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Abstract

Three-dimensional conformal field theories (CFTs) of deconfined gauge fields coupled to
gapless flavors of fermionic and bosonic matter describe quantum critical points of condensed
matter systems in two spatial dimensions. An important characteristic of these CFTs is the
finite part of the entanglement entropy across a circle. The negative of this quantity is equal
to the finite part of the free energy of the Euclidean CFT on the three-sphere, and it has
been proposed to satisfy the so called F -theorem, which states that it decreases under RG
flow and is stationary at RG fixed points. We calculate the three-sphere free energy of non-
supersymmetric gauge theory with a large number NF of bosonic and/or fermionic flavors to
the first subleading order in 1/NF . We also calculate the exact free energies of the analogous
chiral and non-chiral N = 2 supersymmetric theories using localization, and find agreement
with the 1/NF expansion. We analyze some RG flows of supersymmetric theories, providing
further evidence for the F -theorem.
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1 Introduction

Many interesting quantum critical points of condensed matter systems in two spatial dimen-

sions [1–14] are described by conformal field theories (CFT) in three spacetime dimensions

where massless fermionic and/or bosonic matter interacts with deconfined gauge fields. These

include critical points found in insulating antiferromagnets and d-wave superconductors and

between quantum Hall states. Such CFTs can be naturally analyzed by an expansion in

1/NF , where NF is the number of ‘flavors’ of matter. This large NF limit is taken at fixed

Nc, where Nc is a measure of the size of the gauge group e.g. the non-abelian gauge group

U(Nc). Classic examples of such CFTs include three-dimensional U(1) gauge theory coupled

to a large number of massless charged scalars [15] or Dirac fermions [16–18]. These theories

are conformal to all orders in the 1/NF expansion, and they are widely believed to be confor-

mal for NF > Ncrit, where Ncrit is a conjectured critical number of flavors dependent on the

choice of the gauge group [16,17]. The 3-dimensional CFTs may also contain Chern-Simons

terms whose coefficients k may be taken to be large.

An important characteristic of a 3-dimensional CFT is the ground state entanglement

entropy across a circle of radius R. Its general structure is

S = α
R

�
− F , (1.1)

where � is the short distance cut-off. As established in [19] (see also [20,21]) the subleading

R-independent term is related to the regulated Euclidean path integral Z of the CFT on

the three-dimensional sphere S3: F = − log |Z|. The quantity F has been conjectured to

decrease along any RG flow [19, 22–24]. This conjecture was inspired by the c-theorem in

two spacetime dimensions [25] and the a-theorem in four spacetime dimensions [26–28].

In any 3-dimensional field theory with N ≥ 2 supersymmetry, the S3 free energy F may

be calculated using the method of localization [29–32]. It has also been calculated in some

simple non-supersymmetric CFTs, such as free field theories [20, 21, 24, 33] and the Wilson-

Fisher fixed point of the O(N) model for large N [24], which has been conjectured [34] to

be dual to Vasiliev’s higher-spin gauge theory in AdS4 [35]. In this paper we present the

calculation of F in certain 3-d gauge theories coupled to a large number of massless flavors,

to the first subleading order in 1/NF . We will find that this subleading term is of order

logNF .

The CFTs we study have the following general structure. The matter sector has Dirac

fermions ψα, α = 1 . . . Nf , and complex scalars, za, a = 1 . . . Nb. We will always take the
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large Nf limit with Nb/Nf fixed, and use the symbol NF to refer generically to either Nf or

Nb. These matter fields are coupled to each other and a gauge field Aµ by a Lagrangian of

the form

Lm =

Nf�

α=1

ψαγ
µDµψα +

Nb�

a=1

�
|Dµza|

2 + s|za|
2 +

u

2

�
|za|

2
�2

�
+ . . . , (1.2)

where Dµ = ∂µ − iAµ is the gauge covariant derivative, and the ellipses represent additional

possible contact-couplings between the fermions and bosons, such as a Yukawa coupling.

The scalar “mass” s generally has to be tuned to reach the quantum critical point at the

renormalization group (RG) fixed point, which is described by a three dimensional CFT;

however, this is the only relevant perturbation at the CFT fixed point, and so only a single

parameter has to be tuned to access the fixed point. In some cases, such scalar mass terms

are forbidden, and then the CFT describes a quantum critical phase. All other couplings,

such as u and the Yukawa coupling, reach values associated with the RG fixed point, and so

their values are immaterial for the universal properties of interest in the present paper.

The gauge sector of the CFT has a traditional Maxwell term, along with a possible

Chern-Simons term

LA =
1

2e2
TrF 2 +

ik

2π
Tr

�
F ∧ A−

1

3
A ∧ A ∧ A

�
. (1.3)

The gauge coupling e2 has dimension of mass in three spacetime dimensions. It flows to an

RG fixed point value, and so its value is also immaterial; indeed, we can safely take the limit

e2 → ∞ at the outset. However, our results will depend upon the value of the Chern-Simons

coupling k, which is RG invariant. We will typically take the large NF limit with k/NF fixed

at fixed Nc, and in most of this paper we set Nc = 1 for simplicity. (This is to be contrasted

with the ‘t Hooft type limit of large Nc where k/Nc is held fixed; see, for example, recent

work [36–38].) One of our principal results, established in section 3, is that for the U(1)

gauge theory with Chern-Simons level k, coupled to Nf massless Dirac fermions and Nb

massless complex scalars of charge 1 as in (1.2) with s = u = 0,

F =
log 2

4
(Nf +Nb) +

3ζ(3)

8π2
(Nf −Nb) +

1

2
log



π

��
Nf +Nb

8

�2

+

�
k

π

�2


+ . . . . (1.4)

This formula shows that the entanglement entropy is not simply the sum of the topological

contribution −
1
2 log k and the contribution of the gapless bulk modes, unlike in the models of
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[39]. For CFTs with interacting scalars relevant for condensed matter applications, we have to

consider the u → ∞ limit, and this yields a correction of order unity, with F → F−ζ(3)/(8π2)

at this order [24]. All higher order corrections to (1.4) are expected to be suppressed by

integer powers of 1/NF , whose coefficients do not contain any factors of logNF .

In section 4 we will examine similar N = 2 supersymmetric CFTs on S3 using the local-

ization approach. We consider theories with chiral and non-chiral flavorings. The partition

function Z on S3 is given by a finite-dimensional integral, which has to be locally minimized

with respect to the scaling dimensions of the matter fields [31]. For a theory with N charged

superfields we develop 1/N expansions for the scaling dimensions and for the entanglement

entropy. As for the non-supersymmetric case, the subleading term in F is of order logN .

The coefficient of this term computed via localization agrees with the direct perturbative

calculation (1.4).

In the supersymmetric case it is possible to develop the 1/N expansions to a rather

high order, and we compare them with precise numerical results. This comparison yields

an unprecedented test of the validity and accuracy of the 1/N expansion. At least for

supersymmetric CFTs, we find the 1/N expansion is accurate down to rather small values

of N . We also note a recent numerical study [40], which found reasonable accuracy in the

1/Nb expansion for a non-supersymmetric CFT.

