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Abstract

We consider AdS2⇥R2 solutions supported by a magnetic field, such as those which arise in

the near-horizon limit of magnetically charged AdS4 Reissner-Nordstrom black branes. In

the presence of an electrically charged scalar field, such magnetic solutions can be unstable

to spontaneous formation of a vortex lattice. We solve the coupled partial di↵erential equa-

tions which govern the charged scalar, gauge field, and metric degrees of freedom to lowest

non-trivial order in an expansion around the critical point, and discuss the corrections to

the free energy and thermodynamic functions arising from the formation of the lattice.

We describe how such solutions can also be interpreted, via S-duality, as characterizing

infrared crystalline phases of conformal field theories doped by a chemical potential, but in

zero magnetic field; the doped conformal field theories are dual to geometries that exhibit

dynamical scaling and hyperscaling violation.
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1 Introduction

A topic of recent interest has been the holographic description of phases of quantum field

theory with spatial anisotropy and/or inhomogeneity [1–15]. This is motivated in part

by the crucial role that momentum relaxation due to inhomogeneities plays in transport

phenomena in condensed matter systems, and in part by intrinsic interest in the rich physics

of such phases.

Our goal in this work is twofold. On the one hand, as an extension of the ideas discussed

in [16], we would like to illustrate the emergence of crystalline ground states (‘solids’)

in conformal field theories doped by a chemical potential coupling to a globally conserved

U(1) charge, but in zero magnetic field. In 2+1 dimensions, monopole operators associated

with the global U(1) symmetry [16–18] serve as order parameters for solid phases in doped

CFTs. Electric-magnetic duality allows one to find a dual description where the magnetic

degrees of freedom are manifested in terms of electrically charged operators. In the bulk

gravitational description, this allows us to view the formation of the solid by studying vortex

lattice formation in the theory of a charged scalar moving in a background magnetic field.

A crucial advantage of studying the solid phases of doped CFTs by using this dual charged

scalar is that the Dirac quantization condition on the monopole charge translates into an

exact commensurability relation between the area of the unit cell of the crystal and the

density of doped charges [16, 19].

On the other hand, an open problem in the study of holographic lattices has been to find,

analytically, gravitationally back-reacted solutions for a crystalline lattice of dimension

d > 1. This has largely been because of the relative di�culty of solving coupled systems of

partial di↵erential equations, instead of the ordinary di↵erential equations which normally

govern simple backgrounds in gauge/gravity duality. Here, we give an example of such

a crystalline metric in d = 2. Our work builds on the earlier papers [3], which found

an elegant solution for a vortex lattice in the probe approximation, and [11], where the

backreaction of such a lattice on bulk gauge fields was studied in a di↵erent setting.

The organization of this paper is as follows. In §2, we review the basic unperturbed

AdS2 ⇥ R2 solution. In §3, we incorporate a charged scalar field and describe the vortex

lattice solution. In §4, we describe the basic physics visible in the perturbative vortex

lattice solution. In §5, we characterize how such a lattice could also emerge in the IR

geometry of a gravitational solution which exhibits dynamical scaling with hyperscaling

violation, as the S-dual of a doped CFT in zero magnetic field. Possible directions for

future research are discussed in §6.
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2 Magnetic AdS2 ⇥R2 solutions

Consider the theory with action

S =

Z
d4x

p�g

✓
R� 1

4
F
µ⌫

F µ⌫ � 2⇤

◆
(2.1)

where ⇤ < 0. It has AdS2 ⇥R2 solutions with metric

ds2 = L2

✓
�dt2

r2
+

dr2

r2
+ dx2 + dy2

◆
(2.2)

where
1

L2
= �2⇤ . (2.3)

The gauge field supporting the solution is

F
xy

= Q
m

dx ^ dy (2.4)

with Q
m

fixed in terms of the AdS radius by the equation

Q
m

=
p
2L . (2.5)

In particular, this means that for these solutions, fixing the magnetic field fixes also the

cosmological constant and the AdS radius.

In addition to its intrinsic interest, this solution arises as the near-horizon geometry of

extremal magnetically charged AdS/Reissner-Nordstrom black branes with AdS4 asymp-

totics. In this context, the AdS2 near-horizon region has played a crucial role in elucidating

the non-Fermi liquid behavior of probe fermions [20–22] scattering o↵ the bath of locally

critical excitations represented by the AdS2 geometry [23,24].

3 The vortex lattice

Our interest is not in the pure AdS2 solution (2.2). We wish to include also an electrically

charged scalar field,  , in the full action. In part, this is because a generic such theory

could include such scalars; in part, it is motivated by the duality considerations to be

described in §5.

In any case, here, we will see that in some ranges of parameters, the charged scalar will

qualitatively change the IR physics. The simplest case in which we can see this e↵ect will
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be directly in the AdS2⇥R2 background of § 2. We will impose a hard wall cuto↵ at r = r0
in the deep IR, along with suitable boundary conditions, to be described below. We can

think of r0 as a proxy for a ‘confinement scale’ or a ‘temperature.’ Tuning the magnetic

field relative to the ‘temperature’ will trigger the scalar instability.

