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Abstract

We derive an expression for functional determinants in thermal spacetimes as a product over

the corresponding quasinormal modes. As simple applications we give efficient computations of

scalar determinants in thermal AdS, BTZ black hole and de Sitter spacetimes. We emphasize the

conceptual utility of our formula for discussing ‘1/N ’ corrections to strongly coupled field theories

via the holographic correspondence.ar
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1 Determinants and quasinormal modes

In a semiclassical quantisation of gravity the partition function can be written schematically as

Z =
∑
g?

det
(
−∇2

g?

)±1
e−SE [g?] . (1)

Here g? are saddle points of the Euclidean gravitational action SE . We use g? to collectively denote

the metric and any other nonzero fields. The det
(
−∇2

g?

)
term schematically denotes the product of

determinants of all the operators controlling fluctuations about the background solution g?. As usual,

the determinants appear on the numerator or denominator depending on whether the fluctuations

are fermionic or bosonic respectively. This formula is readily generalised to correlators of operators

by including appropriate sources in the gravitational action.

Originally developed with a view to elucidating quantum gravitational effects in our universe [1],

the semiclassical approach to quantum gravity has gained a new lease of life through the holographic

correspondence [2, 3]. This is because the semiclassical limit in gravity corresponds to the large N

limit of a dual gauge theory. Almost all works have restricted attention to the leading order large

N result, the exponent in (1). Exceptions to this last statement include [4, 5, 6] who studied an

effect due to the determinant term in pure Anti-de Sitter space. In our recent paper [7] we have

stressed the fact that the semiclassical determinant term in (1), a 1/N# correction, will be important

in the framework of ‘applied holography’. This is the case because there are interesting effects, in

for instance thermodynamics and transport, which are either entirely absent at leading order or else

swamped by physical processes that are not those of prime relevance.

In general it is technically challenging to compute determinants in nontrivial background space-

times. Even when the Euclidean saddles are homogeneous the calculation can be involved. For

example, [8] computed the gravitational determinant on S2 × S2 to obtain the semiclassical rate of

nucleation of black holes in de Sitter spacetime. For most cases of interest, often black hole space-

times, the eigenvalues of the fluctuation operator cannot be determined explicitly and an evaluation

of the determinant is difficult without resort to WKB or other approximations (although see for

instance [9] and citations thereof).

In this paper we present and derive a formula for determinants in black hole backgrounds, indeed

finite temperature spacetimes more generally, in terms of the quasinormal modes of the spacetime.

For (complex) bosonic fields the expression appears in section 3, equation (37), and takes the form

1
det
(
−∇2

g?

) = ePol
∏
z?

|z?|
4π2T

∣∣∣∣Γ( iz?
2πT

)∣∣∣∣2 , (2)

where z? are the quasinormal frequencies, T is the temperature and ePol is a simple polynomial
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contribution, fixed by a finite number of local terms discussed in section 4. Equation (38) gives an

alternative formulation and (39) the fermionic analog.

The quasinormal frequencies of a spacetime determine the time evolution of perturbations of a

particular field about the background. They are the poles of the retarded Green’s function for the

field in question (see e.g. [10, 11]). In the holographic correspondence they are furthermore the

poles in the retarded Green’s function of the operator dual to the bulk field [12]. While the pole

with smallest imaginary part determines the thermalisation timescale of the field theory [13] (within

a linear reponse regime, c.f. [14]), more generally the poles of the retarded Green’s function are

basic physical quantites in the dual field theory. They could be considered the closest notion to

well-defined excitations in the strongly coupled theory. Furthermore, over the years a vast effort has

been invested in the computation of quasinormal frequencies in many black hole spacetimes, for a

recent review see [15]. Much of the insight gained from these studies can now be translated into the

physics of one loop determinants. In short, we expect formulae like (2) to have the following uses:

• It allows exact computation of the determinant in certain cases.

• If a single quasinormal mode contains the physics of interest we can isolate its contribution to

the determinant.

• Approximate (for instance WKB) expressions for the quasinormal frequencies give a method

for approximating the determinant.

• The quasinormal modes are natural physical quantities in the dual strongly coupled field theory

which does not have weakly interacting quasiparticle excitations. Expressing the dynamics of

the field theory in terms of these modes may lead to conceptual insights into strongly coupled

theories.

Below we will give a couple of examples of the first of these uses, by (re)computing the one loop

partition function of scalar fields in thermal AdS, BTZ and de Sitter backgrounds. In our paper

[7] we used the second fact in the above list; the non-analytic behaviour of a specific quasinormal

frequency (in the T → 0 limit) as a function of a magnetic field led to quantum oscillations.

Our objective in this paper is to give a leisurely exposition of (2), together with simple examples

that illustrate the power of analyticity arguments combined with quasinormal mode sums. Although

our main interest is in black hole spacetimes, we also consider thermal AdS and de Sitter space as

simple examples that illustrate the approach. We briefly discuss the numerical evaluation of formulae

like (2) in section 5. In section 6 we note that (2) can be generalised to conserved quantum numbers

other than the frequency, for instance the angular momentum quantum number `. In the discussion

we mention various possible generalisations and physical applications.
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2 Warmup examples

Before deriving a formula for general black hole spacetimes, we will consider some simple one dimen-

sional examples to illustrate the basic idea.