2 Mapping to S3 and large NF expansion

Let us start by examining the case of a U(1) gauge field. After sending e2 → ∞, the combined

Lagrangian Lm +LA obtained from (1.2) and (1.3) contains two relevant couplings s and u,

and we should first understand to what values we need to tune them in order to describe an

RG fixed point. Let’s ignore for the moment the fermions and the gauge field and focus on

the complex scalar fields. The path integral on a space with arbitrary metric is

Z =

�
Dza exp

�
−

�
d3r

√
g
�
|∂µza|

2 + s|za|
2 +

u

2

�
|za|

2
�2�

�
. (2.1)

With the help of an extra field λ, this path integral can be equivalently written as

Z = C

�
DzaDλ exp

�
−

�
d3r

√
g

�
|∂µza|

2 + s|za|
2
− iλ|za|

2 +
1

2u
λ2

��
, (2.2)

where the normalization factor C defined through C
�
Dλ exp

�
−
�
d3r

√
g
�

1
2uλ

2
��

= 1 was

introduced so that the value of the path integral stays unchanged.
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In flat three-dimensional space, we can tune s = u = 0 and describe a non-interacting

CFT of Nb complex scalars. If instead we tune s = 0 and send u → ∞, the path integrals

(2.1) and (2.2) describe the interacting fixed point that we will primarily be interested in

in this paper; this is the 3-d conformal CPNb−1 model. We can also send both s and u

to infinity, in which case the path integrals above describe the empty field theory. Using

conformal symmetry, we can map each of these fixed points to S3 by simply mapping all

the correlators in the theory. Indeed, since the metric on S3 is equal to that on R3 up to a

conformal transformation,

ds2S3 =
4

�
1 + |�r|2

�2ds
2
R3 , (2.3)

the mapping of correlators to S3 is achieved by replacing

�r − �r� →
2(�r − �r�)

�
1 + |�r|2

�1/2 �
1 + |�r�|2

�1/2 (2.4)

in all the flat-space expressions.1 While the theory on S3 defined this way certainly has

the correlators of a CFT, it may be a priori not clear which action, and in particular which

values of s and u, one should choose in order to reproduce these correlators.

In order to study the free theory on S3 one should tune s = 3/4 and u = 0. This result

holds to all orders in Nb and one can understand it as follows. The two-point connected

correlator of za on R3 is

�z̄a(r)zb(r
�)�R

3

free =
δab

4π
����r − �r�

���
, (2.5)

because it is the unique solution to the equation of motion following from (2.1) with a delta-

function source, −∇2
R3�z̄a(r)zb(r�)�R

3

free = δabδ(3)(�r − �r�). Using the mapping (2.4) we infer

that the corresponding two-point correlator on S3 should be

�z̄a(r)zb(r
�)�S

3

free =
δab

�
1 + |�r|2

�1/2 �
1 + |�r�|2

�1/2

8π
����r − �r�

���
. (2.6)

An explicit computation shows that
�
−∇2

S3 + 3/4
�
�za(r)zb(r�)�S

3

free = δabδ(3)(�r − �r�)/
�
g(r),

1This replacement certainly works for correlators of scalar operators. In the case of vector operators it
is still true that one can use (2.4) provided that the S3 correlators are expressed in a frame basis, as in the
following section.
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which is indeed the equation of motion that would follow from (2.1) with s = 3/4 and

u = 0. This result was of course to be expected because a mass squared given by s = 3/4

corresponds to a conformally coupled scalar.

A more subtle issue is how to map to S3 the interacting fixed point, which in flat space

had s = 0 and u = ∞. As explained for example in [41], the generating functional of

connected correlation functions of the singlet operator |za|2 in the theory with u = ∞ equals

the Legendre transform of the corresponding generating functional in the theory with u = 0,

to leading order in a large Nb expansion. This result holds on any manifold, and in particular

on both R3 and S3, and it assumes the other couplings in the theory are held fixed. If we

set s = 0 on R3 and s = 3/4 on S3, the Legendre transform assures us, for example, that to

leading order in Nb the two-point correlators in the theory with u = ∞ are

�|za(r)|
2
|zb(r

�)|2�R
3

critical =
cNb

|�r − �r�|4
,

�|za(r)|
2
|zb(r

�)|2�S
3

critical =
cNb

�
1 + |�r|2

�2 �
1 + |�r�|2

�2

16 |�r − �r�|4
,

(2.7)

with the same normalization constant c, which is consistent with the conformal mapping

of correlators realized through eq. (2.4). While in the free theory za is a free field and the

operator |za|2 therefore has dimension 1, in the interacting theory |za|2 is a dimension 2

operator. To study the interacting fixed point on S3 we therefore should set s = 3/4 +

O(1/Nb) and take u → ∞ in (2.2).

Reintroducing the fermionic and gauge fields, we can write down the action as

S =

�
d3r

√
g

�
ψαγ

µDµψα + |Dµza|
2 + (s− iλ) |za|

2 +
1

2u
λ2

�
+

ik

4π

�
A ∧ dA . (2.8)

This action is of course invariant under gauge transformations, and therefore a correct defi-

nition of the path integral requires gauge fixing:

Z =
1

Vol(G)

�
DADX e−S[A,X] , (2.9)

where Vol(G) is the volume of the group of gauge transformations, and X denotes generically

all fields besides the gauge field. One justification for this normalization of the path integral

is that for a pure Chern-Simons gauge theory on S3 it yields the expected answer [42]

Z = 1/
√
k, as will emerge from our computations below. Because the first cohomology of

S3 is trivial, we can write uniquely any gauge field configuration A as A = B + dφ, where
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d∗B = 0 and φ is defined only up to constant shifts. One should think of B as the gauge-fixed

version of A and of dφ as the possible gauge transformations of A. Since the action S[A,X]

is gauge-invariant, it is independent of φ and only depends on B: S[A,X] = S[B,X].

We claim that

DA = DBD(dφ) = DBD�φ
�

det � (−∇2) , (2.10)

where D�φ means that we’re not integrating over configurations with φ = constant, and det�

denotes the determinant with the zero modes removed from the spectrum. To understand

this relation, first note that the space Ωp(S3) of p-forms on S3 is a metric space with the

distance function D(ω,ω + δω) =
��

|δω|2
�1/2

. Then D(dφ, dφ + dδφ) =
��

|dδφ|2
�1/2

=
��

δφ (−∇2) δφ
�1/2

after integration by parts, and also D(φ,φ+ δφ) =
��

|δφ|2
�1/2

. In other

words, for each component of φ in a basis of eigenfunctions of the Laplacian, the distance

between dφ and dφ+dδφ is larger than the distance between φ and φ+ δφ by a factor of the

square root of the eigenvalue with respect to −∇2. Eq. (2.10) follows as a straightforward

change of variables.

The gauge transformations are maps from S3 into the Lie algebra of the gauge group.