After including the  coupling to the gauge field the action becomes

S =

Z
d4x

p�g

✓
R� 2⇤� 1

4
F 2 � |r

µ

 |2 �m2| |2 � �| |4
◆

. (3.1)

We have defined r
µ

= @
µ

+ ieA
µ

, where e is the electric charge of the scalar field. From

this point on we will set e = 1. This action has a stress-energy tensor of the form

T
µ⌫

= �g
µ⌫

2
L

mat

+
1

2
F
µ�

F �

⌫

+e2A
µ

A
⌫

| |2+ 1

2
[@

µ

 @
⌫

 ⇤+ ie (A
µ

@
⌫

+A
⌫

@
µ

) ⇤+h.c.] (3.2)

where

L
mat

=
1

4
F 2 + |r

µ

 |2 +m2| |2 + �| |4. (3.3)

We may expand the magnitude of |r
µ

 |2 as

|r
µ

 |2 = |@
µ

 |2 + iA
µ

( @µ ⇤ �  ⇤@µ ) + A2 | |2 . (3.4)

At this point, we can calculate the Euler-Lagrange equation for  by di↵erentiating with

respect to  ⇤:

@
µ

(
p�grµ ) = �p�g(iAµr

µ

 �m2 � 2�| |2 ), (3.5)

and the equation of motion for the gauge field,

1p�g
@
µ

(
p�gF µ⌫) = i( @⌫ ⇤ �  ⇤@⌫ ) + 2A⌫ | |2. (3.6)

In addition to these equations of motion, we will also need to solve the Einstein equations,

R
µ⌫

� (R� 2⇤)

2
g
µ⌫

= T
µ⌫

, (3.7)

when we include backreaction of the  condensate on the gauge field and the metric.

We will expand perturbatively in a small parameter ✏ around the solution  = 0 with

background gauge field of the form

A
x

= Q
c

y, A
y

= 0. (3.8)

The scalar field in the competing vortex phase will itself be of order ✏. For fixed r0 and

boundary conditions (to be discussed below), we will choose Q
c

to be just at the onset for
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the transition to forming vortices. At this critical value of the magnetic field, the  = 0

solution will be degenerate with a vortex lattice solution. As we increase the magnetic

field to slightly above its critical value,  = 0 will no longer be the preferred solution, and

the vortex lattice will be preferred. As is familiar, the onset of the transition is signalled

by the existence of a purely normalizable solution for  that respects the IR boundary

conditions.

We can parametrize the backreaction of the scalar on the gauge sector through a pertur-

bative expansion in the distance away from the critical field. The scalar will have the

form

 (r, x, y) = ✏ 1(r, x, y) + ✏3 3(r, x, y) + . . . (3.9)

and the gauge field will have the form

A
x

(r, x, y) = Qy + ✏2ax2(r, x, y) + . . . , (3.10)

A
y

(r, x, y) = ✏2ay2(r, x, y) + . . . , (3.11)

with A
t

= A
r

= 0. When we consider lattice solutions which are periodic in x and y, the

backreaction of  on the gauge field will require both A
x

and A
y

to be nonzero at O(✏2),

with both x and y dependence.

A similar statement holds for the metric at O(✏2). Our metric ansatz, to O(✏2), will be

ds2 = L2

⇢
1

r2
((�1 + ✏2a(r, x, y))dt2 + (1 + ✏2a(r, x, y))dr2) + (1 + ✏2b(r, x, y))(dx2 + dy2)

�
.

(3.12)

Because at zeroth order in epsilon the AdS2 ⇥ R2 metric is exactly supported by the

magnetic field (i.e. the gauge field is not a probe), we find it necessary to include metric

backreaction once we backreact on the gauge field. This distinguishes our situation from

that considered in e.g. [11].

The radial magnetic field will be

B
r

= Q+ ✏2(@
y

ax2(r, x, y)� @
x

ay2(r, x, y)) (3.13)

In general, when we backreact on the magnetic field, we may expect there to be a non-

normalizable piece at order ✏2, i.e. A
x

(r ! 0) = (Q+ �Q✏2)y. This shifts the naive critical

value of the field at the transition. However, because the critical point is actually only

dependent on the dimensionless combination Q/r20, we can (and will) impose that there is

no non-normalizable correction to the gauge field in our backreacted solutions. That is,

we will set �Q = 0. The value of the critical point will still have an O(✏2) shift; it will
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manifest itself as an O(✏2) shift in the location of the hard wall, r0 ! r0 + �r0✏2. These

two scenarios are equivalent; in both cases we should think of the backreaction of  on the

metric and gauge field as inducing a shift in the dimensionless parameter which controls

the critical point at O(✏2).

3.1 Basic droplet

We now examine the solutions of the field equation for  , in the limit where we can neglect

the back-reaction of  on the gauge field and on the metric. (This will be at order ✏.)

Very similar equations have been examined in the literature on vortices in holographic

superconductors [3, 25, 26]. The basic building block for the solutions we will study is the

“droplet” solution of [25].

We will begin by setting � = 0 in the potential for the scalar and proceed with the metric

and the mass of the (dualized) monopole field unspecified. Both of these will a↵ect the

radial solution for the scalar, but we will see that the spatial part of  1 decouples from the

radial equation for all metrics we might consider, and so we can find the basic form of the

droplet solution while leaving the metric general.

