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Abstract. The statistical mechanics of particles embedded in a surface with quenched fluc-
tuations in its topography is considered. If the fluctuations are not too violent, stable
crystalline phases are possible at finite temperatures, with elastic constants renormalised
from their flat-space values. Point dislocations and disclinations couple only to the intrinsic
gaussian curvature of the surface. Other effects of the surface can be gauged away, just as
in Mattis models of spin glasses. At sufficiently low temperatures, crystalline arrays must
melt re-entrantly via a dislocation instability. The resulting hexatic phase is also unstable at
low temperatures. The random-topography problem is similar in many respects to that of
particles in flat space disrupted by a quenched random array of impurities.

1. Introduction

There is considerable current interest in frustration, defects and their effects on crys-
talline and fluid order at low temperatures (Yonezawa and Ninomiya 1983). These
studies are motivated by the hope of ultimately understanding the structure andstatistical
mechanics of amorphous materials. It has been argued recently that metallic glasses and
supercooled liquids in three dimensions are strongly defected states of a medium with
local icosahedral bond orientational order (Steinhardt et al 1983, Nelson 1983a, b,
Sethna 1983, Nelson and Widom 1984). The defect density in the ground state goes to
zero when the medium is embedded in a three-dimensional space with uniform positive
curvature (Coxeter 1969, 1973). Flat three-dimensional space is ‘frustrated’ because it
does not allow the formation of a irregular icosahedral solid; defects such as disclinations
areinevitable (Kieman and Sadoc 1979). Flat two-dimensional space, on the other hand,
readily allowsformation of regular hexagonalssolids. Because analytic theories of melting
in two dimensions are available (Halperin and Nelson 1978, Nelson and Halperin 1979,
Young 1979), it is useful to consider frustrated two-dimensional solids and study the
phases that are induced by the frustration. By ‘frustration’, we mean that particlesin the
ground state cannot simultaneously sit in the minima presented to them by pairwise
interactions with their neighbours. Various mechanisms for introducing frustration in
two dimensions have been considered. Motivated by an analogy with frustrated icosa-
hedral order in three-dimensional flat space there have been numerical studies of
frustrated hexagonal order on two-dimensional surfaces of constant negative curvature
(Rubinstein and Nelson 1983). Experimental and analytical investigations on arrays
frustrated by introducing inhomogeneous particle sizes have also been carried out
(Nelson et al 1982, Nelson 1983b).
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In this paper we introduce frustration into two-dimensional particle configurations
in another way, by embedding them in a randomly corrugated surface. Cooling on such
amanifold has been suggested by Gaspard et al [1982] as a way of generating amorphous
particle configurations. The long-wavelength equilibrium statistical mechanics of a
continuum elastic version of this model turns out to be soluble by renormalisation-group
methods. The results are insensitive to the kind of fluctuations assumed for the surface.
Direct experimental reaslisations may be possible, by quenching a viscous liquid such as
molten quartz in equilibrium with a vapour below its glass transition, and then adsorbing
large particles (of size 100 A, say) at the interface. We require the wavelength of
quenched fluctuations to be much longer than the interparticle spacing, and the forces
confining the particles to the interface to be normal to the surface. Although short-
wavelength fluctuations in the surface may be present immediately after the quench, we
expect that these will be rapidly eliminated by diffusion. The long-wavelength fluctua-
tions we require will persist onlaboratory timescales, however, below the glass transition
temperature of the quartz.

As pointed out by Gaspard et al (1982) the gaussian curvature (Coxeter 1969), K (r),
of the surface couples to disclinations in the embedded particle configuration. These
authors derived a microscopic relation between the distribution of disclinations and the
integral of the gaussian curvature in a region S, namely

; (6 —Z)Nz= %Hsglﬂ d% K(r).

Here Nz is the number of atoms with coordination z in the region, and K (r) is the local
gaussian curvature of the surface with metric g. On a surface that is locally flat, most
atoms will be six-coordinated and the anomalous five-coordinated and seven-coordi-
nated particles may be viewed as microscopically defined disclinations. A non-zero net
gaussian curvature in some region evidently forces in atoms with a coordination number
different from six, i.e. disclinations.

