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We consider Z2 spin liquids on the kagome lattice on the verge of a valence bond solid (VBS)
transition, where vortex excitations carrying Z2 magnetic flux – so-called visons – condense. We show
that these vison excitations can couple directly to the external electromagnetic field, even though
they carry neither spin nor charge. This is possible via a magneto-elastic coupling mechanism
recently identified by Potter et al.1 For the case of transitions to a 36-site unit cell VBS state the
corresponding finite ac-conductivity has a specific power law frequency dependence, which is related
to the crossover exponent of the quantum critical point. The visons’ contribution to the optical
conductivity at transitions to VBS states with a 12-site unit cell vanishes, however.

I. INTRODUCTION

Spin liquids,2,3 albeit being Mott insulators, exhibit
a finite ac conductivity below the Mott gap provided
they have gapless excitations which couple to the ex-
ternal electromagnetic field.4–7 Recent measurements on
the kagome material ZnCu3(OH)6Cl2 (Herbertsmithite),
which is a strong contender for exhibiting a spin liquid
ground-state, indeed showed a specific power law fre-
quency dependence of the ac conductivity below the Mott
gap.8 The nature of the ground-state in this material re-
mains an open issue, however. While experiments are in
favor of an almost gapless spin-liquid,9,10 numerical re-
sults of the antiferromagnetic Heisenberg model on the
kagome lattice are still controversial. Projected fermion
wavefunction studies suggest a U(1) Dirac spin liquid
as ground-state11, whereas density matrix renormaliza-
tion group (DMRG) approaches provide substantial ev-
idence for a gapped Z2 spin-liquid.12–14; projected bo-
son wavefunction studies also support a Z2 spin liquid15.
Large scale exact diagonalization studies show spin gaps
and ground state energies in agreement with the DMRG
results16.

In a recent paper Potter et al.1 identified three mech-
anisms which give rise to a finite optical conductivity
�(!) of gapless spin liquids on the kagome lattice below
the Mott gap, all leading to a characteristic �(!) ⇠ !2

frequency dependence. They argued that a magneto-
elastic coupling, where an applied electric field distorts
the lattice and thereby modulates the magnetic exchange
couplings, directly couples the external- to the emergent
gauge field of a U(1) Dirac spin liquid and gives the
largest contribution to the optical conductivity out of the
three mechanisms they found. Following their approach
we show that an external field can also couple to vison ex-
citations of a Z2 spin liquid by the same magneto-elastic
coupling mechanism. Indeed, since the visons are Z2-
vortices living on the dual lattice, their hopping ampli-
tudes are modulated in accordance with the field-induced
distortion of the direct lattice. This mechanism provides
a direct coupling between the external electromagnetic
field and vison excitations of a Z2 spin liquid, which carry

neither spin nor charge.

In the following, motivated by the above mentioned
DMRG studies, we focus on the situation of a Z2 spin
liquid17 close to a valence bond solid (VBS) transition,
where the vison gap vanishes. In a previous work18 we de-
rived low energy field theories for di↵erent Z2 spin liquid
to VBS transitions on the kagome lattice. Based on these
results we show that the magneto-elastic coupling of vi-
sons to the external field leads to a power law frequency
dependence of the conductivity for transitions to a VBS
state with a 36-site unit cell. This power law comes with
a considerably smaller exponent than the ⇠ !2 behavior
found in Ref. 1. By contrast, we show that the contribu-
tion of visons to the ac-conductivity at transitions to a
VBS state with a 12-site unit cell vanishes on symmetry
grounds.

Quite generally, a uniform external electric field can
only couple to a time-reversal even spin singlet operator
which transforms as a vector under the lattice symmetry
group. Physically, this vector operator represents the lat-
tice polarization P, which couples linearly to the external
electric field E:

�H ⇠ P ·E (1.1)

Since visons transform projectively under lattice sym-
metry operations, we have to find an operator in terms
of the vison fields which transforms as a vector under
the corresponding projective symmetry group (PSG).19

In our previous paper18 we showed explicitly how the
visons transform under the PSG and we are going to
utilize these results in order to construct such a vector
operator on symmetry grounds. Moreover, we show that
this operator is indeed the unique polarization operator
which couples to the external field by the above men-
tioned magneto-elastic mechanism.
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FIG. 1: (Color online) kagome lattice (black solid lines) and
its dual dice lattice (blue dashed lines). Shown is one ex-
tended 12-site unit cell of the dice lattice together with a
gauge choice of frustrated bonds (Jij = �J shown as solid
red lines; other dice lattice bonds have Jij = J) for the ef-
fective frustrated Ising model describing the vison excitations
(see text).