For metrics with components which only depend on r and for which gxx = gyy, we can

solve this equation by separation of variables, assuming that

 1 = ⇢0⇢(r)g(y)e
ikx , (3.14)

where ⇢0 is an overall constant. Inserting our choice of gauge (3.8) yields, after some

algebraic manipulation,

1

⇢
n

(r)

✓
grr

gxx
⇢00
n

(r) +
1p�ggxx

@

@r
(
p�ggrr)⇢0

n

(r)

◆
� m2

gxx
(3.15)

= � 1

g
n

(y)

�
g00
n

(y)� (Qy + k)2g
n

(y)
�
= ��

n

,

where �
n

is the eigenvalue from the separation of variables. First we will consider the

equation for g(y), which will yield the basic droplet solution. This solution will only exist

in the parameter ranges which admit a normalizable solution to the radial equation; we

will discuss this in the next section. The equation for g becomes,

g00
n

� (Qy + k)2g
n

= �
n

g
n

. (3.16)
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Now, redefining Y =
p
Q(y + k

Q

), the g
n

equation becomes

g00
n

(Y )�
✓
Y 2 +

�
n

Q

◆
g
n

(Y ) = 0. (3.17)

Solving, we get that

g
n

(Y ) = c+D⌫+(
p
2Y ) + c�D⌫�(i

p
2Y ) (3.18)

where c± are constants, ⌫± = 1
2

⇣
�1± �

n

Q

⌘
, and D

⌫

(x) is the parabolic cylinder function.

The reader may recognize the di↵erential equation for g
n

, (3.16), as the same eigenvalue

problem that arises in the study of the quantum mechanics of the simple harmonic oscilla-

tor. More properly, this is the case for appropriate choices of the separation constant. In

these cases, we can write the (normalizable) solution for g
n

in terms of the familiar Hermite

polynomials:

g
n

= e�Y

2
/2H

n

(Y ), (3.19)

with eigenvalues �
n

= 2Q(n+1/2). The nth eigenvalue here characterizes the nth Landau

level of the  particles. The “droplet” solutions with this shape were first discussed in the

series of papers [25], in a related but distinct context. The single droplet solution is when

n = 0, which is just a Gaussian centered at y = �k/Q, g(y) = e�Y

2
/2. Note that g

n

=

constant is not a solution to the equations of motion.

3.2 Vortex lattice

Of more interest to us is a solution which preserves some discrete subgroup of the trans-

lation invariance of the original system. The basic droplet of §3.1 breaks translations

entirely. However, more symmetric solutions can be obtained by taking linear combina-

tions of droplets, which still solve the (linearized) equations of motion neglecting back

reaction.

A vortex lattice can be constructed as follows [3], using the zeroth Landau level solutions

for the  field. The basic solution is

 0(y; k) = e�
Y

2

2 = e�
Q

2 (y+ k

Q

)2 . (3.20)

An appropriate superposition to give a lattice in the x� y plane is

 lat(x, y) =
1

L

1X

l=�1

c
l

eiklx 0(y; kl) (3.21)
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where

c
l

⌘ e
�i⇡

v2
v

2
1
l

2

, k
l

⌘ 2⇡l

v1

p
Q (3.22)

for arbitrary v1 and v2.

One can write this in terms of the elliptic theta function ✓3:

✓3(v, ⌧) ⌘
1X

l=�1

ql
2
z2l, q ⌘ ei⇡⌧ , z ⌘ ei⇡v (3.23)

as

 1(x, y, r) = ⇢0⇢(r) lat

(x, y),  
lat

(x, y) ⌘ e
�Qy

2

2 ✓3(v, ⌧) (3.24)

with

v ⌘
p
Q(x+ iy)

v1
, ⌧ ⌘ 2⇡i� v2

v21
. (3.25)

That the solution (3.21) represents a lattice is now evident from the basic properties of the

elliptic theta function. For instance

✓3(v + 1, ⌧) = ✓3(v, ⌧) (3.26)

and

✓3(v + ⌧, ⌧) = e�2⇡i(v+⌧/2)✓3(v, ⌧) (3.27)

implying that  lattice returns to its value (up to a phase) upon translation by the lattice

generators

a =
1p
Q
v1@x, b =

1p
Q

✓
2⇡

v1
@
y

+
v2
v1
@
x

◆
. (3.28)

These have been fixed such that the area of a unit cell is 2⇡/Q, containing exactly one

flux quantum. It is this quantization condition which translates, in the electromagnetic

dual, to the commensurability condition between the area of the unit cell and the density

of doped charges [16,19].

That  
lat

should be called a vortex lattice, despite the fact that it is composed of an array

of the droplet solutions of [25], is evident from the fact that ✓3 vanishes on the lattice

spanned by half-integral multiples of the lattice generators (giving rise to vortex cores),

and has a phase rotation of 2⇡ around each such zero.