A long-wavelength version of this effect emerges from the continuum elastic model
considered here. The continuum elastic free energy for a crystal embedded in a slightly
curved surface in the harmonic approximation is (Landau and Lifshitz 1970)

d%r 2 s
F=1%1 ‘a—z" (2[1 uj+ AMizy)

where

;i (r) = u(r) +3A4,() (1.2b)

and r = (x, y) are coordinates in a reference flat surface. The quantity u; is the strain
tensor due to the component of the displacement of the atoms in the reference plane
and a is a short-wavelength cut-off (see figure 1). The tensor A;;, which couples to
gradients of the displacements in a manner reminiscent of a vector potential, is

Ay = (3f/ox;) (aff ax)) (1.3)

where f(x, y) is the height of the corrugated surface relative to the reference plane. If
the discreteness of the underlying lattice can be neglected, the total disclination density
sT(r) in the ground state is easily shown to be (see § 2).

sT(r) = det(d%f/ox,dx;) = K(r) (1.4)
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Figure 1. An array of atoms on a random topography. f measures the displacement of the
surface from a reference flat surface and r is a coordinate in the reference surface.

which is a continuum version of (1.1). Only the ‘intrinsic’ curvature enters (1.4). Other
effects of the surface can be ‘gauged away’ be redefining the displacement field, in
analogy with Mattis models of spin glasses (Mattis 1976).

We will consider two models for the probability distribution of the shape of the
surface. These are described below.

(i) A ‘rough surface’ (Weeks 1980) which has a distribution
1 d%
P(f(n) < exp (- 57 [ 197 P 7). .9

Such a surface is created when there is an energy cost in increasing the area of the
surface. Quartz rapidly cooled from the melt should produce a surface with long-wave-
length fluctuations governed by this distribution. The ‘fictive temperature’ T;is a dimen-
sionless ratio of the quenching temperature and the surface tension.

(ii) A ‘smooth surface’ with a distribution

Pa(7r) = exp (- 5 [ (£ %F) 1.6

a

has fluctuations that are more constrained. Here each point of the surface has indepen-
dent gaussian fluctuations about the reference plane. A surface with fluctuations of this
kind might be obtained by rapidly freezing a vapour—crystal or liquid—crystal interface
initially in equilibrium below its roughening temperature (Weeks 1980).

Provided the surface fluctuations are not too violent, there is a finite band of tem-
peratures such that a crystalline solid described by (1.2) is stable. In this temperature
range, the quenched randomness introduces only a finite renormalisation in the long-
wavelength elastic constants. The strains induced by the random topography are
screened out by thermally activated bound dislocation pairs. At sufficiently low tem-
peratures this screening is less effective, and we find that the crystal melts re-entrantly
via a dislocation-unbinding transition. Some qualitative insight into the physics at low
temperatures can be obtained by considering the distributions of gaussian curvature
induced by (1.5) and (1.6). In § 3 we show that

P (K(g)) < exp ( T2 i KL);’((——‘Q) (1.7a)

where

2
K@) =5m f da—{K(r)exp(iq-r) s (1.7b)
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and

64/m° for smooth surfaces
= { (1.7¢)

64/37 for rough surfaces.

The sum on q extends over the first Brillouin zone. Q is the area of the surface and we
have imposed periodic boundary conditions. The probability functional (1.7) describes
a continuous distribution of disclination charges with density K (r). Such a distribution
of disclinations occurs, for example, in equilibrium two-dimensional isotropic liquids at
long wavelengths well above the melting temperature (Nelson 1982). We shall be
interested in how a frozen distribution of this kind interacts with discrete point discli-
nation and dislocation charges in a crystal. The dislocation instability mentioned above
occurs when a proliferation of unbound dislocations (i.e. disclination dipoles) attempts
to compensate the frozen distribution K (r). Instabilities such that the compensation is
carried out by unbound disclinations also exist.

In § 2 the continuum elastic model is derived in detail and the effects of the surface on
the long-wavelength phonon modes neglecting defects are worked out. Defects are
introduced by § 3, where we show how they interact with each other and the gaussian
curvature of the surface. The defect part of the free energy turns out to be identical to
a recently solved model of solid films on a flat surface with quenched random impurities
(Nelson 1983b). The effect of the disorder on phonon excitations in the absence of
defects is somewhat different however. Both this system and a crystal embedded in a
random topography will exhibit a dislocation-driven re-entrant melting instability into
a hexatic fluid at sufficiently low temperatures, provided no other instability intervenes.
We go on to examine the renormalisation of the disclination core energy in the resulting
hexatic liquid. If dislocations remain in equilibrium, we find that this core energy is
driven negative suggesting a further instability into an isotropic liquid at low tempera-
tures. This conclusion also applies to flat-space films with quenched random impurities.
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Figure 2. Two possible phase diagrams of the system. T'is the temperature and Tyis a quantity
measuring the randomness of the surface. Our treatment does not enable us to state whether
the low-temperature hexatic phase will be completing pre-empted (figure 2(a)) or whether
it will exist in a small band between the solid and the liquid (figure 2(b)).

