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The hole-doped cuprate high temperature superconductors enter the pseudogap

regime as their superconducting critical temperature, T

c

, falls with decreasing hole

density. Experiments have probed this regime for over two decades, but we argue

that decisive new information has emerged from recent X-ray scattering experiments

[1–3]. The experiments observe incommensurate charge density wave fluctuations

whose strength rises gradually over a wide temperature range above T

c

, but then

decreases as the temperature is lowered below T

c

. We propose a theory in which

the superconducting and charge-density wave orders exhibit angular fluctuations in

a 6-dimensional space. The theory provides a natural quantitative fit to the X-ray

data, and can be a basis for understanding other characteristics of the pseudogap.

The X-ray scattering intensity [4] of YBa2Cu3O6.67 at the incommensurate wavevectors

Q
x

⇡ (0.31, 0) or Q
y

⇡ (0, 0.31), shown in Fig. 1, increases gradually below T ⇡ 200K in a

concave-upward shape until just above T

c

= 60K. One possibility is that this represents an

order parameter of a broken symmetry, and the correlation length is arrested at a finite value

by disorder; however, such order parameters invariably have a concave-downward shape.

The temperature range is also too wide to represent the precursor critical fluctuations of an

ordering transition. Indeed, there is no ordering transition below T

c

, and, remarkably, the

scattering intensity decreases below T

c

at a rate similar to that of the rate of increase above

T

c

.

Instead, the increase in intensity between 200K and 60K is reminiscent of the classic mea-

surement by Keimer et al. [5], who observed a gradual increase in the neutron scattering
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FIG. 1: The temperature dependence of the CDW scattering intensity at Q = [-0.31 0 1.48] in

YBa2Cu3O6.67 measured by resonant x-ray scattering in Ref. [4]. This sample has T

c

⇡ 65.5K.

intensity at the antiferromagnetic wavevector in the insulating antiferromagnet La2CuO4

between 550K and 350K [6]. This increase was explained by the classical thermal, angular

fluctuations of the 3-component antiferromagnetic order parameter in d = 2 spatial di-

mensions [7]. Indeed, this is a special case of a general result of Polyakov [8] who showed

that order parameters with N � 3 components are dominated by angular fluctuations in

d = 2; here, we will exploit the N = 6 case to describe X-ray scattering in the pseudogap of

YBa2Cu3O6.67.

Previous work [9] used a Landau theory framework [10] to describe competition between

superconductivity and charge density wave order [11, 12]. The Landau theory introduces

a complex field  (r) to represent the superconductivity, and two complex fields �
x,y

(r) to

represent the charge order. The latter can represent modulations at the incommensurate



3

wavevectors Q
x,y

in not only the site charge density, but also modulations in bond variables

associated with a pair of sites [12, 13]; nevertheless, we will refer to it simply as “charge”

order. The free energy is restricted by 3 distinct U(1) symmetries: charge conservation,

translations in x, and translations in y, which rotate the phases of  , �
x

, and �
y

respectively.

There are also the discrete symmetries of time-reversal and the square lattice point group,

and these lead to the following form of the Landau free energy density (we ignore possible

anisotropies in the spatial derivative terms):

F = |r |2 + s1| |2 + u1| |4 + |r�
x

|2 + |r�
y

|2 + s2

�
|�

x

|2 + |�
y

|2
�

+u2

�
|�

x

|2 + |�
y

|2
�2

+ w

�
|�

x

|4 + |�
y

|4
�

+ v| |2
�
|�

x

|2 + |�
y

|2
�

(1)

The earlier analysis [9] considered “phase” and “vortex” fluctuations of only the supercon-

ducting order,  , and then assumed that the charge order amplitude was proportional to

�v h| |2i, where v > 0 is the competing order coupling: this analysis found a small decrease

in charge order with decreasing T , but did not find a prominent peak near T

c

. Here, we shall

provide a theory which is non-perturbative in v, and which includes the thermal fluctuations

of both  and �
x,y

self-consistently, and applies over a wide range of temperatures.