2.1 Harmonic oscillator

The simplest case is a harmonic oscillator. The Euclidean path integral at finite temperature T for

a complex scalar in one dimension — or in other words for the harmonic oscillator with two real

degrees of freedom — is

Z(m) =
∫
DφDφ̄ e−

R 1/T
0 dτ (|∂τφ|2+m2|φ|2) , (3)

where periodic boundary conditions are understood: φ(τ) = φ(τ + 1/T ). Dividing by some fixed

reference Z(m0) for normalization, this reduces to the evaluation of a functional determinant:

Z(m)
Z(m0)

=
det
(
−∂2

τ +m2
0

)
det (−∂2

τ +m2)
. (4)

The determinant is formally defined as the product of eigenvalues. The eigenvalues λn(m) = ω2
n+m2

are unbounded, so the individual products are divergent. Here we introduced the bosonic thermal

frequencies

ωn = 2πnT , (bosonic) . (5)

The product of the ratios is nonetheless well defined and easily computed:

Z(m)
Z(m0)

=
∞∏

n=−∞

ω2
n +m2

0

ω2
n +m2

=
sinh2 m0

2T

sinh2 m
2T

. (6)

Here we made use of a well known infinite product formula.

If we now let the reference mass m0 →∞, then sinh2 m0
2T '

1
4e
m0T while on the other hand Z(m0)

only gets a contribution from the ground state energy E0: Z(m0) ' e−E0/T . This correctly identifies

E0 = m0 and thus finally

Z(m) =
1

4 sinh2 m
2T

=
∑
n1,n2

e−m(1+n1+n2)/T , (7)

which is indeed the 2d harmonic oscillator partition function Z = Tr e−H/T .

Let us now evaluate the same determinant in a slightly more convoluted way, which however will

readily generalize to the systems of interest to us.1

1This is essentially an adaptation of an argument in Coleman’s lecture on instantons [16]. For another application of

similar ideas to the problem of computing determinants in AdS/CFT, see [6]. For the general mathematical framework

to which (a more rigorous version of) this type of reasoning belongs, see for example [17].
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Consider the function

f(λ) ≡ Z(m+ λ)
Z(m0 + λ)

, (8)

where λ is allowed to take any complex value. This function has poles whenever the operator

−∂2
τ + (m+ λ)2 has zero modes, that is, if a solution exists to the (λ-deformed) equation of motion

(
−∂2

τ + (m+ λ)2
)
φ(τ) = 0 , (9)

which in addition satisfy the periodicity constraint φ(τ + 1/T ) = φ(τ). A basis of solutions to the

equation of motion is

φ±(τ) = e±(m+λ) τ . (10)

Continued to real time t = −iτ and at λ = 0, these become oscillatory solutions to the real time

equation of motion. These solutions satisfy the Euclidean periodicity constraint if and only if ±(m+

λ) = iωn, n ∈ Z, or equivalently if and only if sinh
(
±m+λ

2T

)
= 0. A similar reasoning with m→ m0

gives the zeros of f(λ). Thus, f(λ) has the same zeros and poles (with the same multiplicity) as the

function

f̃(λ) ≡
sinh

(
m0+λ

2T

)
sinh

(
−m0+λ

2T

)
sinh

(
m+λ
2T

)
sinh

(
−m+λ

2T

) . (11)

Furthermore both f(λ) → 1 and f̃(λ) → 1 when λ → ∞ in any direction away from the real axis.

Thus f(λ)/f̃(λ) is a holomorphic function without zeros or poles which goes to 1 at infinity, so it

must be 1 everywhere. In particular f(0) = f̃(0), which reproduces (6).

2.2 Damped harmonic oscillator

We now add dissipation to the previous example. This generalisation includes effects that are crucial

in the black hole case. The partition function for the damped complex harmonic oscillator coupled

to a ‘chemical potential’ µ is up to normalization given by [18]

Z = N
∏
n

(
(ωn + iµ)2 + 2γ|ωn|+m2

)−1
, (12)

with γ > 0 and |µ| < m for stability. The normalization factor N should be thought of again as

including a quotient by a fixed reference infinite product, similar to (6), obtained by replacing m

by m0, but keeping µ and γ the same. This renders the infinite product convergent. The thermal

frequencies ωn are still given by (5). Notice the absolute value signs around the thermal frequencies

ωn in (12), which ensure positivity of the eigenvalues.

The argument we used for the undamped oscillator was based on complex analyticity, so to

construct a similar reasoning here, we will have to split the product into separate parts Z+, Z0 and

4



Z− containing the terms with positive, zero and negative ωn respectively, and treat these factors

separately. Let us first consider the n > 0 part, and define analogously to (8)

f+(λ) =
Z+(m+ λ)
Z+(m0 + λ)

. (13)

This function has poles whenever a solution to the (λ-deformed) equation of motion

(
−(∂τ − µ)2 + 2iγ ∂τ +m2 − λ

)
φ(τ) = 0 , (14)

satisfies the periodicity and positive frequency constraints. A basis of solutions to the equation of

motion is given by the two functions

φ(τ) = e−zτ , z(λ) = µ− iγ ±
√
m2 − λ− γ2 − 2iγµ . (15)

Continued to real time t = −iτ and at λ = 0, these give damped oscillatory solutions to the original

real time equations of motion. The above solution is periodic and of positive frequency if and only if

z = iωn, n = 1, 2, 3, . . ., or equivalently if and only if Γ
(
1 + iz

2πT

)
=∞. A similar reasoning replacing

m → m0 gives the zeros of f+(λ). Hence the meromorphic function given by
∏
z(λ) Γ

(
1 + iz(λ)

2πT

)
at

mass m divided by the same expression at mass m0 has the same poles and zeros as f+(λ). Moreover

both f+(λ) and this quotient approach 1 when λ → ∞ in any direction away from the real axis.

Hence the two functions must be equal and in particular at λ = 0 we get up to a finite m-independent

factor

Z+(m) ∝
∏
z?

Γ
(

1 +
iz?