Some common lattice shapes are obtained by choosing particular values of the parameters

v1, v2. A rectangular lattice can be obtained by setting v2 = 0. In this case all coe�cients

in equation (3.21) are equal, c
l

= c = 1. The ratio of length to width of the rectangle

is parametrized by v1. For the special choice v1 =
p
2⇡, the lattice is square. Another
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special choice is v2 =
1
2v

2
1; this yields a rhombic lattice. In this case c

l

= 1 for l ⌘ 0 mod 2

and c
l

= �i for l ⌘ 1 mod 2. For the special case v1 = 2
p
⇡ the rhombus is square (but

now rotated 45� w.r.t the x axis), and for v1 = 2
p
⇡

3
1
4

the lattice is composed of equilateral

triangles (though the unit cell is still a rhombus).

At this point, nothing has fixed the “moduli” v1, v2 of the vortex lattice, nor the overall

magnitude ⇢0 of  1. In standard Landau-Ginzburg theories, apparently the triangular

lattice is preferred. One could find preferred shapes in the approach here by including

leading non-linearities in | | in the free energy, and minimizing the free energy density. It

might be interesting to do this, while introducing parameters to vary that could lead to

phase transitions in the preferred lattice shape.

3.3 The radial equation and boundary conditions

Now we consider the di↵erential equation for ⇢(r). At order ✏ we are still in an AdS2 ⇥R2

background, which means that  should scale as a power law in r. Choosing the solution

that vanishes at the boundary, we get

⇢(r) = r↵ (3.29)

where ↵ = 1
2

⇣
1 +

p
1 + 4(Q+m2L2)

⌘
.

At the hard wall cuto↵, r = r0, we will need to impose a consistent set of boundary

conditions. One way to do this is to consider a method very similar to the prescription

of [27]. We will add a mirror image of the spacetime to the other side of the wall and glue

them together at the IR boundary, r = r0. Thus, we have two asymptotic UV boundaries

(in our coordinates at r = 0 and r = 2r0) and mirror solutions for the metric and the

fields on either side of the wall. We will require the metric and fields to be continuous at

the wall, but their derivatives will have a discontinuity. That is, we impose Israel junction

conditions at the wall, including any localized energy-momentum sources present there.

At the end of the day, we can quotient by the Z2 symmetry to leave just one copy of the

desired space-time.

In order to support the discontinuity at the IR wall and thus solve the equations of motion

at the wall, there must be a source of stress-energy at r = r0. Therefore we will add an

action, S
wall

, localized to the wall and solve the equations of motion. One way that this

is di↵erent from the situation discussed in [27] is that while those authors needed only to

add a localized cosmological constant to the wall (as everything was only a function of the
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radial variable), we now have spatial (x, y) dependence, so our boundary action must also

have spatial dependence, S
wall

= S
wall

(x, y).

Which terms in the equations of motion will contribute to the boundary stress-energy?

When integrating the equations of motion across the wall, the first derivative of any function

of r will not contribute, whereas the second derivative will:

Z
r0+✏

r0�✏
drf 0(r) = f(r0 + ✏)� f(r0 � ✏) = 0; (3.30)

Z
r0+✏

r0�✏
drf 00(r) = f 0(r0 + ✏)� f 0(r0 � ✏) = �2f 0(r0 � ✏). (3.31)

Therefore, in order to solve for the action at the wall, we only need to consider the terms

in the equations of motion which have second derivatives of functions of r. At zeroth order

in ✏ the gauge field is independent of r, and the Einstein equations only depend on up to

first derivatives of the metric functions. In this case, integrating the equations across the

wall we find no contributions, and we find that we do not need an S
wall

at zeroth order in

✏.

At first order in ✏, we need to consider integrating the  equation of motion across the

wall. We will add the term

S 
wall

=

Z

r=r0

d3x
p�h �m2

w

| |2 (3.32)

to the action, where h
µ⌫

is the induced metric at r = r0, and �mw

is a localized shift in

the mass of  . The nonzero contributions to the equation of motion when integrated over

the wall are

�
Z

r0+✏

r0�✏
dr
p�ggrr 00 =

Z
r0+✏

r0�✏
dr
p�h �m2

w

 �(r � r0), (3.33)

which gives the result �m2
w

= 2↵/L.

Note that after adding the wall-localized mass term (3.32), the strategy for finding the

critical field at which a phase transition occurs is the following. For a fixed choice of the

wall localized mass and the location of the wall r0, there is a critical value of the B-field

at which the purely normalizable solution for  obeys the boundary conditions. In this

paper, we are always expanding about this critical field, with ✏ parametrizing the distance

from criticality.

We note also that we will need to add additional terms to S
wall

when we consider the

equations of motion at O(✏2) in the next section.
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3.4 Higher order corrections to the gauge field and metric

The relevant equations of motion are the Einstein equations and the Euler-Lagrange equa-

tions for  , A
µ

, equations (3.5) and (3.6).

In an AdS2 ⇥R2 background, all the unknown functions scale as power laws in r. At O(✏)

there is only the  equation of motion. From §3 we know there exists a lattice solution of

the form

 1(r, x, y) = ⇢0r
↵

1X

l=�1

e
2⇡il

p
Qx

v1 e
�Q

2

⇣
y+ 2⇡il

v1
p
Q

⌘2

, (3.34)

where ⇢0 is the magnitude of  1 and the scaling exponent is

↵ =
1

2

⇣
1 +

p
1 + 4(Q+m2L2)

⌘
. (3.35)

 1 acts as a source in the gauge field equation of motion and Einstein equations at O(✏2).

