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We present an improved scheme for the precise evaluation of finite-temperature response func-
tions of strongly correlated systems in the framework of the time-dependent density matrix renor-
malization group. The maximum times that we can reach at finite temperatures T are typically
increased by a factor of two, when compared against the earlier approaches. This novel scheme,
complemented with linear prediction, allows us now to evaluate dynamic correlators for interacting
bosons in one dimension. We demonstrate that the considered spectral function in the quantum
critical regime with dynamic critical exponent z = 2 is captured by the universal scaling form
S(k,!) = 1/T · �

S

(k/
p
T ,!/T ) and calculate the scaling function precisely.

PACS numbers: 05.30.Rt, 05.10.-a, 78.47.-p, 05.30.Jp

I. INTRODUCTION

Response functions hB̂(t)Âi quantify the e↵ect of dis-
tortions Â of the system at time zero on the expec-
tation values of observables B̂ at time t. They con-
tain important information on the governing quantum
many-body physics [1] and are accessible in many di↵er-
ent experimental setups. For example, recent advances
in neutron-scattering techniques make very precise mea-
surements possible [2]. It is of high importance to have
numerical tools at hand that allow for an e�cient and
highly accurate computation of response functions for
(strongly-correlated) condensed matter models in order
to match theoretical models to actual materials and to
gain an understanding of the underlying physical pro-
cesses. Arguably, su�ciently precise tools are available
for one-dimensional (1D) systems at zero temperature
[3–6]. At finite temperatures, which, needless to say, are
the relevant case for most experiments, our numerical
abilities were however quite limited. As discussed and
demonstrated in several works [7–9], finite-temperature
response functions for strongly-correlated 1D systems can
be evaluated up to some maximum reachable time by us-
ing the time-dependent density matrix renormalization

group (tDMRG) [10–12]. A di�culty in the simulations
of time-evolved states is the growth of entanglement with
time [13–15]. In tDMRG calculations, this leads to a cor-
responding severe increase of the computation cost and
a strong limitation of the maximum reachable times, de-
pending on the available computational resources. The
e↵ect is much more drastic for mixed states: At low tem-
peratures, the corresponding computation cost basically
increases by a power of two in comparison to the simula-
tion of pure states. It is decisive to reach times that are
su�ciently long to allow for the extraction of the desired
physical information like spectral properties.

In this paper, we present a novel tDMRG scheme for
the calculation of dynamical correlators at finite temper-
atures which typically doubles the maximum reachable

times in comparison to the earlier schemes in the litera-
ture. This allows for a very precise evaluation of thermal
response functions which could not be addressed before.
We also analyze and explain the computation cost for
the di↵erent schemes. As a specific application we study
bosons ([b̂i , b̂

†
j ] = �ij) with repulsive onsite and nearest-

neighbor interactions as described by the extended Bose-
Hubbard model

Ĥ =� 1

2

X

i

(b̂†i b̂i+1

+ h.c.)� µ
X

i

n̂i

+ U
X

i

n̂i(n̂i � 1) + V
X

i

n̂in̂i+1

. (1)

The new tDMRG scheme now allows us to examine the
thermal spectral function [1]

S(x, t) =
1

2⇡
Tr

 
e�� ˆH

Z�
[b̂x+x

0

(t), b̂†x
0

]

!
, (2)

with the partition function Z� = Tr e�� ˆH and the inverse
temperature � = 1/T . The system becomes critical at
the point µ = �1, T = 0 as shown in Fig. 1. We will
fix µ = �1 in the following. In the z = 2 quantum-
critical region of Fig. 1, for small quasi-momenta k and

Figure 1: Crossover phase diagram [16] around the quantum
critical point at µ = �1, T = 0. The T = 0 state has zero
density for µ  �1, and non-zero density for µ > �1. In this
paper, we compute the universal dynamic correlators in the
z = 2 quantum critical region. Dynamic correlators in the
dilute classical gas region were computed in Ref. [17].
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frequencies !, the temperature T can be expected to be
the dominating energy scale and we can expect

S(k,!) :=
X

x

eikx
Z 1

�1
dt ei!tS(x, t) (3)

to be a function of kp
T

and !
T , i.e., S(k,!) ⇡ f(T ) ·

�S(
kp
T
, !
T ). As the integral of the spectral function over

! (at fixed k) is unity, we can conclude f(T ) = 1

T .