The volume of the group of gauge transformations Vol(G) can be expressed as

Vol(G) = Vol(H)

�
D�φ , (2.11)

where H is the group of constant gauge transformations, and
�
D�φ is an integral over

the non-constant gauge transformations with the measure given by the metric function D

introduced in the previous paragraph. In the case of a compact U(1) with Vol(U(1)) = 2π,

a constant gauge transformation φ = c has c ∈ [0, 2π). Therefore

Vol(H) =

� 2π

0

dc
D(c, c+ δc)

δc
=

� 2π

0

dc

��
1 = 2π

�
Vol(S3) . (2.12)

Combining (2.9)–(2.12) we obtain

Z =
C
�

det � (−∇2)

2π
�

Vol(S3)

�
Dψα Dza DBDλ e−S[ψα,za,B,λ] . (2.13)

In this paper we will use the partition function in eq. (2.13) to compute F = − log |Z| in the

limit where Nf , Nb, and k are taken to be large and of the same order.
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To leading order in the number of flavors we can ignore the gauge field and the Lagrange

multiplier field λ. Setting s = 3/4 as discussed above, we can write down the resulting path

integral as

Z0 =

�
Dψα Dza exp

�
−

�
d3r

√
g

�
ψαγ

µ
∇µψα + |∂µza|

2 +
3

4
|za|

2

��
. (2.14)

In this approximation we have a theory of free Nf Dirac fermions and Nb complex scalars

with the free energy [24]

F0 =
log 2

4
(Nf +Nb) +

3ζ(3)

8π2
(Nf −Nb) . (2.15)

To find the corrections to F0 we write (2.13) approximately as

Z ≈ e−F0
C
�

det � (−∇2)

2π
�

Vol(S3)

�
DBDλ e−Seff[λ]−Svec

eff [B] , (2.16)

with

Seff[λ] =

�
d3r

�
g(r)

1

2u
λ(r)2 −

1

2

�
d3r

�
g(r)

�
d3r�

�
g(r�)λ(r)λ(r�)

�
|za(r)|

2
|zb(r

�)|2
�S3

free

Svec
eff [B] =

ik

4π

�
B ∧ dB −

1

2

�
d3r

�
g(r)

�
d3r�

�
g(r�)Bµ(r)Bν(r

�) �Jµ(r)Jν(r�)�S
3

free ,

(2.17)

where

Jµ(r) = ψ̄α(r)γ
µψα(r) + iz̄a(r)∂

µza(r)− iza(r)∂
µz̄a(r) . (2.18)

In writing the effective action (2.17) we used �|za(r)|2�S
3

free = 0, which follows from the fact

that the free theory (2.14) is a CFT.

Defining

δFλ = − log

����C
�

Dλ e−Seff[λ]

���� ,

δFA = − log

�����

�
det �(−∆)

2π
�

Vol(S3)

�
DB e−Svec

eff [B]

����� ,
(2.19)
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we can then write F = F0 + δFλ + δFA + o(N0). The quantity δFλ was computed in [24]:

δFλ = −
ζ(3)

8π2
. (2.20)

We devote the next section of this paper to calculating δFA.

3 Gauge field contribution to the free energy

3.1 Performing the Gaussian integrals

Let’s denote by Kµν the integration kernel appearing in SA
eff, namely

Kµν(r, r�) = −�Jµ(r)Jν(r�)�S
3

free +
ik

2π

δ3(r − r�)�
g(r)

1�
g(r�)

�µνρ∂�
ρ . (3.1)

As discussed above, when one writes A = dφ + B the action should be independent of φ,

so pure gauge configurations Aν(r�) = ∂�
νφ(r

�) are exact zero modes of the kernel Kµν(r, r�).

Since we should integrate over the gauge-fixed field B only, the Gaussian integration of the

effective theory Svec
eff [B] yields 1/

�
det �(Kµν/(2π)). Again, the prime means that we remove

the zero modes from the spectrum when we calculate the determinant.

Reinstating the radius R of the sphere measured in units of some fixed UV cutoff, the

discussion in the previous two paragraphs can be summarized as

δFA =
1

2
tr� log

�
Kµν

2πR

�
−

1

2
tr� log

�
−
∇2

R2

�
+ log

�
2π

�
R3 Vol(S3)

�
, (3.2)

where all the operators are defined on an S3 of unit radius. Out of the first two terms in

this expression, the second one is the easier one to calculate (see also [43]). The spectrum of

the Laplacian on a unit-radius S3 consists of eigenvalues n(n+ 2) with multiplicity (n+ 1)2

for any n ≥ 0. One first rearranges the terms in the sum as

1

2
tr� log

�
−
∇2

R2

�
=

1

2

∞�

n=1

(n+ 1)2 log
n(n+ 2)

R2
=

∞�

n=1

(n2 + 1) log
n

R
−

log(2/R)

2
. (3.3)

Then, using zeta-function regularization one writes

1

2
tr� log

�
−
∇2

R2

�
= −

log(2/R)

2
−

d

ds

∞�

n=1

n2 + 1

(n/R)s

�����
s=0

=
ζ(3)

4π2
+

log(πR2)

2
. (3.4)
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Combining this expression with eq. (3.2) and using Vol(S3) = 2π2, we obtain

δFA =
1

2
tr� log

�
Kµν

2πR

�
−

ζ(3)

4π2
+

log (8π3R)

2
. (3.5)

The only remaining task is the computation of the first term in this equation that we perform

in the next subsection by explicit diagonalization of Kµν .

3.2 Diagonalizing the kernel Kµν(r, r�)

Ultimately we would like to diagonalize the kernel Kµν on S3. However, as a warm up it is

instructive to consider the same diagonalization problem in flat space first.

3.2.1 Warm-up: Diagonalization on R3

The first step is to calculate the two-point function of current �Jµ(r)Jν(0)�R
3

free, where we use

the superscript R3 to emphasize that we are in flat space. If we normalize the two-point

functions of za and ψα to be

�z̄a(r)zb(0)�
R3

free =

�
d3p

(2π)3
δab

|p|2
eip·r =

δab
4π |r|

�ψα(r)ψ̄β(0)�
R3

free =

�
d3p

(2π)3
δαβγµpµ

|p|2
eip·r =

i

4π

δαβγµrµ

|r|3
,

(3.6)

then the two-point function of the current may be straightforwardly calculated to be

�Jµ(r)Jν(0)�R
3

free =
Nf +Nb

8π2

|r|2 δµν − 2rµrν

|r|6
. (3.7)

It is simple to check that eq. (3.7) is of the right form. This correlator is fixed up to an

overall constant by the requirements that it should be homogeneous of degree −4 in r (Jµ is

a dimension 2 operator) and that away from r = 0 it should satisfy the conservation equation

∂µ�Jµ(r)Jν(0)�R3 = 0. Using

�
d3r

eip·r

|r|4
= −π2

|p| ,

�
d3r

eip·r

|r|6
=

π2

12
|p|3 , (3.8)

and introducing the Fourier space representation of the kernel Kµν via

Kµν(r, r
�) =

�
d3p

(2π)3
Kµν(p)e

ip·(r−r�) , (3.9)

9



one obtains [13]

Kµν(p) =
Nf +Nb

16
|p|

�
δµν −

pµpν

|p|2

�
+

k

2π
�µν

ρpρ . (3.10)

For fixed p, the eigenvalues of this matrix are

0 ,
|p|

2

�
Nf +Nb

8
± i

k

π

�
. (3.11)

The eigenvector associated with the zero eigenvalue is as expected ipνeip·r
�
, corresponding to

a gauge configuration Aν = ∂νφ. We will now see that on S3, while the diagonalization of

Kµν is significantly more complicated, the answer is equally simple: the magnitude of the

momentum p appearing in (3.11) should be replaced by a positive integer label n.