Therefore we can extract the r scaling in the O(✏2) corrections and solve the equations of

motion for the spatial dependence. We write

f
i

(r, x, y) = ⇢20r
2↵f

i

(x, y) (3.36)

where f
i

= a, b, ax2 , a
y

2. By assuming a normalizable radial dependence of this form for each

field, we are implicitly setting one integration constant to zero per function. Our choice of

solution for each of these fields will also fix the form of the localized stress energy we will

need to add at the wall in order to have a consistent solution.

Now we examine the di↵erential equations at O(✏2). The equation of motion for A
r

gives

us the constraint

@
x

ax2 + @
y

ay2 = 0. (3.37)

Besides this, we have 2 additional gauge field equations of motion (one each for x, y) and 5

nontrivial Einstein equations (for G
tt

, G
rr

, G
xx

= G
yy

, G
rx

, G
ry

) at O(✏2). These are seven

equations and four unknown functions. Luckily, three of them are redundant and we can

find a consistent solution once we have chosen the form of the source,  1. The Einstein

equations are

2(@
y

ax2 � @
x

ay2) +Q(@2
x

+ @2
y

)(a+ b) + 2Q(4↵2 � 1)b = S1( 1)

2(@
x

ay2 � @
y

ax2) +Q(@2
x

+ @2
y

)(a� b) + 2Q(2↵ + 1)b = S2( 1)

2↵ay2 +Q(↵� 1)@
x

a�Q↵@
x

b = S3( 1)

2↵ax2 �Q(↵� 1)@
y

a+Q↵@
y

b = S4( 1)
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2(@
x

ay2 � @
y

ax2)� 2Q(↵� 1)(2↵� 1)a+ 2Q(2↵2 � ↵ + 1)b = S5( 1) (3.38)

and the gauge field equations are

(@2
x

+ @2
y

+ 2↵(2↵� 1))ax2 �Q@
y

b = S6( 1)

(@2
x

+ @2
y

+ 2↵(2↵� 1))ay2 +Q@
x

b = S7( 1), (3.39)

where the  -dependent source terms are given by

S1( 1) = �Q

2
(2↵2 +Q2m2 + 2Q2y2)| 1|2 + iQ2y( ⇤

1@x 1 �  1@x 
⇤
1)�Q(|@

x

 1|2 + |@
y

 1|2)

S2( 1) =
Q

2
(�2↵2 +Q2m2 + 2Q2y2)| 1|2 � iQ2y( ⇤

1@x 1 �  1@x 
⇤
1) +Q(|@

x

 1|2 + |@
y

 1|2)

S3( 1) =
Q↵

2
@
x

| 1|2

S4( 1) = �Q↵

2
@
y

| 1|2

S5( 1) = �Q

2
(2↵2 +Q2m2 + 2Q2y2)| 1|2 + iQ2y( ⇤

1@x 1 �  1@x 
⇤
1)�Q(|@

x

 1|2 � |@
y

 1|2)

S6( 1) = � i

2
Q2( ⇤

1@x 1 �  1@x 
⇤
1 + 2iyQ| 1|2)

S7( 1) =
i

2
Q2( 1@y 

⇤
1 �  ⇤

1@y 1) (3.40)

and a, b, ax2 , a
y

2, 1 are now only functions of x, y as we have omitted the power law r-

dependence.

We know that the vortex lattice solution is periodic in x, y with periodicity v1p
Q

in the x

direction and 2⇡
v1

p
Q

in the y direction (this is only for the rectangular lattice); therefore we

can expand each of these functions as a double Fourier series in x, y as

f
i

(x, y) =
X

k,l

v1e
2⇡ik

p
Qx

v1 eilv1
p
Qye

� k

2
⇡

2

v

2
1

�i⇡kl� l

2
v

2
1

4 f̃
i

(k, l), (3.41)

where f
i

= a, b, ax2 , a
y

2, and we have pulled out the exponential function of m,n which will

be present in all of the source terms. Notice that the periodicity implies that each unit

cell has a net flux density of 2⇡
Q

. It remains to Fourier transform the source terms in the

equations of motion in order to bring them into the form of equation (3.41), and then solve

algebraic equations for the polynomial coe�cients f̃
i

(k, l). In order to do this we will use

properties of exponentials and the Fourier transform to write an infinite sum of Gaussians

as an infinite sum of exponentials,

X

k

e
� 1

2

⇣
y+ 2⇡k

v1

⌘2

e
� 1

2

⇣
y+ 2⇡(k+l)

v1

⌘2

=
X

k

eiv1ky
v1

2
p
⇡
e
� v

2
1k

2

4 �i⇡kl� l

2
⇡

2

v

2
1 . (3.42)
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First we will do this for Q = 1. In this case we also have L = 1/
p
2, ⇤ = �1, and

m2 = 2(↵2 � ↵ � 1). Plugging in our ansatz of equation (3.41), we get the following

algebraic equations for the f̃
i

(k, l):

2i

✓
lv1ãx2 �

2⇡k

v1
ãy2

◆
+ 2(4↵2 � 1)b̃�

"✓
2⇡k

v1

◆2

+ (lv1)
2

#
(ã+ b̃) =

↵(1� 2↵)