S(k,!) ⇡ 1

T
· �S

✓
kp
T
,
!

T

◆
for k,!, T ⌧ 1 (4)

The existence and possible form of the scaling function
�S has been a long-standing open question. �S is ex-
pected to be universal for certain (universality) classes

of systems, as the long-ranged correlations at the criti-
cal point should not depend on the specific form of the
short-ranged interactions. In the language of renormal-
ization group, this means that the renormalization flows
of many other systems are governed by the same fixed
point. This allows for a simplification of the calculations
by going to the limit U ! 1, for which the system is
restricted to have at most one boson per site. To assert
the universality, we have introduced the nearest-neighbor
density-density interaction in the model (1) and will show
that the same scaling function applies for several di↵erent
values of V . It should be stressed that the new tDMRG
scheme, described in the following, is generally applica-
ble for finite-temperature real-time and frequency-space
simulations for strongly correlated 1D quantum systems.

II. METHOD

In previous tDMRG applications [7–9], the thermal

density matrix ⇢̂� := e�� ˆH/Z� was encoded by a cor-
responding purification [18–21] which is a pure state
|⇢�i 2 H ⌦H

aux

with an auxiliary system H
aux

= H =
span{|�i} such that Tr

aux

|⇢�ih⇢� | = ⇢̂� . A matrix prod-

uct state (MPS) [22–24] representation of the purification
|⇢�i can be obtained by employing tDMRG for an imag-
inary time-evolution starting from the infinite tempera-
ture state (⇢̂

0

/ , |⇢
0

i /
P

� |�i ⌦ |�i) [7–9, 21]. Ex-

pectation values then take the form Tr ⇢̂�X̂ = h⇢� |X̂|⇢�i.
The scheme of Ref. [7] to calculate thermal response func-
tions

�
ˆA ˆB(�, t) := Tr

�
⇢̂� B̂(t)Â

�
= Tr

�
⇢̂� e

i ˆHtB̂e�i ˆHtÂ
�

(5)

consists in obtaining first the MPS purification |⇢�i by
tDMRG imaginary-time evolution, and to subsequently
do a tDMRG real-time evolution to obtain |⇢� , ti :=

e�i ˆHt|⇢�i as well as |A⇢� , ti := e�i ˆHtÂ|⇢�i. With these,
one computes the response function by evaluating the
overlap �

ˆA ˆB(�, t) = h⇢� , t|B̂|A⇢� , ti. In the following, we
refer to this procedure as scheme A. In this context, it is
actually to some extent superfluous to think in terms of
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Figure 2: Maximum bond dimension max
i

M
i

occurring in the
computation of the response function �

ÂB̂

for B̂† = Â = b̂†
L/2,

chain length L = 128, U ! 1, V = 1, half filling (µ = 1),
and truncation weights ✏

�

= 10�12, ✏
t

= 10�10. The contour
lines mark the values max

i

M
i

= 26, 27, 28, 29, 210, 211, i.e.,
the times that can be reached with those maximum bond
dimensions. Schemes A and B reach much shorter times than
the scheme of Eq. (9), optimized with respect to t0 and �0.

purifications [34]. Due to the isomorphism of H⌦H and
B(H), the space of linear maps on the Hilbert space H,
the MPS occurring in scheme A are in one-to-one relation
with correspondingmatrix product operators (MPO), i.e.,
operators of the form

X

��0

A
�
1

,�0
1

1

A
�
2

,�0
2

2

· · ·A�L,�0
L

L |�ih�0|, (6)

where the A
�i,�

0
i

i are Mi�1

⇥ Mi matrices with M
0

=
ML = 1. The sizes Mi are also called bond dimensions.
In a short-hand notation, scheme A can be denoted by

1

Z�
Tr
⇣⇥

e�� ˆH/2ei
ˆHt
⇤
B̂
⇥
e�i ˆHtÂe�� ˆH/2

⇤⌘
. (7)