Our starting assumption is that it is always preferable for the electronic Fermi surface to

locally acquire some type of order, and so the origin of the 6-dimensional space defined by

( ,�
x

,�
y

) should be excluded; see Fig. 2. For each radial direction in this 6-dimensional

space, we can label the optimal state by a unit vector n

↵

(↵ = 1 . . . 6) with  / n1 +

in2, �x

/ n3 + in4, and �
y

/ n5 + in6. We will neglect amplitude fluctuations along

the radial direction and focus solely on the angular fluctuations; no assumptions of an

approximate O(6) symmetry are made a priori. So we introduce a partition function for

angular fluctuations of n

↵

, with all terms allowed by the symmetries noted earlier:

Z =

Z
Dn

↵

(r) �

 
6X

↵=1

n

2
↵

(r) � 1

!
exp

 
� ⇢

s

2T

Z
d

2
r

"
2X

↵=1

(rn

↵

)2 + �

6X

↵=3

(rn

↵

)2

+ g

6X

↵=3

n

2
↵

+ w

h�
n

2
3 + n

2
4

�2
+
�
n

2
5 + n

2
6

�2i
#!

. (2)

The couplings ⇢

s

and ⇢

s

� are the helicity moduli for spatial variations of the superconducting

and charge orders respectively. The coupling g measure the relative energetic cost of ordering

between the superconducting and charge order directions; this is most relevant term which

breaks the O(6) symmetry present for � = 1, g = 0, w = 0 to O(4)⇥O(2) symmetry. Finally
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FIG. 2: Schematic of the structure of fluctuations of Z in a 6-dimensional space representing the

complex superconducting order,  , and the complex charge orders �
x,y

. The red shading represents

the probability that the values of  , �
x,y

take particular values. At high T , all angles are explored,

while at low T below T

c

, for g > 0, the order lies mainly along the equator in the plane representing

 .
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w imposes the square lattice point group symmetry on the charge order: for w < 0 the

charge is uni-directional with only one of �
x

or �
y

non-zero, while for w > 0 the charge

ordering is bi-directional. The final symmetry of Z is O(2)⇥O(2)⇥O(2)oZ2, where the

3 O(2)’s are enlarged by discrete symmetries from the 3 U(1)’s noted earlier, and the Z2

represents the 90� spatial rotation symmetry, whose spontaneous breaking is measured by

the Ising-nematic order [14] m = |�
x

|2 � |�
y

|2.

The enhanced symmetries of Z at � = 1, g = 0, w = 0 include two SO(4) rotation

symmetries between d-wave superconductivity and incommensurate d-wave bond order that

emerge at low energies in the vicinity of a generic quantum critical point for the onset of

antiferromagnetism in a metal [15] (but with charge order Q’s along the (1, ±1) directions);

a non-linear sigma model of this theory was developed by Efetov et al. [16] and applied to

the phase diagram in a magnetic field [17]. It was also argued [13] that these symmetries can

be viewed as remnants of the SU(2) pseudospin gauge invariances of Mott insulators [18–20],

when extended to metals with a strong local antiferromagnetic exchange coupling. And we

also note the similarity to the SO(5) non-linear sigma model of competing orders [21], which

has antiferromagnetism, rather than charge order, competing with superconductivity.

A crucial feature of our analysis of Z is that the couplings ⇢

s

, g, �, and w are assumed to

be T -independent. The dependence on absolute temperature arises only from the Boltzmann

1/T factor in Z, and this strongly constrains our fits to the experimental data. This feature

ensures our restriction to angular and classical fluctuations in the order parameter space.

We computed the properties of Z using a classical Monte Carlo simulation. This was

performed using the Wol↵ cluster algorithm, after the continuum theory was discretized on

a square lattice of spacing a. This lattice is not related to the underlying square lattice

of Cu atoms in the cuprates; instead, it is just a convenient ultraviolet regularization of

the continuum theory, and we don’t expect our results to be sensitive to the particular

regularization chosen. All length scales in our results will be proportional to the value of a,

and the value of a has to be ultimately determined by matching one of them to experiments.