2πT

)
, (16)

where z? are the quasinormal complex frequencies of the (undeformed) damped harmonic oscillator,

i.e.

z? = µ− iγ ±
√
m2 − γ2 − 2iγµ . (17)

It is easy to see that Z− = Z∗+. By a similar pole/zero reasoning, or simply by reading off from (12),

we obtain Z0 ∝
∏
z?
z? = µ2 −m2. Putting everything together and using Γ(x + 1) = xΓ(x) gives

the final result

Z =
∏
z?

|z?|
4π2T

∣∣∣∣Γ( iz?
2πT

)∣∣∣∣2 . (18)

Here we fixed the normalization by comparing with the undamped oscillator result after putting

γ = 0. Then the quasinormal frequencies z? = µ ± m become real, and we can use the identity

xΓ(ix)Γ(−ix) = π/ sinh(πx) to write

Z|γ=0 =
∏
z?

1

2 sinh
(
|z?|
2T

) . (19)
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When in addition µ = 0, we have z(2)
? = −z(1)

? , reproducing (7) with the correct normalization. To

check that this remains the correct normalization when γ 6= 0 and µ 6= 0, we take the m→∞ limit

and note that in this limit z? becomes essentially real, and that to leading order Z(m) approaches

the correctly normalized partition function of the undamped harmonic oscillator. The result (18) is

derived by more conventional methods in appendix B of [7].

All of these formulae generalize straightforwardly to systems with multiple quasinormal frequen-

cies z?, by letting the products range over all quasinormal frequencies.

2.3 Fermionic oscillator

The partition function of the undamped fermionic oscillator is

ZF =
∫
DψDψ̄ e−

R 1/T
0 dτ ψ̄(∂τ+m)ψ , (20)

and hence

ZF (m) = NdetAP(∂τ +m) = N
(
detAP(−∂2

τ +m2)
)1/2

. (21)

Here the subscript ‘AP’ indicates antiperiodic boundary conditions: ψ(τ + 1/T ) = −ψ(τ). Thus, the

thermal frequencies are now half integral multiples of 2πT :

ωn = 2πT (n+ 1
2) , (fermionic) . (22)

Apart from this fact the analysis proceeds exactly as in the bosonic case, giving instead of (7)

ZF (m) = 2 cosh
( m

2T

)
= e−

m
2T + e

m
2T . (23)

For multiple oscillators with mass matrix M we get

ZF =
∏
z?

2 cosh
( z?

2T

)
, (24)

where z? are the fermionic normal frequencies, obtained by solving (∂τ +M)ψ = 0 for ψ = e−z?τ .

Similarly, if we define the damped fermionic oscillator determinant as the square root of the

corresponding bosonic one but with antiperiodic boundary conditions, we get instead of (18)

ZF =
∏
z?

2π∣∣Γ ( iz?2πT + 1
2

)∣∣2 . (25)

3 Euclidean thermal geometries

We now turn to the problem of actual interest to us, computing determinants of Laplace type

operators on thermal Euclidean spaces obtained by Wick rotating static spacetimes.
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3.1 Asymptotically AdS black holes

Consider a static asymptotically AdS spacetime with a horizon. A specific example is Schwarzschild-

AdSd+1:

ds2 = −V (r) dt2 +
1

V (r)
dr2 + r2 dΩ2

d−1 , (26)

where V (r) = 1 − m
rd−2 + r2

L2 . However the arguments which we will give in the following are not

restricted to this example, and apply to arbitrary static backgrounds. Geometries with horizons are

the most interesting as computing determinants in these cases will require treating the positive and

negative frequency modes separately, similarly to the damped oscillator.

To compute the one loop partition function at temperature T , we Wick rotate and identify:

t = −iτ , τ ' τ + 1/T , (27)

so the metric becomes Euclidean and periodic in the Euclidean time τ . The fact that the spacetime

is static means that the metric components are independent of τ and that there are no space-time

mixing terms. The horizon of the original black hole becomes the origin of the Wick rotated Euclidean

space [19]. The time circle contracts to a point there. For a suitable radial coordinate ρ, the metric

near the origin is of the standard flat form

ds2 ≈ dρ2 + ρ2dθ2 + ds2
⊥ , θ ≡ 2πTτ , (28)

where ds2
⊥ is the transversal metric at the horizon. Regularity of this metric at ρ = 0 fixes the

periodicity of the angular coordinate τ to be (27), and hence the black hole temperature to be T .

For another suitable radial coordinate z, the metric near the AdS boundary z = 0 is of the form

ds2 ≈ L2

z2

(
dz2 + dτ2

)
+ ds2

⊥ , (29)

where L is the AdS radius.

For concreteness, say that we want to compute the contribution to the one loop partition function

in such a background from a massive complex scalar φ. This is given by

Z(∆) =
∫
Dφ e−

R
φ∗(−∇2+m2)φ ∝ 1

det (−∇2 +m2)
, (30)

defined with the z → 0 boundary condition

φ ∼ z∆
(
1 +O(z2)

)
, (31)

where ∆ is a root of ∆(∆ − d) = (mL)2. With this asymptotic behavior, the action is positive

definite for real ∆ and finite for ∆ > d−2
2 , which is the unitarity bound of the dual CFT [20]. The
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fact that the boundary condition (31) is specified in terms of ∆ rather than the mass m2 will shortly

motivative us to use analyticity arguments in ∆ rather than m2.