The square brackets indicate which parts in this expres-
sion are approximated as MPOs [Eq. (6)] (correspond-
ing to the aforementioned MPS purifications |⇢� , ti and
|A⇢� , ti) and are obtained via tDMRG. In this notation,
the modified scheme B used in Ref. [9] reads

1

Z�
Tr
⇣⇥

e�� ˆH/2
⇤
B̂
⇥
e�i ˆHtÂe�� ˆH/2ei

ˆHt
⇤⌘

. (8)

In each step of the tDMRG, the evolved operators
X̂ = X̂(t) are approximated by an MPO with bond di-
mensions Mi = Mi(�, t) that are as small as possible
for a given constraint on the desired precision of the ap-
proximation [4]. This precision is in each step of the
algorithm controlled by the so-called truncation weight
✏ = (kX̂

trunc

� X̂k
2

/kX̂k
2

)2. Due to such truncations,
the results of the di↵erent evaluation schemes like (7) and
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(8) di↵er slightly from the exact �
ˆA ˆB(�, t) of Eq. (5). It

is essential to keep the errors ✏ in the MPO truncations
controlled and small at all times.

Schemes (7) and (8) are typically far from optimal.
One has a lot of freedom in designing a scheme that
is as e�cient as possible. With e�ciency we mean
that the occurring bond dimensions Mi, which deter-
mine the computation cost, are as small as possible
for given �, t, and ✏. With a non-singular operator
T̂ , the most generic splitting involving two MPOs is
1

Z�
Tr
⇣⇥

ei
ˆHtB̂T̂

⇤⇥
T̂�1e�i ˆHtÂe�� ˆH

⇤⌘
. In principle, one

would now like to optimize for T̂ in order to minimize
the computation cost and, thus, maximize the maximum
reachable time. However, in the cases we studied, such
optimizations turned out to be ine�cient. The required
cost scaled exponentially with the system size, even when
restricting ourselves to optimize only with respect to uni-
tary operators. Hence, we confine ourselves to study the
computation cost of the less general class of schemes

1

Z�
Tr
⇣⇥

ei
ˆHt0e��0

ˆHB̂e�i ˆHt0
⇤

⇥
⇥
e�i ˆH(t�t0)Âe�(���0

)

ˆHei
ˆH(t�t0)

⇤⌘
(9)

as a function of t0 and �0. Fig. 2 compares the evolu-
tion of the occurring bond dimensions as a function of
temperature and time for the three di↵erent schemes,
Eqs. (7)–(9). In many cases, scheme B [Eq. (8)] has
some advantage over scheme A. In Ref. [9] it was pointed

out that the involved MPO
⇥
e�i ˆHtÂe�� ˆH/2ei

ˆHt
⇤
is time-

independent for the simple case Â = , whereas the com-
putation cost for

⇥
e�i ˆHtÂe�� ˆH/2

⇤
, occurring in scheme

A, can increase with time, even in this trivial case. More
generally, the following argument applies for all operators
Â with finite spatial support: Typical condensed matter
systems are quasi-local [25, 26], i.e., the spatial support of

operators like e�i ˆHtÂei
ˆHt, occurring in scheme B, grows

only linearly with time. More precisely, outside a cer-
tain space-time cone, the evolved operator acts almost
like the identity and does hence not change the entangle-
ment in that region. The preconditions are that all terms
in the Hamiltonian are short-ranged and norm-bounded
[25, 26]. Nevertheless, as Fig. 2 indicates, scheme A is
often advantageous at very low temperatures, especially
for non-critical systems. However, the scheme of Eq. (9)
optimized for t0 and �0 outperforms the earlier schemes
substantially. A more detailed discussion and analysis
of the di↵erent evolution schemes will be presented else-
where [34]. As the example in Fig. 2 indicates, the maxi-
mum reachable time is a slowly varying function of log �
and almost concave. Hence one can reach almost optimal
results with scheme C

1

Z�
Tr
⇣⇥

ei
ˆHtBe�

�
2

ˆHB̂e�i ˆHtB
⇤ ⇥
e�i ˆHtAÂe�

�
2

ˆHei
ˆHtA
⇤⌘

,

(10)
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Figure 3: The exact time-dependent spectral function S(k =
0, t) plotted as a function of t · T for µ = �1 and V = 0 and
compared with corresponding tDMRG data (scheme C ).