We performed simulations on lattice sizes up to 72⇥72, and were able to control all finite

size e↵ects.

We also performed a 1/N expansion on a generalized model with N components of n

↵

,

as described in the supplement. It was found to be quite accurate for the charge order

correlations, but does not properly describe the superconducting correlations near T

c

and
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below.

Our Monte Carlo results for the charge order correlations are shown in Fig. 3. We

computed the structure factor

S�
x

(p) =

Z
d

2
r

4X

↵=3

hn
↵

(r)n
↵

(0)i e

ip·r; (3)

in the X-ray experiments, p represents deviations from the wavevectors ±Q
x

, ±Q
y

. We show

the values of S�
x

⌘ S�
x

(p = 0) for a variety of parameters. At high T , we have regime of

increasing S�
x

with decreasing T , as the correlation length of both the superconductivity and

charge order increases, and the order parameter fluctuates over all 6 directions (see Fig. 2).

At low T , there is onset of superconducting order, and S�
x

decreases with decreasing T ,

as the order parameter becomes confined to the  plane. In Fig. 3, we fit the position of

the peak in S�
x

by choosing the value of ⇢

s

, and adjusted the vertical scale so that the

peak height also coincides. Note that we are not allowed to shift the horizontal axis, as T

is predetermined. The peak width and shape is not adjustable and is determined by the

theory; so it can be used to fix the values of the dimensionless parameters ga

2, wa

2, and

�. It is evident that the theory naturally reproduces the experimental curve, including the

rate of decrease of charge order on both sides of the peak, for a range of parameter values.

Another view of S�
x

is in Fig. 4, where we present results of the 1/N expansion.

Note that there are di↵erences between the experiment and theory in Fig. 3, both at very

low and very high T . However, the deviations are in the expected directions. At low T , in

the present classical theory without randomness, S�
x

vanishes as T ! 0; however, pinning

of the charge order by impurities is likely responsible for the observed S�
x

by impurities

[22, 23]. At high T , our assumption of a T -independent bare ⇢

s

starts failing at T ⇡ 2T
c

,

and we expect a crossover to a theory with significant amplitude fluctuations and smaller

S�
x

with increasing T .

Next, we examined the superconducting correlations by measuring the associated helicity

modulus. As shown in Fig. 5, this allows us to determine T

c

by comparing against the

expected universal jump [24]. We find a T

c

below the peak in S�
x

. This is consistent with

the arguments in Ref. [9], which predicted a monotonic decrease in charge order through T

c

:

evidently their computations only apply in a narrow window about T

c

. We note that we

have not accounted for inter-layer couplings in our two-dimensional theory: these can raise

T

c

and yield a cusp-like singularity in the charge order at T

c

.
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FIG. 3: Comparison of the X-ray data to Monte Carlo simulations of Z. Both axes measure

dimensionless quantities. For each set of values of ga

2, wa

2 and �, there were 2 fitting parameters.

The value of ⇢

s

was determined for each data set so that the peak positions match: this is equivalent

to a rescaling (but not shifting) of the T -axis, and does not determine the peak width or shape. For

ga

2 = 0.30 and wa

2 = 0.0 we have ⇢

s

= 160K. The height of the experimental data was rescaled

to make the peak heights match.
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FIG. 4: Density plot of S�
x

as a function of ga

2 and T/⇢

s

, for � = 1 and wa

2 = 0.1 at order 1/N

in the large N expansion.