II. MAGNETO-ELASTIC COUPLING
BETWEEN VISONS AND THE EXTERNAL

ELECTROMAGNETIC FIELD

The basic idea behind the magneto-elastic coupling
mechanism of Ref. 1 is the fact that positively charged
copper ions can be displaced within the unit cell by an ap-
plied uniform external electric field, which in turn leads
to a modulation of the super-exchange amplitudes be-
tween neighboring spins. The corresponding perturba-
tion to the Heisenberg model takes the form

�H =
X

hi,ji

�J̃
ij

S
i

· S
j

, (2.1)

where S
i

describes a spin-1/2 operator on lattice site
i. The pattern of modulated super-exchange amplitudes
�J̃

ij

which couples to the external field can be inferred
on symmetry grounds, as shown explicitly in Ref. 1.

For our purpose, the important low energy excitations
of a Z2 spin liquid close to a VBS transition are vortices
carrying Z2 magnetic flux, so-called visons. These are
described by an e↵ective fully frustrated transverse field
Ising model on the dual dice lattice (see Fig. 1). Its low
energy properties are captured by a field-theory of soft-
spin modes18 with a Lagrangian of the form (⌧ denotes
the imaginary time)

L
v

=
X

ij

�
i

(⌧)
⇥
(�@2

⌧

+m2)�
i,j

� J
ij

⇤
�
j

(⌧) + . . . (2.2)

together with the full frustration condition

Y

plaq.

sign(J
ij

) = �1 , (2.3)

where the product is over an elementary plaquette of the
dice lattice. A specific gauge choice for the J

ij

’s which
satisfies this frustration condition is shown in Fig. 1.
Note that any gauge choice requires an extended unit
cell. In Eq. (2.2) we didn’t explicitly include higher order
terms in the fields � that are allowed by symmetry and
describe interactions between the visons. Furthermore,
note that the hopping amplitudes J

ij

are not equal to
super-exchange amplitudes J̃

ij

in the Heisenberg model
above, but they are expected to be of the same order,
since the magnetic super-exchange coupling is the only
energy scale in the problem.

Important for our considerations is the fact that a dis-
tortion of the kagome lattice inevitably leads to a dis-
tortion of the dual dice lattice. This implies that the
hopping amplitudes J

ij

of the visons on the dice lattice
are modulated by the magneto-elastic coupling in a way
similar to the modulation of the exchange amplitudes in
the Heisenberg model, giving rise to a perturbation of
the form

Lm-e = �
X

i<j

�
ij

J
ij

�
i

(⌧)�
j

(⌧) =
X

`

P(`) ·E , (2.4)

where P(`) is the polarization of an elementary unit cell
of the dice lattice and the sum on ` runs over unit cells.
We have �

ij

> 0 (�
ij

< 0) for a squeezed (stretched)
bond, where the hopping amplitude increases (decreases).
The absolute value of �

ij

, which parametrizes the change
of the vison hopping amplitude with respect to the ap-
plied electric field E can be simply estimated as

|�
ij

| ⇠ eE

KCua
(2.5)

withKCu, e, and a as e↵ective spring constant of the cop-
per ions, elementary charge, and lattice constant, respec-
tively, and E = |E| is the external electric field. The pat-
tern of modulated hopping amplitudes can be inferred on
symmetry grounds. Following Ref. 1 we construct an irre-
ducible representation of the modulated bonds �

ij

J
ij

�
i

�
j

which transforms as a vector under the symmetry group
of the dice lattice.20 This operator is proportional to the
lattice polarization operator P(`) = (P

x

, P
y

) which takes
the form

P
x

=
ea

J


+ + 2

�
(2.6)

P
y

=
ea

J

p
3


�

�
, (2.7)

where black (white) ellipses correspond to squeezed
bonds +�J

ij

�
i

�
j

(stretched bonds ��J
ij

�
i

�
j

) within one
elementary unit cell of the dice lattice and we have de-
fined

� =
J

KCua2
(2.8)
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with J denoting the absolute value of the nearest neigh-
bor vison hopping amplitude. The dimensionless param-
eter � represents the magneto-elastic coupling strength
and is typically much smaller than one. While the elas-
tic energy KCua