2
p
⇡

+
⇡3/2k2

v21
+

l2v21
4
p
⇡

2i

✓
2⇡k

v1
ãy2 � lv1ãx2

◆
+ 2(2↵ + 1)b̃�

"✓
2⇡k

v1

◆2

+ (lv1)
2

#
(ã� b̃) = � ↵

2
p
⇡
� ⇡3/2k2

v21
� l2v21

4
p
⇡

2↵ãy2 +
2⇡ik

v1
(↵(ã� b̃)� ã) =

i↵
p
⇡k

2v1

2↵ãx2 + ilv1(ã� ↵(ã� b̃)) = � il↵v1
4
p
⇡

2i

✓
2⇡k

v1
ãy2 � lv1ãx2

◆
� 2(↵� 1)(2↵� 1)ã+ 2(2↵2 � ↵ + 1)b̃ =

1 + ↵� 2↵2

2
p
⇡"

2↵(2↵� 1)�
✓
2⇡k

v1

◆2

� (lv1)
2

#
ãx2 � ilv1b̃ = � ilv1

4
p
⇡

"
2↵(2↵� 1)�

✓
2⇡k

v1

◆2

� (lv1)
2

#
ãy2 +

2⇡ik

v1
b̃ =

ik
p
⇡

2v1
. (3.43)

From this we can see that we expect ã and b̃ to be real and ãx2 and ãy2 to be pure imaginary.

For k = l = 0 we get the solution

ã =
↵(2↵2 + ↵� 4)� 1

4(↵� 1)(4↵2 � 1)
p
⇡
, b̃ = � ↵

4(2↵ + 1)
p
⇡
, ãx2 = ãy2 = 0, (3.44)

and in all other cases the solutions are

ã(k, l) = �↵v
2
1((↵ + 1)4k2⇡2 + v21(2 + (↵ + 1)l2v21 � 2↵(2↵2 + ↵� 4)))

D

b̃(k, l) = �16k4⇡4 + (8k2⇡2v21 + 2l2v61)(1 + l2v21 + ↵(2� 3↵)) + v41(�l4v41 + 4↵2(2↵2 � 3↵ + 1))

2D

ãx2(k, l) =
ilv31(4k

2⇡2 + v21(1 + l2v21 + (2� 3↵)↵))

D

ãy2(k, l) = �2⇡ikv1(4k2⇡2 + v21(1 + l2v21 + (2� 3↵)↵))

D
, (3.45)

where

D = 2
p
⇡(16k4⇡4+8k2⇡2v21(l

2v21+2↵(1�2↵))+v41(l
4v41+4l2v21↵(1�2↵)+4↵(↵�1)(4↵2�1))).

(3.46)

Note that the equations of (3.43) are not solvable for ↵ = ±1
2 , 1. In the case we have

chosen, where Q = 1, ↵ = 1
2(1 +

p
5 + 2m2). Thus, we can only solve these equations for

some values of m.
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3.5 O(✏2) stress-energy at the wall

At O(✏2) we need to consider the gauge field equations of motion and the Einstein equations

integrated across the wall. We will now consider the following action at the wall:

S
wall

=

Z

r=r0

d3x
p�h

�
�m2

w

| |2 + ✏2A
µ

Jµ

w

+ ✏2(T
w

) µ

µ

 
, (3.47)

where we have added a current Jµ

w

which couples to the gauge field, as well as a source of

stress-energy (T
w

)
µ⌫

localized at the wall. This is the most general form of action we can

add to the wall and should easily lead to a solution. Because we don’t want the boundary

current or stress tensor to enter into the equations of motion at zeroth order, we have

assumed that each term enters the action at O(✏2).

First we will consider integrating the gauge field equations of motion across the wall. The

relevant equations are those for A
x

, A
y

. The equations we must solve are

Z
r0+✏

r0�✏
dr
p�ggrrgxx(ar,x,y2 )00 =

Z
r0+✏

r0�✏
dr
p�hhxx(J

w

)
x,y

�(r � r0), (3.48)

which have the solutions

(J
w

)
x,y

= �4↵

L
ax,y2 (r0, x, y). (3.49)

Finally, we must consider the Einstein equations. There are three equations which include

second derivatives of the fields, G
tt

, G
xx

, and G
yy

. The total stress-energy from the action

at the wall takes the form

�
p�hh

µ⌫

2
L

wall

+ ✏2
p�h(A

µ

(J
w

)
⌫

+ (T
w

)
µ⌫

) (3.50)

where L
w

is the integrand of S
wall

. After integrating the Einstein equations, we get the

following set of equations for T
w

:

↵

r30
b(r0, x, y) =

L5

2r30

✓
�m2

w

| 1(r0, x, y)|2 + Qy

L2
(J

w

)
x

+
r20
L2

(T
w

)
tt

+
1

L2
(T

w

)
xx

+
1

L2
(T

w

)
yy

◆

↵

2r0
(a(r0, x, y)� b(r0, x, y)) = � L5

2r0

✓
�m2

w

| 1|2 � Qy

L2
(J

w

)
x

� r20
L2

(T
w

)
tt

� 1

L2
(T

w

)
xx

+
1

L2
(T

w

)
yy

◆

↵

2r0
(a(r0, x, y)� b(r0, x, y)) = � L5

2r0

✓
�m2

w

| 1|2 + Qy

L2
(J

w

)
x

� r20
L2

(T
w

)
tt

+
1

L2
(T

w

)
xx

� 1

L2
(T

w

)
yy

◆
.

which have the solution

(T
w

)
tt

=
↵

r20L
3
(a(r0, x, y)� b(r0, x, y)) +

2↵L

r20
| 1(r0, x, y)|2
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Figure 1: The scalar vortex lattice configuration  1(x, y).