One of the fundamental aspects of our theory is that the same set of parameters used

above to describe X-ray scattering experiments, also predict the strength of superconduct-

ing fluctuations above T

c

. The latter are detectable in diamagnetism measurements, and

indeed YBa2Cu3O6+x

shows significant fluctuation diamagnetism [25, 26] over the range of

temperatures that X-ray experiments measure charge order fluctuations. We compute the

diamagnetic susceptibility in the N = 1 theory in the supplement. Such a theory has

e↵ectively Gaussian superconducting fluctuations, albeit with a T dependence of the super-

conducting coherence length which is di↵erent from the standard Landau-Ginzburg form

[27]. An absolute comparison of this theory with the observations [26] yields the value of

a, which is found di↵er by about 33% from the value obtained from the charge order cor-

relation length. Considering the simplicity of the N = 1 theory, the possible di↵erences

in the X-ray and diamagnetism samples, and the absence of fitting to determine � and w,



9

0.30 0.32 0.34 0.36 0.38 0.40

T/⇢

s

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

he
lic

it
y

m
od

ul
us

/
⇢

s

ga

2 = 0.30, wa

2 = 0.0, � = 1

�
x

L = 24

L = 32

L = 48

L = 64

L = 72

0.30 0.35 0.40 0.45 0.50

T/⇢

s

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

S

�
x

/
a

2

ga

2 = 0.30, wa

2 = 0.0, � = 1

L = 24

L = 32

L = 48

L = 64

L = 72

FIG. 5: Top: Monte Carlo results for the helicity modulus, measured in the x-direction. Note that

⇢

s

is the helicity modulus at T = 0. We also plot �
x

= (2/⇡)T/⇢

s

, and use the relation helicity

modulus = (2/⇡)T
c

[24] to determine the Kosterlitz-Thouless temperature for each system size L.

A finite-size scaling analysis estimates T

c

/⇢

s

⇡ 0.345 for these parameters. Bottom: The structure

factor, showing a peak at around T/⇢

s

= 0.39. The Kosterlitz-Thouless temperature, T

c

, is marked

with a vertical dashed line. The prediction of Ref. [9] of increasing charge order with increasing

temperature applies in the immediate vicinity of T

c

, to the left of the peak.
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this result is encouraging. For a sharper comparison, we need to study the crossover into a

vortex dominated regime [28–30]: its description requires Monte Carlo study in our theory,

which is in progress. Eventually, with a complete study which also includes the e↵ects of

disorder, and more detailed measurements of charge order and superconducting correlations

on the same sample, we expect to be able to more tightly constrain the values of ga

2, wa

2,

�, and a.

Placing this work in a broader context, although we have only applied the theory to

a doping where charge order is most pronounced, we argue that it is characteristic of the

entire pseudogap phase. The dominant paradigms for the pseudogap have been phase fluc-

tuating superconductivity [31] and competing order [11, 12], with experiments providing

merit to both descriptions [1–3, 32–34]. This work unifies these paradigms in a single

multi-component order parameter which provides a natural description of the X-ray and

diamagnetism data. Computations of the influence of fluctuating superconductivity on pho-

toemission spectra [35] should now be extended to include all components of our order

parameter. Our model is also linked to theories of metals with antiferromagnetic spin fluc-

tuations [15, 16]: with decreasing doping, there is a zero field quantum critical point to the

onset of antiferromagnetic order [36], and this indicates that our present model will have to

be extended to explicitly include spin fluctuations [37] to apply at such densities.
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Appendix A: Large N expansion

We carried out the large N expansion of the partition function Z by generalizing it to a

model with a N -component unit vector n

↵

, in which the O(N) symmetry breaks down to
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O(N/3)⇥O(N/3)⇥O(N/3)oZ2. The action for such a model is

S =
⇢

s

2T

Z
d

2
r

8
<

:

N/3X

↵=1

(rn

↵

)2 + �

NX

↵=N/3+1

(rn

↵

)2 + g

NX

↵=N/3+1

n

2
↵

+w

2

4

0

@
2N/3X

↵=N/3+1

n

2
↵

1

A
2

+

0

@
NX

↵=2N/3+1

n

2
↵

1

A
23

5

9
=

; . (A1)