which does not require any optimization. After the

imaginary time-evolution that yields [e�
�
2

ˆH ], one runs
two real-time tDMRG simulations to obtain MPOs⇥
ei

ˆHtBe�
�
2

ˆHB̂e�i ˆHtB
⇤
and

⇥
e�i ˆHtAÂe�

�
2

ˆHei
ˆHtA
⇤
. With

Eq. (10) one then obtains �
ˆA ˆB(�, tA + tB). The accu-

racy of the MPOs should be kept under control during
the whole simulation, for example, as described above
by bounding the truncation error. If this is done prop-
erly, it is of minor importance what specific tA and
tB = t� tA are chosen to evaluate �

ˆA ˆB(�, t) for a given

time t. For the typical case Â = B̂†, the maximum reach-
able times for tA and tB are equal, and the total max-
imum reachable time with this scheme is then twice as
large as the maximum time of scheme B. For all simu-
lations in this article we used scheme C with a fourth
order Suzuki-Trotter decomposition and a time step of
size �t = 1/8 in the tDMRG. The truncation weights
were fixed to ✏� = 10�12 in the imaginary time-evolution
and ✏t = 10�10 in the real-time evolution.

III. EXACTLY SOLVABLE CASE

For U ! 1 and V = 0, the model (1) can be mapped
to a system of free fermions by application of the Jordan-

Wigner transformation b̂i =
Qi�1

j=1

(�1)ĉ
†
j ĉj ĉi and the

resulting Hamiltonian � 1

2

P
i(ĉ

†
i ĉi+1

+ h.c.) � µ
P

i ĉ
†
i ĉi

can be diagonalized exactly. Due to Wick’s theorem, all
correlation functions are in this case determined by the
single-particle Green’s function [1]. The response func-
tion (2), in particular, can be calculated by evaluating
Pfa�an determinants of matrices that contain elements
of the single-particle Green’s function [27–29]. We also
use this exactly solvable case to prove the high accuracy
of the new generically applicable tDMRG scheme.
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Figure 4: Spectral function (3) for µ = �1 and V = 0, 1
4 and

1
2 , rescaled according to the scaling hypothesis (4). The top
right plot shows S(k,!) for kp

T

= ⇡

2 , all others for k = 0.
The dashed lines around S = 0 show, for the tDMRG data
(scheme C ), the contribution of the linear prediction, i.e., the
second term in Eq. (11). The simulations were stopped when
the computation cost per time step exceeded a certain value.
Depending on the temperature, this occurred at maximum
bond dimensions max

i

M
i

between 1000 and 4000.

IV. LINEAR PREDICTION

As the simulations yield the time-dependent spectral
function only on a finite time interval [�t

max

, t
max

], de-
fined by the maximum reachable time, a direct Fourier
transformation to S(k,!), Eq. (3), contains ringing arti-
facts. To avoid them, one can use filter functions which,
however, result in an artificial broadening. Instead, we
use a linear prediction [30, 31] which basically fits a su-
perposition of damped harmonic oscillations to the data.
In the DMRG context, this technique was employed first
in Ref. [5] for T = 0 and in Ref. [7] for T > 0. We then
Fourier transform the spectral function after extrapolat-
ing it in this way for times |t| > t

max

;

S(k,!) =

Z

|t|t
max

dt ei!tS(k, t) +

Z

|t|>t
max

dt ei!tS
LP

(k, t), (11)

where S
LP

(k, t) is the result of the linear prediction.
Needless to say, the quality of the linear prediction, and
hence the precision of S(k,!), depend strongly on t

max

.

V. RESULTS FOR THE BOSONIC SPECTRAL
FUNCTION

In all simulations presented here, we used a system
size of L = 128 and compared against larger systems
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Figure 5: Fitting the scaling function (4) for k = 0 with the
ansatz �

S

(0, !̃ = !