3.2.2 Diagonalization on S3

When we work with vector fields on S3 it is convenient to introduce the dreibein

ei(r) =
2

1 + |r|2
dri (3.12)

and work only with frame indices. For example,

�J i(r)J j(r�)�S
3

free = eiµ(r)e
j
ν(r

�)�Jµ(r)Jν(r�)�S
3

free . (3.13)

The frame indices i and j are raised and lowered with the flat metric, so there is no distinction

between lower and upper frame indices in Euclidean signature.

Using the transformation of correlators under Weyl rescalings in eq. (2.4), one can im-

mediately write down the current two-point function on S3:

�J i(r)J j(0)�S
3

free =
Nf +Nb

8π2

�
1 + |r|2

�2

2

|r|2 δij − 2rirj

|r|6
. (3.14)

As in flat space, the form of this correlator is fixed by the requirement that away from r = 0

we must have ∇i�J i(r)J j(0)� = 0.

To understand the diagonalization of Kij on S3 we need to know that the space of square-

integrable one-forms on S3, being a vector space acted on by the SO(4) ∼= SU(2)L×SU(2)R

isometry group, decomposes into irreducible representations of SO(4) as follows. Any one-

10



form ω can be written as a sum of a closed one-form and a co-closed one-form. The closed

one-forms on S3 are of course cohomologous to zero, so they’re also exact. A basis for

them therefore consists of the gradients of the usual spherical harmonics. Like the spherical

harmonics, they transform in irreps with jL = jR. On the other hand, the co-closed one-forms

transform in irreps with jL = jR ± 1. So an arbitrary one-form can be written as

ωi(r) =
�

n,�,m

�
ωS
n�mSn�m

i (r) + ωL
n�mVn�m

L,i (r) + ωR
n�mVn�m

R,i (r)
�
, (3.15)

where we denoted by Sn�m
i the closed component transforming in the irrep with jL = jR =

(n − 1)/2 and by Vn�m
L,i and Vn�m

R,i the co-closed components transforming in the irreps with

jR = jL + 1 = n/2 and jL = jR + 1 = n/2, respectively. All the harmonics appearing in

(3.15) have n ≥ 2. For Sn�m
i there are n2 states in each irrep indexed by the integers � and

m satisfying 0 ≤ � < n and −� ≤ m ≤ �. For the other two classes of vector harmonics, we

have the same bounds on m but now 0 < � < n, giving a total dimension of n2 − 1 for each

irrep.

The SO(4) generators commute with the kernel Kij, so the eigenvectors of this kernel

can be taken to be Sn�m
i , Vn�m

L,i , and Vn�m
R,i . The spectral decomposition of Kij is therefore

Kij(r, r
�) =

�

n,�,m

�
snSn�m

i (r)Sn�m
j (r�)∗ + vLnVn�m

L,i (r)Vn�m
L,j (r�)∗ + vRnVn�m

R,i (r)Vn�m
R,j (r

�)∗
�
, (3.16)

where sn, vLn , and vRn are the corresponding eigenvalues. These eigenvalues are independent

of � and m because for fixed n one can change � and m by acting with the SO(4) generators,

which commute with Kij. The degeneracy of sn is n2 and that of vLn and vRn is n2 − 1, with

n ≥ 2.

Given Kij one can find its eigenvalues by taking inner products with the eigenvectors.

Using rotational invariance, one can actually set r� = 0 after summing over � and m. For

example,

sn =
Vol(S3)

n2

n−1�

�=0

��

m=−�

�

S3

d3r Sn�m
i (r)∗Kij(r, 0)Sn�m

j (0) , (3.17)

where the n2 in the denominator is the dimension of the SO(4) irrep to which Sn�m
i belong.
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We notice that only the harmonics with � = 1 contribute, so

sn =
Vol(S3)

n2

1�

m=−1

�

S3

d3r Sn1m
i (r)∗Kij(r, 0)Sn1m

j (0) , (3.18)

with similar expressions for vLn and vRn , the only difference being that n2 should be replaced

by n2 − 1.

Using explicit formulae for the harmonics (see Appendix A), one obtains

sn =
Nf +Nb

64πn(n2 − 1)

� π

0

dχ csc6
χ

2
sinχ

�
−2n cos(nχ) sinχ+

�
1− n2 + cosχ(n2 + 1)

�
sin(nχ)

�

(3.19)

and

vL,Rn =
Nf +Nb

64πn(n2 − 1)

� π

0

dχ csc6
χ

2
sinχ

�
n sinχ cos(nχ) +

�
n2

− n2 cosχ− 1
�
sinnχ

�
±

ikn

2π
.

(3.20)

The integration variable χ appearing here is related to r through |r| = cot(χ/2).

We expect sn = 0 because of gauge invariance. Both (3.20) and (3.19) are divergent at

χ = 0, and need to be regulated. A way of regulating them that doesn’t preserve gauge

invariance is to replace csc6 χ
2 by cscα χ

2 , compute these integrals for values of α for which

they are convergent, and then formally set α = 6. Another way would be to assume s2 = 0,

and calculate sn − s2 and vn − s2, which are now convergent integrals. Both of these ways

of regulating (3.19) and (3.20) give

sn = 0 , vLn =
n(Nf +Nb)

16
+

ikn

2π
, vRn =

n(Nf +Nb)

16
−

ikn

2π
. (3.21)

Note the similarity between these expressions and the corresponding flat-space ones in

eq. (3.11).
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3.3 Contribution to the free energy

We can now evaluate the first term in (3.5):

1

2
tr� log

�
Kµν

2πR

�
=

∞�

n=2

(n2
− 1) log

����
vLn
2πR

����

=
1

2
log



 1

8π2

��
Nf +Nb

8

�2

+

�
k

π

�2


+
ζ(3)

4π2
−

logR

2
,

(3.22)

where the second line was obtained with the help of zeta-function regularization. Combining

this expression with (3.5) yields

δFA =
1

2
log



π

��
Nf +Nb

8

�2

+

�
k

π

�2


 . (3.23)

Note that all of the logR terms cancel in the final answer, as they should since we are

describing a conformal fixed point, for which the path integral should be independent of R.

Another check of this result is that when Nf = Nb = 0 we recover the standard result for

the free energy of U(1) CS theory on S3 [42], δFA = 1
2 log k.