We also require regularity at the origin ρ = 0. In terms of the complex coordinate u ≡ ρ e−iθ

with ρ and θ as in (28), regularity means that φ should have a regular Taylor series expansion in u

and ū about the origin. For a mode with thermal frequency quantum number n, we therefore have

the ρ→ 0 behavior

φ ∼

 un if n ≥ 0 ,

ū−n if n ≤ 0 .
(32)

Paralleling our warmup examples, we will determine Z(∆) by continuing to complex ∆ and

matching poles and zeros. Because of the nonanalytic dependence on n exhibited in (32), we will be

forced to split the partition function into positive and negative frequency parts, as we had to do for

the damped harmonic oscillator. In fact much of the following analysis will mimic the analysis done

for the damped harmonic oscillator. Let us start with the positive frequency part Z+(∆), defined by

(30) restricted to functions with only positive frequency Fourier coefficients. This has no zeros, and

poles on complex values of ∆ for which a zeromode exists, that is to say, a solution to the equation

of motion (
−∇2 + ∆(∆−d)

L2

)
φ? = 0 , φ? ∝ e−z?τ , (33)

satisfying the boundary condition (31) at infinity as well as the n > 0 half of (32) at the origin. The

latter is equivalent to requiring

z? = iωn , n = 1, 2, 3, . . . , (34)

where the ωn are as in (5). This is the same as requiring Γ
(
1 + iz?

2πT

)
=∞.

Thus, Z+(∆) has the same poles and zeros as any function of the form

eF (∆)
∏
z?

Γ
(

1 +
iz?(∆)
2πT

)
, (35)

where F (∆) is a nonsingular holomorphic function of ∆. If in addition we choose F (∆) such that

the ∆ → ∞ behaviors match (in the sense that the ratio of the two functions goes to 1), we can

conclude that the two functions are in fact equal.

To make this less heuristic, we have to address regularization and renormalization, as both the

determinant (30) and the product (35) are in fact UV divergent. We will postpone this to the next

section, where we will consider concrete examples of how this works in practice. We will see that F (∆)

is in fact a polynomial in ∆, determined by computing a finite number of integrals over spacetime of

local curvature invariants. To emphasize the polynomial dependence we will write F (∆) = Pol(∆).
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When we continue the solutions back to real time t = −iτ , the z? appear as complex frequencies

of modes with near-horizon behavior

φ? ∝ exp (−iz?(x+ t)) , x ≡ ln ρ
2πT

. (36)

The horizon is at x = −∞, hence these modes satisfy so-called ingoing boundary conditions at

the horizon as well as φ ∼ z∆ boundary conditions at infinity. For physical, real values of ∆, this

precisely defines the standard quasinormal modes of the AdS black hole [15]. Thus the z? are the

quasinormal frequencies. Stability of the background requires that all quasinormal frequencies have

negative imaginary part; if not, some modes will be exponentially growing with time.

For the negative frequency part of the determinant we follow a similar reasoning, except that now

we impose the n < 0 half of the boundary condition (32) at the origin. This leads to poles in Z−(∆)

associated to solutions φ̄? ∝ e−z̄?τ to the equation of motion for which z̄? = iωn, n = −1,−2,−3, . . .,

or equivalently Γ
(
1− iz̄?

2πT

)
=∞. This is analogous to the positive frequency case.

After continuing back to real time, these solutions satisfy outgoing boundary conditions at the

black hole horizon. Despite what the notation might suggest, the sets of these outgoing quasinormal

modes and frequencies are not necessarily complex conjugates of the ingoing quasinormal modes.

However if the operator ∇2 is PT invariant (as is often the case; for example it is true for all

examples we will consider in this paper, as well as for the planar dyonic black hole in four dimensions

we considered in [7]), these outgoing modes can be obtained from the ingoing modes by acting with

the PT symmetry, and then in particular the set of ingoing and outgoing quasinormal frequencies

are each others complex conjugate.

The n = 0 contribution can be treated similarly. Putting everything together, we get our main

formula for a complex boson, similar to (18):

ZB = ePol(∆)
∏
z?

√
z?z̄?

4π2T
Γ
(
iz?

2πT

)
Γ
(
−iz̄?
2πT

)
, (37)

where ‘Pol(∆)’ is a polynomial in ∆ which includes UV counterterms as well as finite terms obtained

by requiring the correct asymptotic ∆→∞ behavior. It is not fixed by the argument we have given

so far, but will be fixed by the computation of a finite number of local expressions, as will be further

discussed in the next section. As we mentioned, in many cases z? and z̄? are complex conjugates,

leading to (2).

An alternative and sometimes more useful way of writing this formula is

ZB = ePol(∆)
∏
z?

√
z?z̄?

2πT

∏
n≥0

(
n+

iz?
2πT

)−1(
n− iz̄?

2πT

)−1

, (38)

where the divergent products over n are understood to be regularized, as is the product over the z?

(more on this in the next section).
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Although we assumed a single complex scalar in a black hole background, exactly the same

formula holds for different numbers of bosonic fields. For fermions we get, similar to (25):

ZF = ePol(∆)
∏
z?

2π
Γ
(

1
2 + iz?

2πT

)
Γ
(

1
2 −

iz̄?
2πT

) . (39)

or, in product form

ZF = ePol(∆)
∏
z?

∏
n≥0

(
n+

1
2

+
iz?

2πT

)(
n+

1
2
− iz̄?

2πT

)
. (40)

Here the z? are again the quasinormal frequencies, obtained by solving the appropriate Dirac equation

of motion.

3.2 Thermal AdS

Geometries without a horizon have less structure; the quasinormal modes become normal modes, and

our formalism is correspondingly less useful. However, we begin with such simpler examples as they

will allow a transparent introduction to the computation of the ePol(∆) terms later. Furthermore,

even in these cases our approach appears to have some technical advantages compared to previous

computations.