The large N expansion proceeds by a standard method [38], and requires that

T = t/N, (A2)

with t of order unity. We introduce an auxilliary field � to impose the unit length constraint,

and two fields �

x,y

which decouple the quartic terms. In this manner we obtain

S =
N⇢

s

2t

Z
d

2
r

8
<

:

N/3X

↵=1

(rn

↵

)2 + �

NX

↵=N/3+1

(rn

↵

)2 + g

NX

↵=N/3+1

n

2
↵

+i�

 
NX

↵=1

n

2
↵

� 1

!
+

�

2
x

+ �

2
y

4w
+ i�

x

2N/3X

↵=N/3+1

n

2
↵

+ i�

y

NX

↵=2N/3+1

n

2
↵

9
=

; . (A3)

In the N = 1 limit, we can integrate out the n

↵

, and the auxilliary fields are all fixed

at their saddle-point values i� = �, i�

x,y

= �

x,y

which are determined by the saddle point

equations

⇢

s

t

=
1

3

Z

p

"
1

p

2 + �

+
1

�p

2 + � + g + �

x

+
1

�p

2 + � + g + �

y

#

�

x

=
2wt

3⇢
s

Z

p

1

�p

2 + � + g + �

x

�

y

=
2wt

3⇢
s

Z

p

1

�p

2 + � + g + �

y

(A4)

where
R
p ⌘

R
d

2
p/(4⇡2). The optimum solution minimizes the free energy density, which is

given by

F =
t

6

Z

p

ln
⇥
(p2 + �)(�p

2 + � + g + �

x

)(�p

2 + � + g + �

y

)
⇤
� ⇢

s

�

2
�

⇢

s

(�
2
x

+ �

2
y

)

8w
(A5)

A solution with �

x

6= �

y

breaks Ising-nematic symmetry, and this happens at su�ciently

low temperatures for w < �g and g > 0, or for w < 0 and g < 0. The momentum-

dependent structure factors of the  = (n1, . . . , nN/3), �x

= (n
N/3+1, . . . , n2N/3), and �

y

=
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(n2N/3+1, . . . , nN

) correlators are

S (p) =
t/(3⇢

s

)

p

2 + �

S�
x

(p) =
t/(3⇢

s

)

�p

2 + � + g + �

x

S�
y

(p) =
t/(3⇢

s

)

�p

2 + � + g + �

y

. (A6)

For the 1/N corrections, we need to include fluctuations of �, �

x,y

about their saddle

point values. See Ref. [39] for details on a similar computation in a di↵erent context. The

propagators of these fields are expressed in terms of ‘polarization functions’ which are given

by

⇧(p, �) =
1

3

Z

q


1

(q2 + �)((p + q)2 + �)
+

1

(�q

2 + � + g + �

x

)(�(p + q)2 + � + g + �

x

)

+
1

(�q

2 + � + g + �

y

)(�(p + q)2 + � + g + �

y

)

�

⇧
x

(p, �) =
⇢

s

2wt

+
1

3

Z

q

1

(�q

2 + � + g + �

x

)(�(p + q)2 + � + g + �

x

)

⇧
y

(p, �) =
⇢

s

2wt

+
1

3

Z

q

1

(�q

2 + � + g + �

y

)(�(p + q)2 + � + g + �

y

)
(A7)

Then after including self-energy corrections in the n

↵

propagators, we obtain the 1/N cor-
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rections to Eq. (A6):

t

3⇢
s

S

�1
 (p) = p

2 + � +
1

N

1

⇧(0, �)

Z

q

1

⇧(q, �)


d⇧(q, �)

d�

+
2⇧(0, �)

((p + q)2 + �)

�

+
1

N

1

⇧(0, �)

Z

q

1

⇧
x

(q, �)

d⇧
x

(q, �)

d�

+
1

N

1

⇧(0, �)

Z

q

1

⇧
y

(q, �)

d⇧
y

(q, �)

d�

t

3⇢
s

S

�1
�

x

(p) = �p

2 + � + g + �

x

+
1

N

1

⇧(0, �)

Z

q

1

⇧(q, �)
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d�
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�
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1
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⇧
x
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d⇧
x
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+
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⇧
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+
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1
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(A8)

We evaluated these expressions numerically after regulating the theory on a square lattice

with lattice spacing a. Operationally, this means that we perform the replacement p

2 !