As an aside, we note that if we included the Maxwell term in (1.3), eq. (3.22) would be

modified to

1

2
tr� log

�
Kµν

2πR

�
=

∞�

n=2

(n2
− 1) log

����
1

2πR

�
vLn +

n2

e2R

����� , (3.24)

with vLn still defined as in (3.21). Of course, e2 flows to infinity in the IR, so as long

as we have a non-zero CS level or non-zero numbers of flavors one can safely ignore the

contribution from the Maxwell term in (3.24). If however one studies pure Maxwell theory

with k = Nf = Nb = 0 so that vLn = 0 in (3.24), the S3 free energy becomes

FMaxwell = −
log(e2R)

2
+

ζ(3)

4π2
. (3.25)

The logarithmic dependence on R is consistent with the fact that the free Maxwell theory

is not conformal in three spacetime dimensions. FMaxwell decreases monotonically from the

UV (small R) to the IR (large R).
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3.4 Generalization to U(Nc) theory

Eq. (3.5) generalizes straightforwardly to the case of U(Nc) gauge theory with Nf Dirac

fermions and Nb complex bosons transforming in the fundamental representation of the

gauge group. At large k the contribution of the TrA3 term in the Chern-Simons Lagrangian

(1.3) to the S3 partition function is suppressed by 1/
√
k, and the quadratic term proportional

to TrA ∧ dA is the same as that of N2
c U(1) gauge fields with Chern-Simons coupling k.

There are Nf Dirac fermions and Nb complex bosons charged under each of these U(1) gauge

fields. One then just has to multiply the U(1) answer (3.23) by a factor of N2
c :

δFA =
N2

c

2
log



π

��
Nf +Nb

8

�2

+

�
k

π

�2


+ log
Vol(U(Nc))

Vol(U(1))N2
c
. (3.26)

The second term in this expression comes from the different gauge fixing of the U(Nc) gauge

theory compared to a theory of N2
c U(1) gauge fields. As explained in section 2, the gauge

fixing procedure involves dividing the partition function by the volume of the gauge group, so

the partition function for the U(Nc) theory has a prefactor of 1/Vol(U(Nc)) while the U(1)N
2
c

theory obtained by multiplying (3.23) by N2
c would have a prefactor of 1/Vol(U(1))N

2
c . We

have (see for example [43])

Vol(U(Nc))

Vol(U(1))N2
c
=

(2π)−Nc(Nc−1)/2

1! · 2! · · · (Nc − 1)!
. (3.27)

Thus, for U(Nc) gauge theory with Nf fundamental fermions and Nb fundamental bosons

we have

F =
Nc log 2

4
(Nf +Nb) +

3ζ(3)

8π2
Nc(Nf −Nb) +

N2
c

2
log



π

��
Nf +Nb

8

�2

+

�
k

π

�2




−
1

2
Nc(Nc − 1) log(2π)− log (1! · 2! · · · (Nc − 1)!) + . . . ,

(3.28)

with corrections expected to vanish in the limit of large NF . In writing (3.28) we kept Nc of

order one while scaling Nf , Nb, and k to infinity with their ratios fixed. Generalizing (3.28)

to different gauge groups proceeds in a similar way.
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4 SUSY gauge theory with flavors

In this section we compute the free energy of U(1) Chern-Simons matter theories with N ≥ 2

supersymmetry coupled to a large number of flavors. These computations allow us to check

the first sub-leading correction to the non-SUSY result in the equation (3.23) in a different

way. The computations in this section have as starting point the results of refs. [29, 31],

which used the technique of supersymmetric localization to rewrite the S3 partition function

of theories with N ≥ 2 SUSY as finite-dimensional integrals. Our computations also involve

finding the scaling dimensions of the gauge-invariant operators.

4.1 N = 4 theory

As a warmup to the N = 2 calculations, consider the N = 4 parity-preserving supersym-

metric U(1) theory consisting of N N = 4 hypermultiplets coupled to an N = 4 vector

multiplet. In N = 2 notation, the N = 4 vector multiplet consists of an N = 2 vector and

a neutral chiral superfield Φ of dimension 1. The N = 4 supersymmetry does not allow a

Chern-Simons term. The hypermultiplets can be rewritten as N pairs of oppositely charged

chiral-multiplets Qa of U(1) charge +1 and Q̃a with U(1) charge −1. The N = 4 SUSY

requires a superpotential interaction W ∼ Q̃aΦQa. The superpotential has R-charge equal

to 2. Then the SU(2) subgroup of the SO(4)R R-symmetry, under which Q̃a and Q̄a trans-

form as a doublet, fixes the R-charge of the matter chiral multiplets to have the canonical

free-field value: ∆Q = ∆Q̃ = 1/2. The partition function is then given by [29]

Z =
1

2N

� ∞

−∞

dλ

coshN(πλ)
=

2−NΓ
�
N
2

�
√
πΓ

�
N+1
2

� . (4.1)

Expanding this at large N we find

F = − logZ = N log 2 +
1

2
log

�
Nπ

2

�
−

1

4N
+

1

24N3
+ . . . . (4.2)

This large N expansion is asymptotic, but it provides a very good approximation of the

exact answer (4.1) down to N = 1—see Figure 1. Including more terms in (4.2) makes the

approximation worse at N = 1.

With N pairs of hyper-multiplets we have a total of 2N physical complex bosons and 2N

Dirac fermions. We then see perfect agreement of the first two terms in (4.2) with eqs. (2.15)

and (3.23).

15



2 4 6 8 10
N

2

4

6

8

F

Figure 1: The exact free energy of the N = 4 theory obtained from eq. (4.1) (solid orange)
and the analytical approximation (4.2) (dashed black).

4.2 N = 3 theory

Let us add the Chern-Simons term for the N = 2 abelian vector multiplet; it breaks N = 4

down to N = 3 supersymmetry. The field content is the same as that of an N = 4 vector

multiplet and N hypermultiplets, namely an N = 2 vector, a neutral chiral Φ, and N pairs

of chiral multiplets Qa and Q̃a charged under the N = 2 vector. The superpotential required

by N = 3 SUSY is

W = −
k

4π
Φ2 + Q̃aΦQa . (4.3)

After integrating out the massive field Φ, the superpotential can be rewritten as [44]

W =
2π

k
(Q̃aQa)

2 . (4.4)

The conformal dimensions of Qa and Q̃a are still equal to 1/2, as is required by the marginal-

ity of W and by the Z2 symmetry under which Qa and Q̃a are interchanged and all the fields

in the vector multiplet change sign. The partition function is [29]

Z =
1

2N

�
dλ

eiπkλ
2

coshN(πλ)
. (4.5)
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While this expression cannot be evaluated analytically, one can evaluate it using a saddle

point approximation in the limit where both k and N are taken to be large. Let us define

κ = 2k/(Nπ) and take N to infinity while keeping κ fixed. The saddle point is at λ = 0,

and in order to obtain a systematic expansion, one should write

Z =
1

2N

�
dλ e−Nπ2λ2(1−iκ)/2

�
1 +

Nπ4λ4

12
−

Nπ6λ6

45
+

N(68 + 35N)π8λ8

10080
+ . . .