2 is on the order of 1eV, J takes values
on the order of 10 meV. On the extended 12-cite unit cell
shown in Fig. 1 the basis elements take the explicit form

⌘ (2.9)

= �J
⇥
�2(R)�5(R)� �1(R)�3(R)

+�3(R)�4(R+ 2v � 2u)� �8(R)�10(R)

��6(R)�9(R) + �7(R)�8(R+ 2v � 2u)

+�9(R)�11(R)� �12(R)�2(R+ 2v)
⇤

and similar expressions for the two other basis elements.
Note that the sign of the gauge choice from Fig. 1 has
been taken into account in the equation above. R =
2mu + 2nv denotes the lattice vector of the extended
12-site unit cell, with m,n 2 Z and u = (3/2,

p
3/2),

v = (3/2,�
p
3/2) as the two basis vectors of the dice

lattice.
Also note that the specific hopping amplitudes beyond

nearest neighbors, which had to be introduced in Ref. 18
in order to give a dispersion to the otherwise flat vison
bands, are not modulated here, because the distance be-
tween these sites doesn’t change.

III. OPTICAL CONDUCTIVITY

A. Transition to a 12-site VBS state

We start by briefly reviewing the necessary results of
Ref. 18. The field theory for visons at the transition from
a Z2 spin liquid to a VBS state with a 12-site unit cell
is an O(4) theory with additional 4th order terms which
break the symmetry down to GL(2,Z3). Its Lagrangian
takes the form

L =
X

n=1...4

((r 
n

)2 + (@
⌧

 
n

)2 + r 2
n

+ u 4
n

)

+a
X

n<m

 2
n

 2
m

+ b
⇥
 2
1( 2 3 �  2 4 +  3 4)

+ 2
2( 1 3 +  1 4 �  3 4)

+ 2
3( 1 2 �  1 4 +  2 4)

� 2
4( 1 2 +  1 3 +  2 3)

⇤
. (3.1)

The fields  
i

are linear combinations of the soft-spin
fields �

i

and correspond to the modes which become crit-
ical at the VBS transition, i.e.

�
j

(R) =
X

n=1...4

 
n

v
(n)
j

, (3.2)

where v(n)
j

denotes the four eigenvectors corresponding to
the highest, four-fold degenerate eigenvalue of the Fourier

transform of the hopping matrix J
(ij)
q=0 at momentum q =

0 and j = 1, . . . , 12 is a sublattice index in the extended
12-site unit cell (see Fig. 1 and Ref. 18 for details). Note
that in this case �

j

(R) does not depend on the lattice
vector R of the extended 12-site unit cell.
The four fields ( 1, 2, 3, 4) transform under lattice

symmetries via a four dimensional representation of the
PSG generated by lattice translations Tu, six-fold rota-
tions R6 and reflections about the x-axis I

x

, which take
the form

Tu =

2

64

0 0 �1 0
0 0 0 �1
1 0 0 0
0 1 0 0

3

75 , I
x

=

2

64

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 �1

3

75 ,

R6 =

2

64

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

3

75 . (3.3)

We are looking for an operator which transforms as a
vector under (3.3). Such an operator which couples to
lattice distortions (i.e. terms in the vison Hamiltonian
of the form �J

ij

�
i

�
j

) can only be bilinear in the fields
 . Moreover, such an operator has to change its sign
under rotations by 180 degrees if it is supposed to trans-
form like a vector. Now one can readily show from (3.3)
that (R6)3 = 1, i.e. the fields transform back to them-
selves after 180 degree rotations, thus it is not possible
to construct a vector operator out of the fields  

i

with-
out invoking spatial gradients. Since the external electric
field is homogeneous and only couples to the zero mo-
mentum component of such a vector operator, any PSG
invariant bilinear term in the  

i

’s involving gradients is
ruled out. In principle it would be possible to construct
a fourth order term involving gradients which transforms
as a vector and gives a non-zero contribution to the con-
ductivity when coupled to a homogeneous external field,
but such an operator cannot correspond to the lattice
polarization operator as it is not a bilinear. Since we
are not aware of a mechanism which couples the electric
field to a quadrilinear operator in the fields  , we do not
pursue this route further at the moment.
We can also directly show that the lattice polarization

operator vanishes for the case of a transition to a 12-
site VBS state by using Eqs. (2.6), (2.7), (2.9) and (3.2).
Since �

j

(R) doesn’t depend on the lattice vector R we
get

= �J

4X

n,m=1

 
m

 
n

h
v
(n)
2 v

(m)
5 � v

(n)
1 v

(m)
3

�v
(n)
8 v

(m)
10 � v

(n)
6 v

(m)
9 + v

(n)
9 v

(m)
11

+v
(n)
7 v

(m)
8 + v

(n)
3 v

(m)
4 � v

(n)
12 v

(m)
2

i

= 0 , (3.4)
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where the last equation follows after using the explicit

form of the eigenvectors v(n)
j

from Ref. 18. Similarly also
the other two basis elements that are used to construct
the polarization operator shown in Eqs. (2.6) and (2.7)
vanish. Consequently it is not possible to construct a lat-
tice polarization operator which couples to the external
electric field via the magneto-elastic mechanism. In fact
we see that the bonds related by a 180 degree rotation
cancel each other, confirming our earlier argument.

B. Transition to a 36-site VBS state

For a transition to a VBS state with a 36-site unit
cell the visons are described by an O(8) theory with ad-
ditional fourth and sixth order terms which break the
symmetry down to GL(2,Z3)⇥D3. The explicit form of
the Lagrangian and the corresponding eight-dimensional
matrix representation of the PSG can be found in Ref. 18.
In contrast to the previous case, we can straightforwardly
construct a homogeneous bilinear operator which trans-
forms like a vector under the PSG by making the ansatz
(P = (P

x

,P
y

))

P
x

=
X

i,j=1...8

a
ij

 
i

 
j

, P
y

=
X

i,j=1...8

b
ij

 
i

 
j

(3.5)

and determining the coe�cients of the matrices (a)
ij

⌘
a
ij

and (b)
ij

⌘ b
ij

via

RT
6 aR6 = (a+

p
3b)/2 (3.6)

RT
6 bR6 = (b�

p
3a)/2 (3.7)

TT
u aTu = a (3.8)

TT
u bTu = b (3.9)

IT
x

a I
x

= a (3.10)

IT
x

b I
x

= �b . (3.11)

This vector operator is uniquely determined up to a con-
stant prefactor and takes the form

P
x

⇠
h
ei5⇡/6

�
2 1 

⇤
2 +  1 

⇤
3 +  ⇤

1 4 + 2 3 
⇤
4 �  2 

⇤
4

�

+i 2 
⇤
3

i
+ c.c. (3.12)

P
y

⇠
p
3
h
ei5⇡/6

�
 ⇤
1 4 �  1 

⇤
3 +  2 

⇤
4

�
+ i 2 

⇤
3

i

+ c.c. (3.13)

As we will show now, this operator corresponds to
the unique lattice polarization operator P = ea�P in
Eqs. (2.6) and (2.7). For transitions to a VBS state with
a 36-site unit cell, the soft-spin modes � are related to
the critical modes  via18

�
j

(R) = eiQ1·R
X

n=1...4

 
n

v
(n)
Q1,j

+ c.c. (3.14)

where q = ±Q1 =
�
0, ± 2⇡

3
p
3

�
are the momenta where

the vison dispersion has its minima. When inserting Eq.
(3.14) into Eqs. (2.6) and (2.7) it is important to keep
only the zero-momentum components (i.e. the terms in-
dependent of the lattice vector R) since the external elec-
tric field is homogeneous and will only couple to such
terms. Using the shorthand notation

µ
j

=
X

n=1...4

 
n

v
(n)
Q1,j

(3.15)

we obtain

= �J
�
µ2µ

⇤
5 � µ1µ

⇤
3 � µ8µ

⇤
10 � µ6µ

⇤
9 + µ9µ

⇤
11

+µ7µ
⇤
8e

�i2Q1·(v�u) + µ3µ
⇤
4e

�i2Q1·(v�u)

�µ12µ
⇤
2e

�i2Q1·v) + c.c.

=
�Jp
2

�
� e�i⇡/6 1 

⇤
2 + ei⇡/6 1 

⇤
4

�e�i⇡/6 3 
⇤
4 � i 2 

⇤
3

�
+ c.c. (3.16)

The exponential factors arise from bonds connecting sites
in adjacent unit cells. Using this and similar expres-
sions for the two other basis elements, we reproduce Eqs.
(3.12) and (3.13) exactly up to a multiplicative constant.

The frequency dependence of the conductivity can now
be obtained using Kubo’s formula

�(!) ⇠ !hP
!