(T
w

)
xx

= (T
w

)
yy

+
4↵Qy

L
ax2(r0, x, y)

(T
w

)
yy

= �2↵L| 1(r0, x, y)|2 + ↵

2L3
(3b(r0, x, y)� a(r0, x, y)). (3.51)

We note that, as with the original Randall-Sundrum matching [27], the wall-localized

stress-energy violates the Null Energy Condition. This is not a significant concern here (as

it was not there); warped solutions microscopically realizing Randall-Sundrum like warping

have been found in the full string theory, and we expect similar solutions could be found in

this more involved case. It does mean that the wall should not be considered as a ‘brane’

which has Goldstone modes that allow it to fluctuate in the transverse dimensions.

3.6 Pictures of the modulated phase

We conclude this section with representative plots of the scalar supporting the vortex

lattice  1(x, y) (Figure 1), the modulation of flux density in the crystal (Figure 2), and a

representative crystalline metric function (plotted as a function of (x,y) in Figure 3 and

(r,y) in Figure 4). All plots are for values of the parameters given by: Q = 1, ↵ = 1
2 +

p
3
2 ,

v1 =
p
2⇡ (a square lattice). The functions have been approximated keeping 121 terms in

the Fourier series (i.e., with k, l running from �5 to 5 in the formulae above).
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Figure 2: The O(✏2) correction to the A
x

gauge field, which controls the modulation of the

flux density in the lattice.

Figure 3: The metric function b(x, y) generated by the back-reaction of a square vortex

lattice.
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Figure 4: The metric function in front of dx2 + dy2, now plotted as a function of y and r.

We have chosen x = 2 for this plot.

4 Comments on physics of the lattice model

From the form of the deformed metric in §3, we can infer some basic facts about the

physics of the lattice solution. The IR wall geometry we have implemented is a bottom-up

implementation of IR confinement [28]. In physical observables, powers of the IR radial

cuto↵ r0 can be replaced by powers of 1/⇤, with ⇤ the scale of confinement. However, it

is common in such solutions that also at finite temperature, one could (after the transition

from confinement to deconfinement represented by a horizon at some r < r0) replace

powers of r0 by 1/T . Using this correspondence, we can infer the leading corrections to

thermodynamic functions.

The free energy density F will receive a correction at O(✏2). It will have the general form

F ⇠ T
�
1 + ✏2T�2↵ + · · · � (4.1)

where the leading term comes from the AdS2 geometry (and gives rise to the notorious

extensive ground-state entropy), and the subleading term is due to the physics of the vortex

lattice. One can see that the O(✏2) corrections will scale like ⇤�2↵ in the confining geometry

quite explicitly, both from the form of the wall action (3.47), and from the ✏ expansion of

the contributions to the bulk action.

The schematic formula (4.1) makes it clear that for a given value of ✏ and ↵, there is an IR

scale beneath which one should not trust perturbation theory. To avoid this region, one
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must keep

T > ✏
1
↵ . (4.2)

As ↵ increases, the regime of trustworthiness of the linearized solution shrinks; this is in

keeping with the simple intuition that the perturbation expansion in powers of ✏r↵ will

break down at smaller values of r for larger ↵.

Free classical defects would contribute a correction to the free energy density proportional

to T (and, of course, inversely proportional to the lattice spacing). The exponent ↵ there-

fore parametrizes an anomalous scaling of the free energy per vortex, characteristic of the

strongly coupled field theory.

What happens beyond the regime where perturbation theory around the transition is valid?

One natural speculation is that as one proceeds to the deep IR, the di↵erent lattice sites

‘decouple’ in a manner similar to that seen in AdS2 fragmentation [29]. Such a fate was

proposed in [24] for the D-brane lattice models of [2], where it was speculated that this

might also characterize the physics of generic AdS2 horizons. The growing localization of

the dominant contribution to the low-temperature entropy on distinct lattice sites in the

gravity solution provides support for this idea, in perturbation theory.

Finally, it is worth emphasizing that the lattices discussed here are quite distinct from those

obtained in related literature by considering a periodic spatial variation in the chemical

potential µ(x) [10]. The key di↵erence lies in the nature of the IR behavior. In systems

with a finite charge density, spatial modulations of µ can and will be cancelled by the

background charge carriers – they will be screened. The hard lattices of the sort discussed

here, in contrast, cannot be screened (physically, one cannot screen a magnetic field), and

their e↵ects should be expected to persist to the deep IR. In the S-dual perspective, such

a feature is natural for the analog of ‘Wigner crystallization’ of charged carries that are

added to a conformal field theory.