�
, (4.6)

where the parenthesis contains the small λ expansion of the function eNπ2λ2/2 cosh−N(πλ).

Order by order in this expansion one can perform the integrals in (4.6) analytically. The

result is

Z =
1

2N

�
2

Nπ(1− iκ)

�
1 +

1

4N(1− iκ)2
−

1

3N2(1− iκ)3
+

68 + 35N

96N3(1− iκ)4
+ . . .

�
. (4.7)

Calculating F = − log |Z| and expanding in N , we obtain

F = N log 2 +
1

2
log

�
Nπ

2

√
1 + κ2

�
+

κ2 − 1

4(κ2 + 1)2N
−

4κ2(κ2 − 1)

3(1 + κ2)4N2
+O(N−3) . (4.8)

We note that in order to calculate the O(N−α) term in F we need the expansion in (4.6) to

be up to order O(λ4α). The expression (4.8) is also in agreement with eqs. (2.15) and (3.23)

given that the N = 3 theory has Nb = Nf = 2N .

Let us extend our discussion to the non-abelian theory with gauge group U(Nc). The field

content now consists of an N = 4 vector multiplet in the adjoint representation of the gauge

group and N pairs of chiral multiplets Qa and Q̃a, in the fundamental and anti-fundamental

representations of the gauge group, respectively. After localization the partition function for

this theory is given by [29]

Z =
2Nc(Nc−1)

2NNcNc!

� �
Nc�

i=1

dλi

��
Nc�

i<j

sinh2[π(λi − λj)]

�
exp

�
iπk

Nc�

i=1

λ2
i

�
Nc�

i=1

cosh−N(πλi) .

(4.9)

In the limit where Nc/N � 1, the integral has a saddle point at λi = O
�
(Nc/N)1/2

�
.

Through next to leading order the partition function of the non-abelian theory reduces to

Z =
(2π)Nc(Nc−1)

2NNcNc!N
N2
c
2

�� Nc�

i=1

dλ̃i

��
Nc�

i<j

(λ̃i − λ̃j)
2

�
exp

�
−
π2 (1− iκ)

2

Nc�

i=1

λ̃2
i

�
+ . . . , (4.10)

17



where κ is defined as in the abelian theory and λ̃i =
√
Nλi. We have rescaled the integration

variables so that the remaining integrals in eq. (4.10) produce numbers independent of N .

Taking the log of eq. (4.10) we then see immediately that

F = NcN log 2 +
N2

c

2
log(N) +O(N0) . (4.11)

Given that the non-abelian theory has Nb = Nf = 2N , the equation above is in agreement

with eq. (3.28).

4.3 Non-chiral N = 2 theory

Moving up one notch in complexity, we now consider theN = 2 Chern-Simons theory coupled

to the chiral fields Qa and Q̃a introduced above, this time without the superpotential (4.4).

The absence of the superpotential leaves the R-charges of Qa and Q̃a a priori unrestricted. It

was proposed in [31] that one way of finding the correct IR R-charges in anN = 2 theory is by

calculating the partition function on S3 for any choice of trial R-charges consistent with the

marginality of the superpotential and then extremizing over all such R-charge assignments.

The R-charges of Qa and Q̃a can be taken to be equal to some common value ∆ because of

the following symmetries: the action is invariant under two U(N) symmetries under which

the Qa and Q̃a transform as fundamental vectors, as well as under a charge conjugation

symmetry that flips the sign of all the fields in the vector multiplet and at the same time

interchanges Qa and Q̃a.

As a function of ∆, the partition function is [31]

Z =

� ∞

−∞
dλ eiπkλ

2
eN

�
�(1−∆+iλ)+�(1−∆−iλ)

�
, (4.12)

where the function �(z) is given by

�(z) = −z log
�
1− e2πiz

�
+

i

2

�
πz2 +

1

π
Li2

�
e2πiz

��
−

iπ

12
. (4.13)

This function can be found by solving the differential equation ∂z�(z) = −πz cot(πz) with

the boundary condition �(0) = 0. It is a real function when z is real.

We again take N to infinity while keeping κ = 2k/(Nπ) fixed. In this limit one can use

the saddle point approximation to calculate the partition function (4.12) as in the previous

section. The exponent in (4.12) is an even function of λ, so there is a saddle point at λ = 0,
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and we will assume this is the only relevant saddle. To leading order in N we therefore have

F (∆) = −2N�(1−∆) +O(logN) . (4.14)

This function is maximized when dF/d∆ = 2π(∆ − 1) cot(π∆) = 0, which implies ∆ =

1/2 +O(N−1). We will find that this anomalous dimension affects F only at order 1/N , i.e.

the first two leading orders in the large N expansion of F are the same for the N = 2 theory

and the N = 3 theory studied in the previous section.

One can develop a systematic expansion to study 1/N corrections in a similar way to

what was done at the end of the previous section for the N = 3 theory. The fact that now

∆ depends on N introduces an extra complication. We expand ∆ as

∆ =
1

2
+

∆1

N
+

∆2

N2
+ . . . , (4.15)

and we rescale λ = λ̃/
√
N . One can then write

Z =
1

2N
√
N

� ∞

−∞
dλ̃ e−π2λ̃2(1−iκ)/2

�
1 +

6π2∆2
1 + 24∆1λ̃2 + λ̃4

12N
+ . . .

�
, (4.16)

where the expansion in parenthesis is in powers of 1/N while holding λ̃ fixed. Term by term

in this expansion, these integrals can be evaluated analytically. The free energy is

F (∆) = N log 2 +
1

2
log

�
Nπ

2

√
1 + κ2

�
−

�
π2∆2

1

2
+

2∆1

1 + κ2
+

1− κ2

4(1 + κ2)2

�
1

N
+ . . . .

(4.17)

Maximizing this expression with respect to ∆1 we obtain

∆1 = −
2

π2(1 + κ2)
. (4.18)

For k � N � 1 this result agrees with section 6.3 of [31]. Repeating this procedure two

more orders in F we find

∆ =
1

2
−

2

π2(1 + κ2)

1

N
−

2 [π2 − 12 + κ2(4− 2π2) + π2κ4]

π4(1 + κ2)3
1

N2
+O(N−3) . (4.19)

This series appears to be perfectly convergent. In fig. 2 we plot ∆(N) for a few values of κ

using both the precise numerical result and the approximation (4.19).
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Figure 2: The R-charge ∆ plotted as a function of N for κ = 0, 4/π, 8/π, with darker
plots corresponding to larger κ. The solid lines are calculated using the approximation in
eq. (4.19). The circles are computed by numerically maximizing the free energy with respect
to ∆. Note that the two computations match well even for small N .

Using eqs. (4.17) and (4.18) we find that the free energy is

F = N log 2 +
1

2
log

�
Nπ

2

√
1 + κ2

�
+

�
κ2 − 1

4(1 + κ2)2
+

2

π2(1 + κ2)2

�
1

N
+O(N−2) . (4.20)

Using Nb = Nf = 2N , we see that this expression agrees with eqs. (2.15) and (3.23) that were

derived directly from a large N expansion without the use of supersymmetric localization.