The metric of AdSd+1 in global coordinates is of the form (26) with V (r) = 1 + r2

L2 . The same

arguments as for the black hole may be applied to this case. The difference is that the thermal circle

now nowhere collapse to a point, so we are free to (but of course don’t have to) treat positive and

negative frequencies in one go, like we could for the harmonic oscillator in the absence of damping.

Exactly the same formulae as for the black hole spacetimes continue to hold, although since there is no

horizon in the Lorentzian geometry, the Lorentzian interpretation as ingoing and and outgoing modes

is lost. Because the frequencies z? are real now (as there is no dissipation), we can bring the formulae

to a form similar to those of the undamped harmonic oscillator using xΓ(ix)Γ(−ix) = π/ sinh(πx).

In addition, the frequencies have a direct interpretation as one particle energies (with respect to

global AdS time): |z?| = E?. Thus, for a complex boson:

ZB = ePol(∆)
∏
z?

1

2 sinh |z?|2T

= ePol(∆)
∏
z?

e−
|z?|
2T

1− e−
|z?|
T

, (41)

which we recognize as a free multi-particle partition function Z = Tr e−H/T . For fermions:

ZF = ePol(∆)
∏
z?

2 cosh |z?| = ePol(∆)
∏
z?

e
|z?|
2T

(
1 + e

−|z?|
T

)
, (42)

which again we recognize as Tr e−H/T .
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The exact normal frequencies of global AdSd+1 are well known. For scalars [21]:

zn,`,± = ±2n+ `+ ∆
L

, n, ` = 0, 1, 2, . . . , (43)

where L is the AdS radius, ` is the angular momentum quantum number, and ∆ the conformal

dimension, related to the mass by (mL)2 = ∆(∆− d). The degeneracy D` of each frequency equals

the degeneracy of the `th angular momentum eigenvalue on Sd−1, i.e.

D
(d−1)
` =

(
`+ d− 1
d− 1

)
−
(
`+ d− 3
d− 1

)
=

2`+ d− 2
d− 2

(
`+ d− 3
d− 3

)
. (44)

For example when d = 3, this gives D` = 2` + 1. Somewhat degenerate cases are d = 2, for which

one should take D0 = 1 and D` = 2 for ` > 0, and d = 1, for which D0 = D1 = 1 and D` = 0 for

` > 1. The complex boson one loop partition function is then

ZB = ePol(∆)−
P
`,n 2D`

2n+`+∆
2LT

∏
n,`

(
1− e−

2n+`+∆
LT

)−2D`
. (45)

The sum in the first exponential is clearly UV divergent. This is the usual boson zero point energy

divergence and can be absorbed in the UV counterterms in Pol(∆). We will return to this in the

next section, where we will explicitly compute the full AdS3 partition function.

3.3 de Sitter space

The above arguments are not restricted to asymptotically AdS spaces. They apply equally well to

for example asymptotically de Sitter spaces.2 Let us consider pure dSd+1 to illustrate this. Static

patches of this spacetime have horizons that are formally similar to black hole horizons [22].

The de Sitter metric in static coordinates is of the form (26) with V (r) = 1− r2

L2 . It is formally

obtained from the AdS case by substituting L → iL. A causal diamond is given by the coordinate

patch 0 ≤ r ≤ L. The (cosmological) horizon is at r = L. After Wick rotation the causal diamond

becomes a sphere. The dS temperature is easily read off as T = 1
2πL , by computing the radius of the

τ circle required for regularity.

The Lorentzian quasinormal modes φ? have ingoing boundary conditions at the horizon. As for

black hole horizons, the Wick rotation of this statement is simply regularity for positive frequencies.

Therefore this is again the relevant boundary condition for the purpose of computing determinants.

The de Sitter quasinormal frequencies for a scalar are [23]

zn,`,± = −i2n+ `+ ∆±
L

, n, ` = 0, 1, 2, . . . , (46)

2We thank Dionysis Anninos for his encouragement.
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and z̄n,`,± = (zn,`,±)∗, where the notation parallels that in (43), except that ∆± are now roots of

∆(∆− d) = −(mL)2, so in particular for m > d/2, the ∆± become complex. In AdS, the boundary

conditions fixed the root ∆, but because now there is no boundary, both ∆+ and ∆− appear.

Inserting these frequencies in (37) or (38) and using the degeneracies D` from (44) then produces

the one loop thermal partition function for a complex scalar in dSd+1, or equivalently the inverse

determinant of the massive Laplacian on the sphere Sd+1. We will do this explicitly in a later section.

4 Local contributions and examples

So far we have ignored UV divergences and renormalization, and have hidden them in the as yet

unspecified term Pol(∆), which we claimed is a polynomial in ∆ and obtained from the computation

of a finite number of local terms. We now turn to these issues. To do this, we will study a number of

concrete examples, which at the same time will serve to test the above expressions, by reproducing

some previously derived results.