Two possible phase diagrams suggested by this analysis are shown in figure 2. The
equilibrium low-temperature fluid phases are interesting, because their dynamics pre-
sumably becomes increasingly sluggish as they are cooled. One might expect a gradual
transition to ‘glassy’ behaviour as T— 0, with simple Arrhenius divergences in the
transport coefficients.
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2. The model

2.1. Derivation

Consider an array of identical atoms interacting via a simple pair potential in a flat plane.
The ground state will be an unfrustrated hexagonal lattice. We imagine creating a
corrugated surface by raising each point (x, y) to a vertical height f(x, y). The atoms are
now allowed to relax by movements with surface only. When an atom at (x, y, f(x, y))
moves it will change its coordinates to (x + u,, y + u,, f(x + 4, y + u,)). The system is
now frustrated because, for a large class of surfaces f(x, y), not all of the near-neighbour
bond lengths will be able to relax to equality. The resulting strains tend to produce
dislocation and disclination defects. The free energy describing the corrugated state can
depend only on changes in bond lengths between atoms (Landau and Lifshitz 1970).
Consider two atoms at positions (x, y, 0) and (x + dx, y + dy, 0) before the surface is
raised. After the surface has been raised and the atoms are allowed to move on the
surface; the new distance between them will be given by

ds? = 8ki dx, dx; (21)

where

) (00 3) + st (0w ) (00 55
8= O+ gu = (6'k+axk> (6d+ ax,) ax; x; i+ Oxx Ot ox 22)

The free energy of the bent surface is a functional of the deviation g4, (x, y) of the metric
from flatness (see e.g. Kroner 1981). In the ground state the system will try to minimise
its energy by reducing gy, to 0 everywhere. In general this can happen only if the system
introduces a continuous distribution of defects in the crystal. Since in the presence of
defects the displacement field «; can become multiple-valued we replace du;/dx; by the
distortion tensor wy:

Wi = ‘Ou;/ox;’ (2.3)

where the quotation marks mean that é-function contributions due to the cuts in u; have
been subtracted out (Kosevich 1979). The defects give rise to a transverse part of wy.
wy would be purely longitudinal in the second index k if u; were single-valued. If we now
represent all the second-rank tensors as matrices, (2.2) can be rewritten as a matrix
equation:

1+ §=WW+WwWaw (2.4a)
where

Wi =6+ wy (2.4b)
and A;; was defined in (1.3). The free energy is minimised when @ = 0, i.e.

W=W'=(1+A)"2 (2.5)
Upon summing the Taylor series expansion of (1 + A)~%2, we find

wh = (affax:) (aff ox;) F(|Vf ) (2.6a)
where

F() =/l +y-1) (2.6b)
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The symmetrised strain tensor in this ground state is thus
uf = 4w + wi) = (affax)) (3ffax)) F(IVF ). @7

A portion of the strainu{ can be absorbed into simple displacementsu{ of the atoms
on the surface. Measuring displacements relative to the u} is like making a ‘gauge
transformation’ on the system. Any two-dimensional second-rank symmetric tensor can
be written as the sum of two parts (see e.g. Arnowitt et al 1962):

u) = ul + uf. (2.8)
The longitudinal part is of the form

ub =8k + 8;h; (2.9)
for some field A;(x, y). Clearly this is the pure ‘gauge’ part of the strain and can be
eliminated by a simple displacement u°(x, y) = h(x, y). Defects in the ground state,

which cannot be accommodated by a single-valued set of displacements, are determined
by the transverse part of the strain u]. In Fourier space, ulis of the form

uj = (8; — kik;/k*) v(k). (2.10)
Upon introducing the total disclination density (Kossecka and de Witt 1977)

s(k) = =K (k) = —(K?6; — kiku(R) = —(k?8; — kiul(R)  (2.11)
and transforming back to real space, we find

s(r) = ei&i(3/dxx) (8/dx;) ud(n. (2.12)