Let us perturb the N = 2 theory discussed above by the quartic superpotential

W = g(QaQ̃a)
2 . (4.21)

Since, as can be seen from (4.18), the dimension of Qa and Q̃a is slightly smaller than 1/2,

the perturbation (4.21) is a slightly relevant perturbation of the UV N = 2 theory. This

theory should flow to an IR fixed point where the superpotential is exactly marginal, i.e.

the IR R-charges of Qa and Q̃a are 1/2. The calculation of FIR is thus exactly the same as

for the N = 3 superconformal U(1) theory discussed in section 4.2. The infrared theory is

conformal for any g, and for the special value g = 2π/k it is the N = 3 theory in eq. (4.4).

Eqs. (4.8) and (4.20) imply that the change in free energy between the UV and IR fixed

points is

FUV − FIR =
2

π2(1 + κ2)2N
+O(N−2) , (4.22)
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which can be explicitly seen to be positive, in agreement with the conjectured F -theorem [23].

Since the superpotential deformation (4.21) is only slightly relevant, one may wonder

how the result (4.22) compares with the perturbative computation performed in [24]. In [24]

it was shown that if the Lagrangian is perturbed by a slightly relevant scalar operator of

dimension 3− �, then there is a perturbative IR fixed point and FUV − FIR ∝ �3. If however

the Lagrangian is perturbed by a pseudoscalar operator of dimension 3− �, then there is no

perturbative fixed point; it was seen in an example that if a fixed point exists then one might

expect FUV − FIR ∝ �. In our case, the superpotential deformation (4.21) translates into

perturbations of the Lagrangian by both a scalar operator O1 and a pseudoscalar operator

O2. Indeed, denoting

Qa = φa +
√
2θψa + θ2Fa , Q̃a = φ̃a +

√
2θψ̃a + θ2F̃a , (4.23)

we have

δL = g2O1 + gO2 ,

O1 = −8
���φaφ̃aφb

���
2
− 8

���φaφ̃aφ̃b

���
2
,

O2 = −2ψaψ̃aφbφ̃b − ψaψbφ̃aφ̃b − ψ̃aψ̃bφaφb − 2ψaψ̃bφ̃aφb + c.c .

(4.24)

The scaling dimensions of these operators are

∆(O1) = 3 + 6
∆1

N
+O(N−2) , ∆(O2) = 3 + 4

∆1

N
+O(N−2) , (4.25)

so the pseudoscalar operator O2 is the more relevant one. One might expect the IR fixed

point should be non-perturbative and that FUV − FIR ∝ −∆1/N times a function of order

one. That the IR fixed point is non-perturbative can be seen after writing g = ĝ/N so that

ĝ stays of order 1 as we take N to infinity. The IR coupling gIR = 2π/k corresponds to

ĝIR = 4/κ, which is of order one in the large N limit, meaning that the IR fixed point is non-

perturbative. That FUV − FIR ∝ −∆1/N times a function of order one can be immediately

seen from eqs. (4.22) and (4.18).

4.4 Chiral N = 2 theory

We now consider a natural generalization of the non-chiral N = 2 theory discussed in the

previous section—the chiral N = 2 theory. This theory is given by N = 2 Chern-Simons
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theory coupled to N chiral fields Qa and Ñ fields Q̃a with no superpotential. When N = Ñ

this theory reduces to the non-chiral theory discussed in the previous section. Without loss

of generality, we now assume that N > Ñ . Instead of dealing with N and Ñ it is convenient

to define the following quantities,

N̄ ≡
N + Ñ

2
, µ ≡

N − Ñ

N + Ñ
, 0 < µ ≤ 1 . (4.26)

The R-charges of Qa and Q̃a, which we call ∆ and ∆̃, respectively, are not equivalent in the

chiral theory. As a function of the R-charges, the partition function we need to consider is

then

Z =

� ∞

−∞
dλ eiπkλ

2
eN�(1−∆+iλ)+Ñ�(1−∆̃−iλ) . (4.27)

We want to calculate the partition function in the limit where N̄ goes to infinity and

κ = 2k/(N̄π) and µ are held fixed. In the large N̄ limit we again find a saddle point at

λ = 0. The saddle point equation requires ∆ = 1/2 + O(1/N̄) and ∆̃ = 1/2 + O(1/N̄). In

order to study 1/N̄ corrections, we expand the R-charges as

∆ =
1

2
+

∆1

N̄
+

∆2

N̄2
+ . . . , ∆̃ =

1

2
+

∆̃1

N̄
+

∆̃2

N̄2
+ . . . . (4.28)

Using the methods developed in the previous sections, we can calculate the free energy

perturbatively in the 1/N̄ expansion and maximize the resulting expression term by term

with respect to the ∆i and ∆̃i. Going through the procedure we find the following results

for the free energy and the R-charges:

∆ =
1

2
−

2(1 + µ)

π2(1 + κ2)N̄
+O(N̄−2) , ∆̃ =

1

2
−

2(1− µ)

π2(1 + κ2)N̄
+O(N̄−2) ,

F = N̄ log 2 +
1

2
log

�
N̄π

2

√
1 + κ2

�
+

�
κ2 − 1

4(1 + κ2)2
+

2

π2(1 + κ2)2

−
4µ2

π2

�
1

(1 + κ2)2
−

4

3(1 + κ2)3

��
1

N̄
+O(N̄−2) .

(4.29)

Using Nb = Nf = 2N̄ , we see that the expression for F agrees with eqs. (2.15) and (3.23)

that were derived without the use of supersymmetric localization.
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We can perturb this theory by adding in the superpotential

W ∼

�

a,b

(QaQ̃b)
2 . (4.30)

Since ∆ + ∆̃ < 1 in the UV N = 2 CFT, this superpotential deformation is relevant and

causes an RG flow to the fixed point where the superpotential is exactly marginal. At the

IR N = 2 fixed point we have the constraint ∆ + ∆̃ = 1. To determine the free energy at

the IR fixed point we simply have to repeat the F -maximization procedure above subject

to this constraint. That in the UV one has to maximize F without any constraints while in

the IR one has to maximize F under the constraint ∆ + ∆̃ = 1 means that the free energy

of the IR fixed point is necessarily at most equal to the free energy of the UV fixed point.

Indeed, we find that

FUV − FIR =
2(1− µ2)

π2(1 + κ2)2
1

N̄
+O(N̄−2) , (4.31)

which is manifestly positive when µ2 < 1. When µ = 1 there are no Q̃a fields, and so we are

not allowed to add in the superpotential deformation. The R-charges at the IR fixed point

are given by

∆ =
1

2
−

4µ

π2(1 + κ2)

1

N̄
+O(N̄−2) , ∆̃ = 1−∆ . (4.32)

5 Discussion

In this paper we have studied certain 3-dimensional gauge theories coupled to a large number

NF of massless charged fields. Such theories are conformal for a sufficiently large NF , and a

good tool for studying them is the 1/NF expansion. In this paper we used such an expansion

to study the disk entanglement entropy, which is related to the free energy F on the 3-sphere.