4.1 Thermal AdS3

We start with the thermal AdS partition function (45). For simplicity we will focus on AdS3, which

has a metric of the form (26) with V (r) = 1 + r2

L2 , dΩ1 = dφ, with φ ' φ + 2π. We will consider

a real boson instead of a complex one, which means we should take the square root of (45). We

may combine the products over `, n with multiplicity D` into a single product over κ = 2n+ ` with

multiplicity κ+ 1:

logZ = Pol(∆)−
∞∑
κ=0

(κ+ 1)
κ+ ∆
2LT

−
∞∑
κ=0

(κ+ 1) log
(

1− e−
κ+∆
LT

)
. (47)

The last sum converges, but the first one is UV divergent — this is the usual zero point energy

divergence of a free boson. We can regulate this sum for example by a simple energy cutoff. Recall

that Pol(∆) so far has only been specified to be a polynomial in ∆ which contains UV counterterms

as well as terms necessary to give the correct large ∆ behavior. We may therefore absorb any UV

divergence which depends polynomially on ∆ into Pol(∆), and write:

logZ = Pol(∆) −
∑
κ

(κ+ 1) log
(

1− e−
κ+∆
LT

)
. (48)

The second sum agrees precisely with the finite, nonlocal part of the scalar one loop partition function

obtained for thermal AdS in [24] by explicitly solving the heat equation and applying the method of

images.
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The polynomial Pol(∆) is fixed by requiring the correct large ∆ behavior. More precisely, since

the second term in (48) vanishes when ∆→∞, we need

lim
∆→∞

(logZ(∆)− Pol(∆)) = 0 . (49)

To find Pol(∆) we therefore need an independent way of determining the large ∆ behavior of logZ(∆).

Because at large ∆ the scalar becomes very massive, this will be determined by purely local expres-

sions. These can be found straightforwardly from the heat kernel coefficients of the Laplacian. In

the next part we briefly recall this technology (for a review, see e.g. [25]).

4.2 Local terms from heat kernel coefficients

We may write

log (λ/λ0) = −
∫ ∞

0

dt

t

(
e−λt − e−λ0t

)
, (50)

for some fixed reference λ0, as can be seen by differentiating both sides with respect to λ. From this

observation, we get the following formal heat kernel representation of the determinant of an operator

D +m2:

log det(D +m2) = Tr log(D +m2) = const.−
∫ ∞

0

dt

t
Tr e−t(D+m2) . (51)

Here and below “const.” should be thought of as some fixed reference determinant.

For any operator D in n = d + 1 dimensions of the form D = −(∇2 + E), with arbitrary gauge

and metric covariant derivative ∇ and background field E, one has the following t → 0 asymptotic

expansion of the trace of the heat kernel:

Tr e−tD ' (4πt)−
n
2

∞∑
k=0

ak(D) tk/2 . (52)

The heat kernel coefficients ak have universal expressions in terms of local curvature invariants. If we

ignore boundary terms, then ak = 0 for odd k and for even k we have ak(D) =
∫
dnx
√
g tr ak(D,x),

with [25]:

a0(D,x) = 1 , (53)

a2(D,x) =
1
6

(6E +R) , (54)

a4(D,x) =
1

360
(
60∇2E + 60RE + 180E2 + 12∇2R+ 5R2 (55)

−2RµνRµν + 2RµνρσRµνρσ + 30FµνFµν ) . (56)

General expressions are known up to a10.
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From this asymptotic expansion we can extract the m→∞ behavior of the determinant, which

only depends on the heat kernel coefficients a0 to an:

log det(D +m2) = const.− (4π)−
n
2

n∑
k=0

ak(D)
∫ ∞

0

dt

t
t
k−n

2 e−tm
2

+ O(m−1) . (57)

Indeed, the higher order contributions give finite integrals which manifestly vanish when m → ∞.

Furthermore, all UV divergent terms are contained in this truncated series.

The determinant can be regularized as

log detΛ(D +m2) = const.Λ −
∫ ∞

0

dt

t
f(Λ2t) Tr e−t(D+m2) , (58)

where f(x) is some function which goes to zero sufficiently fast when x→ 0 and approaches 1 when

x → ∞. Therefore f(Λ2t) = 1 except infinitesimally close to t = 0 when Λ → ∞. Popular choices

are f(x) = Θ(x − 1) with Θ the Heaviside step function, or f(x) = (1− e−x)k with k > n
2 . Using

the step function, for example in dimension n = 3, this then gives for the regularized version of (57)

log detΛ(D +m2) = const.Λ +
1

(4π)3/2

(
−2Λ3

3
+ 2m2Λ− 4

√
π

3
m3

)
· a0(D)

+
1

(4π)3/2

(
−2Λ + 2m

√
π
)
· a2(D) + O(m−1) . (59)

Here a0 =
∫
d3x
√
g and for a scalar E = 0, so a2 =

∫
d3x
√
g 1

6R. These terms simply renormalize

the cosmological constant and Newton’s constant. In dimensions n = 4, 5 the couplings associated

to terms in a4(D) will also be renormalized, and so on.

4.3 Result for thermal AdS3

Let us now use the result of the previous subsection to determine Pol(∆) for the thermal AdS3

example, according to (49). In AdS3 we have R = −6/L2. Using logZ = const.− log det(D +m2),

m2 = ∆(∆− 2)/L2, and absorbing the (∆-independent) Λ3 term in the constant, (59) boils down to

the simple expression:

logZ(∆) = const.+
∫
d3x
√
g

(
(∆− 1)3

12πL3
− (∆− 1)2Λ

8π3/2L2

)
+O(∆−1) . (60)

Equation (49) then fixes, in this regularization scheme, Pol(∆) to be exactly the polynomial part of

this expression. In conclusion, we get our final expression for the exact one loop partition function

for a neutral scalar in thermal AdS3 in this regularization scheme:

logZ = const.+
∫
d3x
√
g

(
(∆− 1)3

12πL3
− (∆− 1)2Λ

8π3/2L2

)
+ log

∏
κ

(
1− qκ+∆

)−(κ+1)
, (61)
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where

q = e2πiτ , τ =
i

2πLT
, (62)

and “const.” indicates that the overall normalization of the partition function has not been fixed; in

other words the above should be thought of as an expression for logZ/Z0 for some fixed reference

Z0.