(4�2 cos(p
x

a)�2 cos(p
y

a))/a2 in all propagators, and the p

x,y

integrals extend from �⇡/a to

⇡/a. We show our results for the equal-time structure factor of the charge order correlations

S�
x

⌘ S�
x

(p = 0) in Fig. 6. For the parameters for which results are shown, we found good

convergence upon replacing each integral by a discrete sum over 200 points. It is evident

that the 1/N expansion is quite accurate, except near the peaks.

1. Ising-nematic correlations

We also computed the structure factor of the Ising-nematic order in the phase where Ising-

nematic order is preserved. The Ising-nematic order is m =
P2N/3

↵=N/3+1 n

2
↵

�
P

N

↵=2N/3+1 n

2
↵

and S

m

is its two-point correlator. We compute this by including a source J in the action

S ! S +
R

d

2
r J m. Then, after shifting the auxiliary fields and integrating out the n

↵

, we
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FIG. 6: Comparison of the charge order structure factor as obtained from the large N expansion

at order 1/N , with the computations of the Monte Carlo for the same parameters, and size L = 32.

Large N calculations are solid lines, and Monte Carlo data is plotted as circles with statistical

error bars.

find that the e↵ective action for the auxiliary fields maps via

S[�, �

x

, �

y

] ! S[�, �

x

, �

y

] +
i

2w
J (�

x

� �

y

) � t

N⇢

s

w

J

2 (A9)

By taking functional derivatives with respect to J , and then setting J = 0, we can now

relate the Ising structure factor to the 2-point correlation of the auxiliary fields:

S

m

(p) =
2t

N⇢

s

w

� 1

4w2

Z
d

2
r e

ip·r h(�
x

(r) � �

y

(r)) (�
x

(0) � �

y

(0))i (A10)

At leading order in the 1/N expansion we can evaluate the correlator using the polarization

functions in Eq. (A7); because we are in the Ising-symmetric phase, ⇧
x

= ⇧
y

, and

NS

m

(p) =
2t

w⇢

s

� 1

w

2⇧
x

(p, �)
=

4(t/⇢
s

)2P (p)

3 + 2w(t/⇢
s

)P (p)
(A11)
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FIG. 7: Ising-nematic structure factor, as computed in the N = 1 theory for ga

2 = 0.3, � = 1 and

wa

2 = �0.2. The corresponding charge ordering structure factor for these parameters is shown in

Fig. 6.

where

P (p) =

Z

q

1

(�q

2 + � + g + �

x

)(�(p + q)2 + � + g + �

x

)
(A12)

We show the T dependence of S

m

⌘ S

m

(p = 0) in Fig. 7 for a particular set of couplings.



16

2. Diamagnetic susceptibility

We now compute the linear response to a magnetic field applied perpendicular to the

layer in the N = 1 theory. We assume that the field only has an orbital coupling to

the superconducting order. Here, we will carry out the computation explicitly with lattice

regularization, on a square lattice of spacing a, because we want to keep all expressions

properly gauge-invariant.

At N = 1 we can set i� = �, and just treat the ↵ = 1, 2 components of n

↵

as Gaussian

fields. Here, we normalize the complex superconducting order as e = (n1+in2)/
p

2t/(N⇢

s

).