For the U(Nc) gauge theory coupled toNf massless Dirac fermions andNb massless scalars

we found the first subleading term in the expansion, (3.28). We have also studied the N = 2

supersymmetric abelian gauge theory coupled to N positively charged chiral superfields Q

and N negatively charged chiral superfields Q̃. In this case, F can be calculated numerically

for any N using the methods of localization. We compared these numerical results with their

1/N expansion and found excellent agreement down to small N .

An important question concerning such CFTs is whether there is a breakdown of confor-
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mal invariance for sufficiently small NF . In the N = 2 supersymmetric U(1) gauge theory,

even for a single non-chiral flavor the theory is conformal and unitary. This is indicated by

the mirror symmetry arguments [45] and confirmed by explicit calculation of the localized

path integral in [31], which indicates that the dimension of Q and Q̃ is exactly 1/3. However,

in the non-supersymmetric U(1) theories there typically is a lower bound for the conformal

window. For example, in the extreme limit NF = 0 we find the free Maxwell theory, which

is not conformally invariant. We studied it on the S3 of radius R in section 3 and found that

FMaxwell varies logarithmically with R, eq. (3.25), indicating the lack of conformal invariance.

One possible phenomenon for small NF is the chiral symmetry breaking in 3-dimensional

QED coupled to massless fermions [16,17]. The numerical studies of lattice antiferromagnets

[46] suggest the QED theory with Nf = 8 Dirac fermions is a stable CFT, while the Nf = 4

theory is unstable to symmetry breaking towards a non-conformal ground state [10]. More

generally, one of the signs of crossing the lower edge of the conformal window could be that

the assumption of conformality leads to certain gauge invariant operators having scaling

dimensions that violate the 3-dimensional unitarity bound ∆ > 1/2.

In [23, 24] it was conjectured that F must be positive in a unitary CFT. Since as NF

decreases so does F , it is possible that F may become negative for sufficiently small NF .

This could serve as another criterion for theories outside the conformal window. It would be

interesting to explore the different criteria above and to see if they are related.
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A Vector spherical harmonics on S3

In this appendix we review the vector spherical harmonics on S3 (see for example [47]).

The scalar spherical harmonics on S3 transform in the [j, j] irrep of SU(2)× SU(2) for any

half-integer j ≥ 0. Denoting n = 2j + 1, the dimension of this representation is n2, and

n ≥ 1 is an integer. Let’s denote these harmonics by Yn�m, with 0 ≤ � < n and −� ≤ m ≤ �.

Parameterizing S3 by three angles (χ, θ,φ), with the line element given by

ds2 = dχ2 + sin2 χ
�
dθ2 + sin2 θ dφ2

�
, (A.1)

one can write down explicit formulas for the spherical harmonics:

Yn�m(χ, θ,φ) =
sin� χ
√
an�

Φn�(χ)Y�m(θ,φ) , (A.2)

where Y�m are the usual spherical harmonics on S2 and

Φn�(χ) =
d�+1 cos(nχ)

d(cosχ)�+1
, an� =

nπ

2

(�+ n)!

(n− �− 1)!
. (A.3)

The spherical harmonics satisfy

�
∇

µ
∇µ + n2

− 1
�
Yn�m = 0 . (A.4)

As mentioned in the main text, any one-form on S3 can be written as a linear combination

of forms that transform in SO(4) irreps with jL = jR, jL = jR+1 and jR = jL+1. One way

to understand this fact is as follows. One can express any one-form as a linear combination

of the right-invariant one-forms on S3. These right-invariant one-forms transform in the [1, 0]

irrep. The coefficients of the right-invariant forms in the decomposition of an arbitrary form

can in turn be expanded in terms of the usual spherical harmonics, which as mentioned above

transform in the [j, j] irreps. The Hilbert space of square-integrable one-forms therefore

decomposes as

�

j

([1, 0]⊗ [j, j]) =
�

j

([j − 1, j]⊕ [j, j]⊕ [j + 1, j]) , (A.5)

The sum runs over all j ∈ N/2, but when j = 1/2 the first term in the paranthesis is absent,

and when j = 0 the first two terms are absent. Switching from j to n we see that the
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one-forms on S3 transform in

∞�

n=2

�
n− 1

2
,
n− 1

2

�
⊕

∞�

n=2

�
n− 2

2
,
n

2

�
⊕

∞�

n=2

�
n

2
,
n− 2

2

�
. (A.6)

We will call the harmonics corresponding to the first sum Sn�m
µ (with 0 ≤ � < n and −� ≤

m ≤ �, having total dimension n2), and those corresponding to the second and third sums

Vn�m
L,µ and Vn�m

R,µ , respectively (with 0 < � < n and −� ≤ m ≤ �, having total dimension n2−1

for either Vn�m
L,µ or Vn�m

R,µ ).

Explicit formulas are available. Defining the inner product on the space of square-

integrable one-forms in the usual way,

�A,B� =
�

dχ dθ dφ sin2 χ sin θAµ(χ, θ,φ)
∗ Bµ(χ, θ,φ) , (A.7)

we normalize the harmonics so that

�Sn�m, Sn���m�
� = �Vn�m

L ,Vn���m�

L � = �Vn�m
R ,Vn���m�

R � = δnn�δ���δmm�

�Sn�m,Vn���m�

L � = �Sn�m,Vn���m�

R � = �Vn�m
L ,Vn���m�

R � = 0 .
(A.8)

As explained in section 3.2.2, the Sn�m are gradients of the usual scalar harmonics:

Sn�m(χ, θ,φ) =
dYn�m(χ, θ,φ)

√
n2 − 1

, (A.9)

and they are the only closed forms in the decomposition (3.15). The co-closed forms Vn�m
L

and Vn�m
R can be recast into the symmetric and antisymmetric combinations

Vn�m =
Vn�m

L + Vn�m
R

√
2

, Wn�m =
Vn�m

L − Vn�m
R

√
2

, (A.10)

which by virtue of (A.8) are also orthonormal. Then

Vn�m(χ, θ,φ) = ∗d

�
sin�+1 χΦn�(χ)�
n2�(�+ 1)an�

∗2 dY�m(θ,φ)

�
,

Wn�m(χ, θ,φ) =
sin�+1 χΦn�(χ)�

�(�+ 1)an�
∗ (dχ ∧ dY�m(θ,φ)) ,

(A.11)

where ∗2 denotes the Hodge dual on S2 with the standard line element. These expressions

exhibit Vn�m and Wn�m explicitly as co-closed one-forms.
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When we evaluate the sums in equations like (3.17) we need to know what happens to

the one-forms close to the North pole at χ = 0. A simple analysis of eqs. (A.9) and (A.11)

gives:

��Sn�m(χ, θ,φ)
��2 = O(χ2�−2) ,

��Vn�m(χ, θ,φ)
��2 = O(χ2�−2) ,

��Wn�m(χ, θ,φ)
��2 = O(χ2�)

(A.12)

as χ → 0. The only harmonics that are non-zero at χ = 0 are therefore Sn�m and Vn�m with

� = 1 and m = −1, 0, 1.
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