T

) = a!̃/
�
1 + b!̃3

�
yields a = 0.649 and

b = 0.826.

to ensure that finite-size e↵ects are negligible. Fig. 3
displays the exact solution for V = 0 and a very clear
convergence of the properly rescaled S(k, t) curves. For
a lattice size of L = 128, finite-size e↵ects emerge for
temperatures below T ⇡ 1/32 as small wiggles at larger
times (not shown). The displayed data basically show
the behavior in the thermodynamic limit. Fig. 4 shows
the spectral function in the frequency domain, confirming
the scaling hypothesis (4) by the collapse of the properly
rescaled curves for low temperatures, i.e., when plotting
T · S(k,!) as a function of !/T and k/

p
T . The re-

sults for V = 1

4

and 1

2

confirm the universality of the
scaling function �S . The way in which it is approached
depends however on V . In the limit T ! 0 the rescaled
curves for di↵erent V should coincide. We would like to
stress that in earlier calculations, based on the tDMRG
schemes A and B, we were not able to reach times that
would allow for a proper extraction of �S . Especially for
low temperatures, the much smaller t

max

in those calcu-
lations required a considerably larger contribution of S

LP

to S(k,!) [Eq. (11)] and, furthermore, resulted in rela-
tively big errors of the linear prediction [7, 30, 31]. This
caused considerable distortions of the curves in compar-
ison to the quasi-exact results displayed in Fig. 4 which
were obtained with the novel scheme C. Of course, also
with the older schemes, one can always reach longer times
by increasing the truncation weights ✏� and ✏t, as this
reduces the occurring bond dimensions Mi. But for val-
ues greater than the ones chosen here, ✏� = 10�12 and
✏t = 10�10, the precision of the resulting data quickly
deteriorates as we have checked by comparison against
the exactly solvable case. A remarkably good fit of the
scaling function �S(

kp
T

= 0, !̃ = !
T ) is given by ansatz

a!̃/(1 + b!̃3) with a = 0.649 and b = 0.826 as shown
in Fig. 5. For nonzero k/

p
T , the scaling function di↵ers

from this simple ansatz at small !̃ but still decays as !̃�2

for large !̃.

In the continuum limit of the model (1), the large time
and distance asymptotics of the real-space correlation
function g(⇠, ⌧) := T�1/2hb̂x+x

0

(t)b̂†x
0

i with ⇠ := xT 1/2/2
and ⌧ := tT/2 can be evaluated analytically for U ! 1
and V = 0 in the framework of the Riemann-Hilbert
problem [32, 33]. The corresponding formula given in
section XVI.9 of Ref. [33] splits into a factor C

0

(�) that
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x

0

i against the ana-
lytical formula for the asymptotics as derived by the Riemann-
Hilbert problem formalism for V = 0 [32, 33].

only depends on the ratio � := ⇠/2⌧ and terms that de-
pend on � and ⌧ ;

g(⇠, ⌧) =C
0

(�)⌧ (
1

⇡ ln�(�)�i)2/2e2i⌧�
2

⇥ e
1

⇡

R 1
�1 dµ|2⌧(µ��)| ln�(µ)

�
1 +O(⌧�1/2)

�
,

with �(µ) := eµ
2

�1

eµ2

+1

. The formula for C
0

(�) involves

a double integral that can not be evaluated easily, but
the remaining terms are unproblematic. Fig. 6 shows,
for space-time lines of constant � = ⇠/2⌧ , a compar-
ison of the analytical formula for the asymptotics of
g(⇠, ⌧)/C

0

(�) against our numerical results for g. Both
are consistent with each other.

VI. CONCLUSION

The presented novel tDMRG scheme (10) for the eval-
uation of finite-temperature response functions outper-
forms earlier approaches substantially and should hence
be the method of choice for future applications. In this
study, it allowed us to demonstrate that the thermal
bosonic spectral function in the quantum critical regime
with dynamic critical exponent z = 2 obeys a univer-
sal scaling form and to obtain the corresponding scaling
function.
This research was supported by the National Science

Foundation under grant DMR-1103860, and by U.S.
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[4] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[5] S. R. White and I. A✏eck, Phys. Rev. B 77, 134437

(2008).
[6] J. Ren and J. Sirker, Phys. Rev. B 85, 140410(R) (2012).
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