P�!

i , (3.17)

where the frequency dependence of the polarization cor-
relation function is determined by the scaling dimension
of the polarization operator P

!

. In Ref. 18 we couldn’t
find a stable fixed point at one-loop order for our O(8)
theory including the additional fourth order terms. Mak-
ing the simplifying assumption that the critical point be-
tween the Z2 spin-liquid and the VBS phase is described
by the standard O(8) Wilson-Fisher fixed point, the po-
larization operator in Eqs. (3.12) and (3.13) can be ex-
panded in terms of components of the traceless symmet-
ric bilinear tensor operator of the O(8) model

T
mn

(x) =  
n

(x) 
m

(x)� �
m,n

8

X

k

 
k

(x)2 , (3.18)

where  
n

(n 2 {1, . . . , 8}) now represents the real- and
imaginary parts of the four complex fields in Eqs. (3.12)
and (3.13). We denote the scaling dimensions of this
tensor operator, and thus the polarization operator, by
�

T

. Then the frequency scaling of the ac conductivity
in d = 2 dimensions is given by

�(!) ⇠ !2�T�2 . (3.19)

The scaling dimension can be expressed in terms of the
crossover exponent �

T

by �
T

= 3� �
T

/⌫, and has been
evaluated to six loops21 as �

T

= 1.55. Using ⌫ = 0.83022
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we obtain

2�
T

� 2 = 0.27 (3.20)

This exponent is considerably smaller than two, giving
rise to a large optical response compared to the mecha-
nisms discussed in Ref. 1 at frequencies below the mag-
netic super-exchange coupling. The resulting expression
for the frequency dependent conductivity finally takes the
form

�(!) ⇡ e2

h

⇣ J

KCua2

⌘2⇣!
J

⌘0.27
(3.21)

where we have reintroduced Planck’s constant h. Note
again that J denotes the nearest neighbor vison hopping
amplitude here, which is expected to be on the order of
the magnetic super-exchange coupling of the underlying
Heisenberg model, since this is the only energy scale in
the problem.

IV. DISCUSSION

We calculated the optical conductivity of Z2 spin liq-
uids at a quantum critical point to a VBS state with a
36-site unit cell, and found a power-law frequency depen-
dence of the conductivity �(!) ⇠ !0.27, a particularly
small exponent. This indicates a large optical conduc-

tivity at low frequencies at the critical point, and the
enhancement should also persist away from the critical
point.
This calculation is based on the simplifying assump-

tion that the transition is described by the Wilson-Fisher
fixed point of the O(8) model. It is still an open question,
if the full theory including the O(8) symmetry break-
ing terms presented in Ref. 18 exhibits a stable fixed
point, and it would be interesting to study its critical
behavior in the future. Going beyond a one-loop calcu-
lation is a daunting task, however, given the complicated
form of the Lagrangian (see Eq. (3.24) in Ref. 18). A
viable approach would be to study the frustrated Ising
model directly using Monte-Carlo simulations. In any
case, the smallness of the optical conductivity exponent
relies mainly on the fact that polarization operator is a
bilinear in the field of the O(8) model, with no addi-
tional spatial gradients, and so we can reasonably expect
a small exponent at any possible fixed point which breaks
the O(8) symmetry down to GL(2,Z3)⇥D3.
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16 A. M. Läuchli, J. Sudan, and E. S. Sorensen, Phys. Rev.

B 83, 212401 (2011).
17 S. Sachdev, Phys. Rev. B 45, 12377 (1992).
18 Y. Huh, M. Punk, and S. Sachdev, Phys. Rev. B 84, 094419

(2011).
19 X.-G. Wen, Phys. Rev. B 65, 165113 (2002).
20 Note that only the combination Jij�i�j is gauge invariant.

This is why we construct an irreducible vector representa-
tion of the modulated bond strengths Jij�i�j , and not of
the modulated hopping amplitudes alone.

21 P. Calabrese, A. Pelissetto, and E. Vicari, Phys. Rev. E
65, 046115 (2002).

22 S. A. Antonenko and A. I. Sokolov, Phys. Rev. E 51, 1894
(1995).

5


	I Introduction
	II Magneto-elastic coupling between visons and the external electromagnetic field
	III Optical conductivity
	A Transition to a 12-site VBS state
	B Transition to a 36-site VBS state

	IV Discussion
	 Acknowledgments
	 References

