chem

(↵ = a, b, or c-axis); A
(↵)
hf

(0) is
the uniform k = 0 component of the hyperfine coupling,

and K
(↵)
chem

is a small temperature independent chemical

shift. Thus A(↵)
hf

(0) is related to dK

(↵)

d�

(↵) as follows [S5];

A
(↵)
hf

(0)

~ = �
n

N
A

ḡµ
B

dK(↵)

d�(↵)
, (11)

where the 93Nb nuclear gyromagnetic ratio is �
n

/2⇡ =
10.407 MHz/Tesla, and N

A

is Avogadro’s number. In
Fig. S3, we plot K(↵) as a function of the molar mag-
netic susceptibility �(↵) measured along the correspond-
ing orientations (see Fig. 2(c)), choosing T as the implicit
parameter. From the linear fit, we estimate the slope as
dK

(↵)

d�

(↵) = 0.386, 0.221, and 0.311 for ↵ = a, b, and c,
respectively.

To proceed, we need to relate A
(↵)
hf

/~ in eq.(10) with

the uniform component A
(↵)
hf

(0)/~ in eq.(11). We point
out that the Nb-O-Nb chain is inside an isosceles triangle
formed by three Co-O-Co chains within the ab-plane, as
shown in Fig. S4(a) and (b). For simplicity, we assume
that the hyperfine interaction at the 93Nb site is domi-
nated by the transferred hyperfine fields from two nearby

Co-O-Co chains, and their strength, ⇠ A
(↵)
hf

(0)/2~, is
comparable. In addition, since we conducted 1/T1 mea-
surements above 2 K, we assume that the e↵ects of
the inter-chain interactions between adjacent Co-O-Co
chains are negligibly small. Then the fluctuations of the
transferred hyperfine fields from two chains may be con-
sidered independent, and hence additive. That is,

|A(↵)
hf

/~|2 ⇠ 2|A(↵)
hf

(0)/2~|2. (12)

Combining eqs.(10), (11) and (12), we can estimate the
only unknown parameter in our QC scaling analysis, the

0
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en
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FIG. S3: The NMR frequency shift K(↵) vs. the bulk mag-
netic susceptibility �(↵), with T as the implicit parameter
(↵ = a, b, or c). The straight lines are the best linear fits.

Co

Nb
O

(a)

Co
Nb

O
(b)

FIG. S4: Local geometry around the Nb sites. (a) A c-axis
view of the crystal structure of CoNb2O6, and (b) the local
geometrical configuration of Co and Nb. Notice that each Nb
site is bonded with two adjacent Co-O-Co chains across O
sites.

magnitude of the Co2+ moment, as ḡµ
B

S ⇠ 3µ
B

. This
is in good agreement with the earlier report, 3.05µ

B

[S6].
Our estimation of ḡµ

B

S relies on simplistic assumptions,
and hence should be considered provisional. Nonethe-
less, the overall consistency in our analysis of 1/T1 and
K indicates that the QC scaling theory outlined in the
previous section II is valid at a quantitative level.
In the QD regime, the pre-factor of the leading e��/T

term in eq.(9) is not known at this time, hence we fit the
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FIG. S5: The scaling plots of T+0.75/T1 as a function of �/T
in (a) the RC regime, and (b) the QD regime. For clarity, we
normalized the overall magnitude of T+0.75/T1 as unity for
the QC regime. The dashed-dotted line in (a) is a guide-for-
eyes, while the solid line in (b) represents 1/T1 / e�|�|/T .

1/T1 data to the simple activation form in Fig. 4(a). In
the case of the RC regime, we obtained the pre-factor of
the leading e+|�|/T term as ⇠ 1/T in eq. (3). We found,
however, that the observed divergent behavior of 1/T1

is weaker, perhaps because our experimental range of T
and h? is not deep inside the RC regime, or possibly due
to the influence of additional terms in the Hamiltonian
neglected in the theoretical calculations. Accordingly, we
fit the 1/T1 data in the RC regime also with the simple
exponential form, 1/T1 / e+�/T , as shown in Fig. 4(a).

For the 1/T1 data measured in h? ⇠ 5.3 Tesla, our
experimental temperature range and the resultant �
estimated from Fig. 4(a) barely satisfy T < |�|. To
improve the accuracy of �, we constructed the scaling
plots of T+0.75/T1 as a function of �/T in Fig. S5. We
first estimated the magnitude of � from Fig. 4(a), then
made slight adjustments to improve the scaling collapse
of the data. The final results of � are presented in Fig.
4(b) using N. We note that this procedure changes the
value of � only by a few K.
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