The total disclination density includes both isolated disclinations and dislocations,
regarded as disclination dipole pairs. It is simply related to the ‘incompatibility’ n(r)
used in the continuum elasticity literature (see, e.g. de Witt 1970, 1973)

n(r) = —s(r). (2.13)

Upon inserting (2.7) into (2.12), we find that the total disclination density in the ground
state of a surface f(x, y) is '

s(r) = exg:(0/0xx) (3/0x)) [(3ff ax ) (aff ax ) F(| % PA). (2.14)

In the special case when fis a function only of the radial coordinate p = (x* + y?)¥2,
f(p) = f(x,y), the expression (2.14) simplifies to

s(r) = 2(df/dp) (d*/d )/ {pl1 + (df/d p)1¥}: (2.15)
The guassian curvature of this surface is easily found to be

K =2(df/dp)(d%/dp")/{p[1 + (dff/dp)7]?} (2.16)
It follows that

K=scos 8 2.17)

where 6 is the angle between the normal to the surface and the z axis. The total
disclination density in the tangent plane to the surface (i.e. s cos 8) is exactly the gaussian
curvature. We shall be interested in random surfaces f(x, y) for which
| Vf(x, y)|is small. To leading order in Vf we find from (2.14) that

s(r) = —4enei(3/9xk) (8/dx;) [(of/ox ) of/ox)] = det(@F/ax 0x)) = K (7). (2.18)

[T
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N The free energy must be a homogeneous isotropic function of ;. In the harmonic
v approximation it takes the form (Landau and Lifshitz 1970)

2
F=1 : d ’g" c,,k,g—"’ (2.19)

where
Cijr = (86 + 0udjp) + A0;0u. (2.20)

Since we have dropped higher-order terms in g;;, we must also make the corresponding
approximation in (2.2):

£ = ow;/ox; + ouy/ax; + (8ffax;) (3ff ax;) = 2uy; + (9ff ax) (9ff ax)). (2.21)
The free energy we will now work with is
d¥r( 1 of of 1 of of
== iy + = . :
F= f ( 2 dx; ax,> C”"’( 2 ax ak,) 2.22)

Equation (2.22) agrees with part of an elastic energy discussed by Landau and Lifshitz
(1970) describing the equilibrium of a flexible bent plate. Upon freezing such a plate in
a particular configuration and allowing the stresses within the plate to relax, one is led
to the statistical mechanics problem addressed in this paper. Itis important to emphasise
that it will not always be possible to compensate the gaussian curvature of a surface by
disclination charges in a way suggested by (2.18); disclinations and dislocations in a
crystal have quantised charges, and can only approximate a continuous distribution of
charge at long wavelengths if they are unbound. The amount of compensation depends
on the temperature, and is discussed in detail in § 3.

O

2.2. Harmonic theory

We will now calculate the correlation functions of u(r) as given by the free energy (2.22)
in the absence of defects. As will be shown in § 3, there is a range of temperatures for
weakly fluctuating surfaces where defects can in fact be neglected at long wavelengths.
We shall assume that surface fluctuations are described by quenched probability distri-
butions of the form (1.5) or (1.6). Defining the Fourier-transformed variables

- _a [d% ker
a;(k) = ?ﬂff = u;(r)e (2.23a)
and
- a (d% .
f = | S e o (2.23b)
Q”) & PR i+
the free energy becomes

Fia f} = 4 2 ai(k) Ci (k)i (=R
+ 6 21 (DPFP)iCp + k) f(=p — A=) (jsi(k) + ki (R)

7 fz%f,,zk (=) k() (D P f(D)i(p + Knf(—p— B) (2.24)
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where Cj; is the usual elastic quadratic form

Cy(k) = pk*(8;; — kikifk®) + (2u + A) (kik/k?) k> (2.25)

We have dropped a term proportional to| Vf |*because it drops out of quenched averages.
To evaluate the correlation functions of u(r( it is useful to introduce a source term
Ji(k) and evaluate the expression

[<exp (; J,~(—k)12,-(k))>]d. (2.26)

Here the angular brackets denote a thermal average over the free energy (2.24) and the
square brackets denote a quenched average over the disordered surface f. The thermal
average in (2.26) is given by

(e (S 00k )