5 Connecting with more general gravity solutions

Here, we describe how the lattice solutions we found in §3 should also arise in ‘IR com-

pletions’ of metrics with rather general dynamical critical exponent z and hyperscaling

violation parameter ✓ [30–33]. The basic point will be that, as in [34] and [35], the AdS2

can arise in the deep IR, where corrections to the action supporting such solutions can

become important.
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The bigger physics picture is the following. As discussed in [16], one can expect expectation

values of monopole operators to serve as order parameters for translation-breaking phases

in doped critical field theories. By S-duality in the 4d bulk, one can map the magnetically

charged field dual to the monopole operator, to an electrically charged field. The doping

maps to a background magnetic field. Then, the lattices found in §3 give concrete examples

of the solids described in [16], in strongly coupled quantum field theory. The considerations

of this section show that this can happen in models with rather general z and ✓.

5.1 Basic EMD theory and magnetic solutions

We start with the bulk gravity theory represented by an Einstein-Maxwell-Dilaton action

S =

Z
d4x

p�g
�
R� 2(@�)2 � f(�)F

µ⌫

F µ⌫ � V (�)
�

(5.1)

where the gauge-coupling function is of the form

f(�) = e2↵� (5.2)

and the scalar potential takes the form

V (�) =
1

L2
e�⌘� . (5.3)

This theory supports solutions of the form

ds2 = L2

✓
�a(r)2dt2 +

dr2

a(r)2
+ b(r)2(dx2 + dy2)

◆
(5.4)

with scalar profile

�(r) = K log(r) . (5.5)

In the simplest solutions, a and b take power-law scaling forms, and the metric can be

written as:

ds2 = r✓�2
��r�2(z�1)dt2 + dr2 + dx2 + dy2

�
(5.6)

in the vicinity of the horizon (with di↵erences arising as one goes towards the UV, if one

wishes to find asymptotically AdS solutions, see e.g. [30]). These capture the scaling prop-

erties of the IR fixed point induced by doping the CFT. The dynamical critical exponent

z and the hyperscaling violation exponent ✓ are fixed by the parameters ↵, ⌘ in the action

(5.1). General values of these exponents were first obtained in dilatonic systems in [31].
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In many cases that have been studied, these solutions can in fact be supported in two

di↵erent ways. If one studies an electrically charged black brane, Gauss’ law yields the

solution

F =
Q

e

f(�)b(r)
2dt ^ dr . (5.7)

One then finds extremal solutions where K < 0 and � ! 1 near the horizon r ⇠ 0. This

means that the coupling is vanishing. As discussed in [30], in the very near-horizon regime,

the solution is then unreliable; in a full UV complete theory like string theory, higher

derivative corrections will usually become important, because new light states appear as

g = e↵� ! 0. This di�culty can be avoided by turning on a small temperature, since this

cuts o↵ the running of the dilaton; and the near-horizon solutions for finite T are simple

to write down as well.

However, in a 4d bulk, one can also use bulk electric-magnetic duality to find a represen-

tation of the solution in terms of a magnetically charged black brane, i.e. a field theory

immersed in a background magnetic field. This allows us to make contact with our discus-

sion in §2 and §3, and with the picture of [16]:

• Suppose one is interested in studying the physics of monopole operators to diagnose the

phase structure of the ‘electric’ model. One could introduce monopoles into the theory (5.1)

and compute their correlators using semi-classical techniques in a multi-soliton background.

However, it is easier to realize that by electric/magnetic duality, one can represent the

monopoles as quanta of fundamental electrically charged fields in a dual theory, where the

electric background (5.7) is dualized to a background magnetic field.

• As mentioned above, the running dilaton indicates an ‘IR incompleteness’ of the solution

– as the dilaton runs to extreme values, new corrections typically become important and

deform the solution. For magnetically charged black branes in these dilatonic system, one

possible result of the corrections is the emergence, in the deep IR, of an AdS2 geometry.

This was discussed for Lifshitz scaling metrics in [34] and for general ✓ and z in [35].

The end result is that in critical theories dual to dilatonic systems with fairly generic z and

✓, if we are concerned mostly with the physics at very low energies, we can study monopole

operators by considering the dynamics of electrically charged scalars in an AdS2 throat

supported by magnetic flux. This provides a rather general setting where our analysis in

§3 could be of relevance.
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6 Discussion

There are many interesting directions for future exploration of the analytical vortex lattice

solutions described here. We briefly mention some of these now.

• It should be possible to find analogous perturbative crystalline geometries emerging

directly out of solutions with various values of z and ✓, without invoking the transition to

an AdS2 space-time [36].

• It would be natural to explore replacing the IR Israel thin wall considered here, with a

black brane horizon.

• One would like to compute simple correlation functions in these backgrounds. For in-

stance, quasi-universal features have been seen in the transport properties of simple holo-

graphic lattice models in [10]. Their analogues in this system are worth exploring [36].

• Most ambitiously, it would be nice to find the full non-linear solution to the coupled

set of partial di↵erential equations that characterize the system. This would most likely

rely on powerful numerical techniques. This program should yield new insights on the

‘fragmentation’ phenomenon, and the eventual emergence of a solid in a ‘confined’ phase

of the boundary gauge theory.
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