Then the part of the action that detects the presence of the magnetic field is

S = �
X

hiji

⇣
e ⇤
i

e 
j

e

iA

ij + c.c
⌘

+
X

i

(4 + �a

2)|e 
i

|2 (A13)

where A

ij

is the Peierls phase from the applied field. The paramagnetic current is

J

i

(q) =
2

a

Z
d

2
k

4⇡2
e ⇤(k + q/2)e (k � q/2) sin(k

i

a) (A14)

So the 2-point current correlator, including the diamagnetic contribution, is

K

ij

(q) = hJ
i

(q)J
j

(�q)i

=
1

a

2

Z
d

2
k

4⇡2

4 sin(k
i

a) sin(k
j

a)

((4 � 2 cos((k
x

+ q

x

/2)a) � 2 cos((k
y

+ q

y

/2)a))/a2 + �)

⇥ 1

((4 � 2 cos((k
x

� q

x

/2)a) � 2 cos((k
y

� q

y

/2)a))/a2 + �)

� �

ij

Z
d

2
k

4⇡2

2 cos(k
x

a)

((4 � 2 cos(k
x

a) � 2 cos(k
y

a))/a2 + �)
(A15)

This vanishes at q = 0 as expected by gauge invariance. For small q we obtain

K

ij

(q) = �(q2�
ij

� q

i

q

j

)
1

a

4

Z
d

2
k

4⇡2

8 sin2(k
x

a) sin2(k
y

a)

((4 � 2 cos(k
x

a) � 2 cos(k
y

a))/a2 + �)4
(A16)

For small �, the integral can be evaluated near k = 0, and we obtain

K

ij

(q) = �(q2�
ij

� q

i

q

j

)

12⇡�

(A17)

Restoring physical units, this implies that the magnetic susceptibility is

� = �1

s

✓
2e

~

◆2
k

B

T

12⇡�

(A18)
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FIG. 8: Diamagnetic susceptibility for the same set of parameters as in Fig. 7. The vertical axis is

dimensionless, and its value in the N = 1 theory is (k
B

T/⇢

s

)/(12⇡�a

2).

where s is the interlayer spacing. This agrees precisely with the standard result [27] in

Eq. (1) of Ref. [26], after we observe from Eq. (A13) that � is equal to ⇠

�2
ab

(T ), where ⇠

ab

(T )

is the superconducting coherence length.

We plot the T dependence of � in Fig. 8 for the same set of parameters used in Fig. 7. We

have only shown higher T values because the large N theory, which is e↵ectively a Gaussian

theory, is not reliable close to the superconducting T

c

. Note that the T dependence of � is

similar to that in the observations [26].

For an absolute comparison, we note that for the diamagnetism data of Ref. [26], a fit to

the form in Eq. (A18) at 70 K for their UD57 sample yields [40] a value of � ⇡ (39 Å)�2.

For the N = 1 theory, we use the results at the T which has the same ratio with position in

the peak of the charge order, which is k

B

T/⇢

s

= 0.44; at this T , the N = 1 theory results

in Fig. 8 yield �a

2 = 0.14. Fitting this to the diamagnetic observations we obtain a ⇡ 15 Å.

An independent estimate of a can be obtained from the X-ray observations of Ref. [4],

but it must be noted that these are for a di↵erent sample. Their o-VIII sample has T

c

= 65.5

K, and we use the charge order correlation length at the T with the same ratio to T

c

as in

the diamagnetic data: this has T = 80 K where ⇠cdw ⇡ 40 Å. In our N = 1 theory, for the
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same parameters as in Figs. 7 and 8, the charge order structure factor in Eq. (A6) yields

⇠

�2
cdwa

2 = (� + g + �

x

)a2 = (� + g + �

y

)a2 = 0.32 at k

B

T/⇢

s

= 0.44. Comparing theory and

experiment we now have a ⇡ 23 Å.

We also note that the charge order results in Fig 3 of the main text used � = 1 because

a cluster Monte Carlo algorithm was possible only for this value. However, we did find that

the shape of charge order structure factor peak was relatively insensitive to the values of �

and w, while these parameters are more consequential for the diamagnetic susceptibility.
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