= [[@ut) exp (~F (@ ) + S i) / [ 2k exp(—fias

(2.27)
where
Fii, f} =4 2 a(R) Cy(R)a(—k) + S HA; (k) (2:28)
with
A(=B) = 357 % (=), f(p) fl=p =~ B)(=D)ilpp + K+ py(p + K]
+ s S (~D k(=P FBYiCo + uf(~p — B 229

The quadratic functional integral in (2.27) is easily carried out, with the result
(exp = 5(-0a(w)

We must now evaluate the average of (2.30) over the probability distributions (1.5)
and (1.6). Since A;(k) is quadratic in f, we are led to consider the vertex shown in figure
3(a). The wavy lines represent f-propagators and the straight line is an external source.
The average of (2.30) over a gaussian probability distribution is the exponential of the
sum of connected graphs:

(e Ta-maw)] = e (1S smCcims-R) e @)

where § is given by the graphical series displayed in figure 3(b). The leading ‘tadpole’
graphisidentically zero. All the graphs have equal numbers of vertices and propagators.
Each vertex carries one power of momentum for each f-line emanating from it. For the
rough surface (1.5), an f-propagator carrying momentum q has a factor 1/¢* associated
with it. The two powers of g from the two vertices joined by the propagator compensate
this 1/g2 It follows that all the diagrams for both the rough surface (1.5) and the smooth
surface (1.6) are regular for small values of the momenta carried by the external lines.
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Figure 3. (a) A vertex showing the coupling of the f-field (wavy lines) to an external source.
(b) All the graphs that are generated when the quenched random field fis averaged over.

We will only evaluate the leading terms in an expansion in small values of the external
momenta. To this order we can replace the momenta in all the lines in a loop by a single
loop momentum p. In this approximation the vertex in figure 3(a2) reduces to

JiCi (R [(ua/ Q) kipjps + (Maf2Q2) (Dkipip ). (2.32)

Thus, each vertex carries a power of 1/k for small k; a loop with n external lines each
carrying a momentum k will behave like 1/k” for small k. From this it is clear that the
n-point correlation function of the #;( k) has exactly the same leading-k behaviour as the
harmonic continuum elastic model in flat space. For example, a straightforward calcu-
lation of the two-point function, obtained by differentiating (2.31) with respect to the
source J;(—k), gives

(kY (K = 23 [(ﬁ*rﬁ%{iﬁ f) (%)

+ (; L T2 G+ 4+ 20 {W}) k_fz]

2u+ A 168 Qu+ A) 2K
171 kik; 1 kik;
LN NN (PO /1.7 O S L7 2.33
K [MR (6" k* ) * 2ur + Ar k? ] (2.33)

to leading order in k. Here the upper term in the curly brackets refers to the smooth
surface (1.6) and the lower term to the rough surface (1.5). Apart from finite renor-
malisations in the elastic constants, the leading-k behaviour of the two-point function is
unchanged.

It is well known that thermal fluctuations have a pronounced effect on correlations
in two-dimensional solids (Jancovici 1967). Although conventional long-range order
(leading to d-function Bragg peaks in the structure function) is destroyed, translation
correlations exhibit a slow algebraic decay to zero whenever there are non-zero elastic
constants. If G is a reciprocal-lattice vector, the relevant correlation function is (see,
e.g., Nelson and Halperin 1979)

Co(r) = (exp[iG - (u(r) — u(0))]) ~ 1/r™ (2.340)
with
ne = ksT |G|* Bu + A)/4mu(2u + A). (2.34b)

It is straightforward to show that this result remains valid for crystalline solids on
corrugated surfaces, with pand A replaced by the renormalised elastic constants appear-
ingin (2.33).
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3. Defects

3.1. Free energy

We shall be interested in the energetics of defects in the strain field u;; of the crystal. We
take disclinations to be the fundamental defect and we build dislocations out of discli-
nation pairs. The dislocation—disclination theory of melting on a flat substrate can also
be formulated in this way (Nelson 1982). If there are disclination charges s, at positions
r,and dislocation charges b at positions rg, then the total disclination density is

s(r) = 2 O(r—ry)so+ aoe,jz b 9, O(r — rg) = exgyp— 9

L G.1)

Here, ay is the lattice constant, and the Burgers vectors b? are dimensionless. The
quantity w; is the singular part of the strain field, induced by the defects. Upon defining

= 48y = uy; + }(af/ax.) (3ff ox) (3.2a)
the free energy (2.22) takes the form
d?r
Fle} = -4 f =z e;iCijuen. (3.2b)