The UV finite local term does not depend on the regularization scheme and agrees with the finite

local term found in [24]. Note that this is nontrivial: we determined this term by matching the large

∆ asymptotics, and the analyticity arguments which we used to derive our determinant formula then

fixes this to be the exact result valid for any value of ∆. Note that the analyticity argument does

not hold for m because, as noted below (31), the boundary conditions are not analytic in m, but

rather in ∆ = 1±
√

(mL)2 + 1. And indeed the above expression (61) has an infinite series of 1/m

corrections to the leading large m result.

For scalars with −1 ≤ m2 ≤ 0, we can impose either ∆ = ∆+ = 1 +
√

(mL)2 + 1 or ∆ =

∆− = 1−
√

(mL)2 + 1 boundary conditions [20]. In the CFT dual, going from ∆− to ∆+ boundary

conditions corresponds to turning on a double trace deformation of the UV CFT [26] in which the

operator dual to φ has conformal dimension ∆−, causing the theory to flow to a new IR fixed point

in which the operator dual to φ acquires conformal dimension ∆+. The central charges of the two

theories are different. In the bulk this translates to different one loop vacuum energy densities V .

This difference is obtained by subtracting logZ(∆−) from logZ(∆+). In the T → 0 limit:

V (∆+)− V (∆−) = −(∆+ − 1)3

12πL3
+

(∆− − 1)3

12πL3
= −(∆+ − 1)3

6πL3
, (63)

reproducing the results of [4, 6]. Note that this is finite and independent of the regularization. Since

the both the difference and the cosmological constant are negative, the ∆+ theory has a smaller

central charge than the ∆− theory, as expected.

4.4 The BTZ black hole

We now turn to actual black hole spacetimes. The simplest example is the BTZ black hole [27], for

which an exact computation of the one loop partition function is possible using our formula, which

can be compared again to [24]. This provides another test of our formula. The BTZ black hole

metric with zero angular momentum is of the form (26) with V (r) = −M + r2

L2 , M > 0, dΩ1 = dφ,

φ ' φ + 2π. (Note that the thermal AdS3 metric is obtained by putting M ≡ −1.) Regularity at

the origin r = r+ = L
√
M requires 2πT = 1

L
√
M

.

The quasinormal frequencies of a neutral massive scalar of mass m2 = ∆(∆ − 1)/L2 in a non-
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rotating BTZ black hole background are (see e.g. [28, 15])

zp,s,± = ± p
L
− 2πT i(∆ + 2s) , s = 0, 1, 2, . . . , p = 0,±1,±2, . . . (64)

and z̄p,s,± = (zp,s,±)∗. Here p is the momentum quantum number along the spatial circle and ±

distinguishes left and right movers. Note that each p therefore appears twice. Equation (38) (with

a factor 1/2 because the scalar is real) becomes

− logZ = −Pol(∆) +
∑

s≥0,n>0,p

[
log
(
n+ 2s+ ∆ + i

p

2πLT

)
+ log

(
n+ 2s+ ∆− i p

2πLT

)]
+

1
2

∑
s≥0,p

[
log
(

2s+ ∆ + i
p

2πLT

)
+ log

(
2s+ ∆− i p

2πLT

)]
(65)

= −Pol(∆) +
1
2

∑
κ≥0,p

(κ+ 1) log
(

(κ+ ∆)2 +
( p

2πLT

)2
)
, (66)

where we combined the sums over n and s into a sum over κ = 0, 1, 2, . . . with multiplicity κ+ 1, and

used log(x + iy) + log(x − iy) = log(x2 + y2). Extracting divergent sums while absorbing as before

all terms polynomial in ∆ into Pol(∆), and using the identity
∑

p≥1 log
(

1 + x2

p2

)
= log sinhπx

πx =

πx− log(πx) + log
(
1− e−2πx

)
, we get

logZ = Pol(∆) + log
∏
κ≥0

(
1− q̃κ+∆

)−(κ+1)
. (67)

where

q̃ = e2πiτ̃ , τ̃ = 2πiLT = −1
τ
, (68)

where τ was defined before in (62). Since again the second term in (67) goes to zero when ∆→∞,

and BTZ is locally identical to AdS3, the integrand of the local term Pol(∆) will be exactly as in

the thermal AdS3 case (61).

The product in (67) is related by a modular transformation τ → −1/τ to the product in (61),

in agreement with [24] and as expected on general grounds. This provides a nontrivial check of the

quasinormal mode formula for the partition function.

Before moving on we make a brief comment about holography at a quantum level. Notice that

LT → 0 in (68) implies q̃ → 1 causing logZBTZ to diverge as 1/(LT )2. The classical bulk action in

contrast scales ∝ LT , so at sufficiently small T , the one loop correction becomes larger than classical

saddle point contributions and we lose control of the loop expansion. Furthermore, the divergent

scaling of the correction violates extensivity of the dual boundary theory free energy. However, well

before this happens, the thermal AdS saddle point comes to dominate the path integral — this is the

Hawking-Page phase transition [29]. Similar remarks hold for the large LT limit of ZAdS3 . Quantum

gravity comes to the rescue of holography, as one might have anticipated.
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4.5 dS2

In even dimensions the heat kernel large m expansion (57) involves terms logarithmic in m. One

might worry that this would produce log ∆ terms and that large ∆ matching thus would force the

inclusion of log ∆ terms in Pol(∆), invalidating our analyticity arguments. To illustrate that this is

not so, and as another check of our general reasoning, we now consider the case of a scalar in two

dimensional de Sitter space (which Wick rotates to S2) in some detail. We will consider general

dSd+1 in the following section.