It will be convenient to consider a defect density measured relative to the distribution
K (r) favoured by the gaussian curvature of the surface (see equation (2.18)):

d(r) = s(r) ~ K(r) = euga(0/0x) (8/3x) e (33)

Since the displacement fields adjust themselves to find the local minimum of the free

energy for any defect density, we have

O6F/bu; =0 (3.4
which gives, using (3.2b), the condition

0; Cijus €t = 0. ( (3.5)
In order to solve (3.3) and (3.5) for e;(r), we make the substitution

eu(r) = Idzr’ Gu(r—r)d@’) (3.6)
which means that the tensor Green function G (r) must satisfy

EmkEnt (0/8X1) (8/0x,) Gra(r) = &(r) (3.7a)
and

3/3x;CyjaGu(r) = 0. (3.7b)
Upon writing

Gu(r) = f Lk'ZG“k,(k) (e7*r—1) (3.8)

(27)

we find

EmkEntkmkn Gl = —1 (3.9

e
L
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and -~
" kiCyuGu=0. (3.10)

Equations (3.9) can be written

K (Ou — kiki/k?) Gy = —1 (3.11)
which is solved by

Gu(k) = —=(1/k®)[(8u — kiki/k?) + akiki/k?) (3.12)
where «is an unknown function of k. Inserting this into (3.10) we obtain

a=—A/(A+ 2u) (3.13)

where we have used the isotropic form (2.20) for the elasticity tensor. It follows that
d%* (e'”‘" - 1) [((s‘ _ kkk[) _ A kkkl]
Qn? K MURT) A+2u K2
u |r| (). + [t) 14741
o —— — d ——
1o 200(A + 20) n"Z" Ou 2700 + 2p) 12

We must now insert (3.6) into (3.2b) and obtain the free energy for a given defect
density. Defining the Fourier transform of d(r) as in (2.23) we find

Gu(r) = -

(3.14)

Fa=12 d(-Bd(®)G;(B) CijuGiu( ). (3.15)
One readily finds that

Gij(K) CyaGra(k) = (1/k*) 4plp + B/(A + 2p) =K Jk* (3.16)
Thus the desired defect free energy is

Fd=%’§k:d(—k)%é(k)+Ec§sﬁ+ EP§:|bp[2. @1

Upon allowing for small phonon displacements about a particular disclination configur-
ation, one obtains an additional phonon free-energy contribution already treated in
§ 2.2. We have inserted phenomenological core energies E. and E;, for dislocations and
disclinations. These terms arise from non-linear stresses near the core of the defect.
Because dislocations are regarded as disclination pairs we expect that E, = 2E.. We
have also used the conditions

fdzrd(r) =0 (3.18a)
and

fdzrrd(r) =0. (3.18b)

Configurations not satisfying these constraints have energies that diverge with the size
of the system. It turns out (see § 3.2) that the curvature contribution to d(r) integrates
to zero when inserted into (3.18). One is left with disclination and dislocation charge
neutrality conditions on thermally activated defects, namely

20; s=0 (3.19a)
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a % b+ 2 rse = 0. ' (3.19b)

3.2. Dislocation interactions

We now wish to examine whether it is possible for the dislocations in the crystal to
unbind and destroy translational order. We assume we are in a phase where all the
disclinations occur only as tightly bound pairs to form dislocations, so all s, = 0in (3.1),
and

d(r) = a % &;bP 3, 8(r — rg) — K(7). (3.20)

Inserting the expression (3.20) into the free energy (3.17) and using the charge neutrality
conditions (3.20), we obtain

@. B.
Fy=—— 2 (ba »¥ln |rﬂ'ﬂ| (b aﬂ)(b2 aﬂ))
| 7ol
Ko < K(—k)g;(—ik); bf exp(ik-rp)
' w2 _ D0 /] ] B
+ E; 2 |b°] 975% 5 (3.21)
where
Ryg=r,—rg E; = E, + CKo/4. (3.22)

The quantity C is the cut-off-dependent constant in the integral

2 ikr __
k. (a kik; ) (Calinl) USRI § (a,.j 1n£ - ’;") 8;C. (3.23)

(2m)? k? k* e 4m
Note that the surface topography interacts with dislocations in the crystal via the /
fourier-transformed gaussian curvature. To proceed further we need the quenched ™
probability distribution for the gaussian curvature associated with surfaces described by
(1.5) and (1.6).
3.3. The probability distribution for the gaussian curvature
We first consider the generating function
X(B) = [exp (2 B(-k)K(9))].
3 o [of 3 }

[exp { ) I B(r) €mk&n— Frry (axk a£> ]d (3.24)
where [. . .]q means an average over the quenched disorder embodied in the surface
probability distributions (1.5) or (1.6). Averages of this form repeatedly appear in the
statistical mechanics associated with (3.21). Upon integrating by parts in (3.24) we find

d?r #B_ of of
X(B) - [exp ( f EmkEnl 08X, 0X,, OX ax,)]
a . . . .
= [ex0 (- 357 3 msen(= (= (=ipiliCp + )]

x B (-p =B . (3.25)

p
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The structure of this average is exactly the same as that of (2.30)-(2.32). The quantity
X (B) is given by the exponential of the connected graphs shown in figure 3(b), with the
proviso that the straight external lines now carry factors of B(k). The ‘tadpole’ graph
vanishes as before. Upon making the same small-external-momenta approximations as
in § 2.2, we find that the first non-vanishing contribution to the exponential is

B(k)B(—k)a?

a4
T? 4Q EmkEnl km kn Epréys kp kq ;Pkprplps {l/p"}

3T? {én‘s

= B)B(-K) 75521 } K (3.26)

As before the upper term refers to smooth surfaces and the lower term to rough surfaces.
It is easy to check that for higher-order graphs, graphs with n external lines behave like
T?k*". It follows that for small T;and external momenta, the two-point graph considered
above dominates. In this approximation it is easy to check that correlations in the
gaussian curvature are described by the probability distribution

. 647 (3/7%) < K(k)K(—k)
Q‘(K(k))“eXp< *3T2{1/;;2}2_T_> (3.27)

3.4. The dislocation-unbinding transition

We are now in a position to determine the renormalisation-group recursion relations
associated with the defect free energy (3.22). These are most easily constructed by the
replica method used previously for quenched random impurities (Nelson 1983b). Upon
introducing replica indices m, n, we use the probability distribution (3.27) to carry out
the average over the quenched randomness, with the result

Frreplica — al. > 2 [bm . pPm 1n<|’m - rml) b (Fam — g )b - (Pam — ’ﬂm)]
87 ra#trg'm a |rm - fﬂmlz

x—E 2 [o- v ("m ’ﬁ"|) ”""'(’m—'ﬁn)b”"'(rm—rﬂn)]

87 wBm#n |’am_"ﬂnl2

+ Ej 2 2 | b (3.28)
where

o ., 3TF {én"} )

K—-Ko m ,77,2 Ko (329(1)
and

. =3T; {W} )

K= G | 2 K. (3.29b)

As usual in the replica method we want to calculate thermal averages and recursion
relations from (3.28) and then take the limit (m, n)— 0. This analysis, however, is
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Figure 4. Renormalisation-group flows for the dislocation-unbinding transitions. The shaded
portion corresponds to a stable solid phase and flows to large y indicate an instability to the
unbinding of dislocations.

formally identical to the defect free energy for quenched random impurities discussed
in Nelson (1983b). Upon defining by In y = — E;] the recursion relations may be written

dKy'/dl = §mexp[(ko — 6K3)/8n] 21o[(Ko — 6K3)/87] — I{(Ko — 0K§)/87]}y*

(3.30a)
dy/dl = [2 — (Ko — 0K§)/8a]y + 27 exp[(Ko — 0K8)/167) I (Ko — 0K3)/8n]y?
(3.306)
da/di=0 (3.30¢)
where "
3T?
hsT;r{ﬂz}' (3.31)

For & < &; = 1/647 the Hamiltonian flows are qualitatively like those in figure 4, where
1 1”2
_:l = + —_ 5
K: o 1= - 6470)¥. (3.32)

There is a fixed line at y = 0. The fixed line is unstable to the formation of dislocations
at low temperatures (small K;'!). This is due to the random topography and represents
an attempt to screen out its gaussian curvature. For a range of temperatures between
Ki'and K3, however, y (I) ultimately goes to zero and the crystalline phase is stable.
For temperatures below Ki'! the crystal melts re-entrantly into the hexatic phase. For
> g,,i.e. for

Y= } (3.33)

1/3¥2x

the crystalline phase is always unstable toward a dislocation-unbinding transition.

‘ Tf>{

3.5. The disclination-unbinding transition

It was shown by Nelson (1983b) that after the dislocation unbinding, bond orientational
order persists and the system has a non-zero stiffness K5 entering an effective free
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energy
Fa=1Ka J' d%|vep. (3.34)

Here we examine in a different manner the properties of the system after the dislocations
unbind. As in Nelson (1983b) we will treat the dislocations in the ‘Debye-Hiickel’
approximation. In this approximations one integrates, rather than sums, on dislocation
degrees of freedom in the partition function for length scales greater than &r. &ris the
translational correlational length and diverges as one approaches the solid phase (Nelson
and Halperin 1979). We shall assume that the short-wavelength dislocation degrees of
freedom have been eliminated by the procedure of § 3.4. Because we are going to
integrate degrees of freedom in Fourier space and wish to impose an ultraviolet cut-off
of order &r', we have to define our Fourier transforms as in (2. 23a) with g, replaced by
&r. Itis important to note, however, that we retain the factor of agin (3.1), because the
size of an elementary dislocation is unchanged. From (3.17) we obtain the effective free
energy:

1 K°5% 25) dé‘f(k)dh( .+ E, S+ E S |bk)P (3.35)

with
de, (k) = & Esw ke _ Ry () + =0 g 0 £(—ik);be (k) (3.36)

and
be (k) = 9755 2 b eikrs, (3.37)

The subscript &r has been included to emphasise that the Fourier transforms are defined
at a length scales longer than &r. Assuming that the timescales of interest are much
greater than the time required for the dislocations to equilibrate, we can integrate
be. (k) and find an effective free energy:

Fa=i3 (g3 et - 00) (35 0g)

1 . .
X (Wg see k7 — K&(—k)> +E. sk (3.38)
For large r (and small k) we can ignore the k*a*/Ky& term in the denominator and obtain
— E | & | ’ 2 E E% 7 1 ik rg
Fu = —5;7 2 $aSp 1n—g—+Ec§sa—§Eb5§ Re(—K) 7z ¢ (3.39)
with

E!=E .+ D—faLEZ’ (3.40)
0

and where D is the constant in the integral

fver dk *r -1 1 ||

Gl @~ gD (3.41)
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We shall assume that factors of 1/kT have been absorbed into Fes, so the probability of
a particular quenched configuration is proportional to e ", We will now analyse the
free energy (3.39) in the limit of large E,. First note that the stiffness K4 entering the
free energy is proportional to E,&/aj. This agrees with the results of Nelson (1983b).
Let Iny = —E{. It is possible to average over the quenched disorder, embodies in
K (k), in successive powers of y. (Equivalent results are obtained using the replica
trick; see Rubinstein et al 1982.) To lowest order in y the quenched average is the same
as the annealed average. The probability distribution for K¢ (k)from (3.27) is

647 (37 < Ke (k) Ke(—k) &
P(Ke(k <— —-—{ } u—). 3.42
(Re() <exp (43|, o] 20— (3.42)
It follows that the new effective free energy that results is
- E,& |ra— rg| ( EX% 3TF (42°
Fo= — 2= In———~* + |E! - 2= { }) 2 3.43
“ 27m§a§ﬁs°sﬂn E a3 1287 | 72 gs (3.43)

The free energy Feg is just the scalar Coulomb gas problem solved by Kosterlitz (1974),
with an effective core energy

EBT? (An°
E:“=Ec'——{27‘{n2}f—g§. (3.44)

Note from (3.40) that E! diverges at least as rapidly as &, so positive effective
core energies are possible even for large &r. Because E, and E{ ~ 1/T, however, E®
becomes arbitrarily small with decreasing temperatures. As shown by Kosterlitz (1974),
there must be a disclination-unbinding transition in this limit. This instability can pre-
empt the low-temperature hexatic phase completely for sufficiently large T;. The two
possible equilibrium phase diagrams suggested by this analysis are shown in figure 2.

This mechanism for destabilising the hexatic phase at low temperatures should also
apply to solids with quenched random impurities, a possibility that was overlooked by
Nelson (1983b). In practice, however, it may be very difficult for disclinations to remain
in equilibrium during cooling, in contrast to dislocations, which can equilibrate rapidly
via glide diffusion. Unless the cooling rate is very slow, systems with phase diagrams
like that in figure 2(a) may become trapped in non-equilibrium hexatic configurations
at low temperatures.
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