As reviewed in section (3.3) the dS2 massive scalar quasinormal frequencies are

zκ,± = −i κ+ ∆±
L

, ∆± =
1
2
± iν , ν ≡

√
(mL)2 − 1/4 , (69)

with κ = 0, 1, 2, . . . and degeneracy 1. This can be obtained from (46) by combining κ = 2n+ ` for

` = 0, 1. Substituting into (38) with T = 1
2πL produces:

logZ − Pol(ν) = −2
∑

κ,n≥0,±
log (κ+ ∆±) +

∑
κ≥0,±

log (κ+ n+ ∆±) (70)

= −
∑
±,r≥0

(2r + 1) log (r + ∆±) (71)

=
∑
±

2 ζ ′(−1,∆±)− (2∆± − 1) ζ ′(0,∆±) . (72)

Here we zeta function regularized the series; ζ is the Hurwitz zeta function defined by analytic

continuation of ζ(s, x) =
∑

n≥0(x+ n)−s, and we denote ζ ′(s, x) ≡ ∂sζ(s, x). The ‘Pol’ term should

be understood as a polynomial in ∆± or equivalently in ν.

We now extract the large mass asymptotics in order to determine Pol(ν). Using the ∆ → ∞

asymptotics of the Hurwitz zeta function (see e.g. appendix A of [30])

ζ(s,∆) ' 1
Γ(s)

∞∑
k=0

(−1)kBk
k!

Γ(k + s− 1)
∆k+s−1

, (73)

with Bk the Bernoulli numbers, we find that for ν →∞ (i.e. m→∞):

logZ − Pol(ν) =
(
log ν2 − 3

)
ν2 − 1

12
log ν2 + O(1/ν) . (74)

On the other hand the large m heat kernel expansion (57) gives in two dimensions

logZ =
1

4π

∫
S2

d2x
√
g

(∫
dt

t2
e−m

2t +
R

6

∫
dt

t
e−m

2t

)
+ O(1/m) . (75)

After regularizing by introducing a lower cutoff t > e−γΛ−2 with γ the Euler constant, and dropping
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an m-independent quadratically divergent term, this can be written as

logZ =
1

4π

∫
S2

d2x
√
g

(
m2 log

m2

eΛ2
− R

6
log

m2

Λ2

)
+O(1/m)

=
1

4π

∫
S2

d2x
√
g

(
ν2 + 1

4

L2
log

ν2

e(LΛ)2
+

1
4L2
− R

6
log

ν2

(LΛ)2

)
+O(1/ν)

= [ same expression as previous line with Λ replaced by ΛRG ]

+
1

4π

∫
S2

d2x
√
g

(
ν2 + 1

4

L2
log

Λ2
RG

Λ2
− R

6
log

Λ2
RG

Λ2

)
+O(1/ν) . (76)

Here we introduced an arbitrary renormalization scale ΛRG. Using RS2 = 2/L2 and VolS2 = 4πL2,

the first line in the last expression can be evaluated as(
log ν2 − 1

)
ν2 − 1

12
log ν2 +

( 1
12
− ν2

)
log(LΛRG)2 . (77)

The second line is a logarithmic renormalization of the couplings ρ and φ of the classical action

Scl. =
∫
d2x
√
g
( ρ
L2 + φR

)
. We can drop these terms provided we replace the couplings in the

classical contribution to the full partition function of the theory by their logarithmically running

counterparts ρ(ΛRG) and φ(ΛRG).

Comparison between (74) and (77) thus yields:

Pol(ν) = 2 (1− log(LΛRG)) ν2 +
1
6

log(LΛRG) . (78)

Notice in particular that all log ν terms have canceled, leaving us indeed with a pure polynomial,

as needed for our analyticity arguments to be valid. This appears to be a nontrivial test of our

formalism.

Summarizing, our final result for the exact, renormalized one loop partition function is

logZS2 = Pol(ν) +
∑
±

2 ζ ′(−1,∆±)− (2∆± − 1) ζ ′(0,∆±) , (79)

with ∆± given by (69) and Pol(ν) by (78). The determinant of the massive Laplacian on the 2-sphere

was computed e.g. in [31] (excluding the eigenvalue m2 of the constant mode and suppressing scale

dependence). The result is given there in terms of a certain infinite product. At the renormalization

scale ΛRG = 1/L, our result numerically equals theirs.

4.6 dSd+1

The above computation for dS2 can be straightforwardly generalized to dSd+1 (i.e. Sd+1). Instead

of (71), we have more generally:

logZ = Pol−
∑
±,r≥0

Q(r) log (r + ∆±) , (80)
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where the degeneracy Q(r) is a polynomial in r, obtained from (44) and some binomial manipulations

as

Q(r) =
2r + d

d

(
r + d− 1
d− 1

)
= D(d+1)

r , (81)

with D
(d+1)
r as in (44). For d = 1, we have Q(r) = 2r + 1, for d = 2 this is Q(r) = (r + 1)2, and so

on. The conformal dimensions ∆± are as usual related to the mass by

∆± =
d

2
± iν , ν ≡

√
m2 − (d/2)2 . (82)

It is easy to see from the definition of the Hurwitz zeta function that for any polynomial Q(r), we

have
∑∞

r=0
Q(r)

(r+x)s = Q(−x+ δs) ζ(s, x), where δs is an operator acting on a function f(s) as3

δsf(s) ≡ f(s− 1) . (83)

Using this observation, we zeta function regularize (80) as

logZSd+1 = Pol(ν) +
∑
±
Q(−∆± + δs) ζ ′(s,∆±)|s=0 . (84)

This is just a polynomial in ν plus a finite number of standard Hurwitz zeta functions.

To fix the polynomial Pol(ν), we compare the large ν asymptotics of our expression (84) to the

asymptotics obtained from the heat kernel coefficients. For the sphere these are all computable, see

for example appendix A of [32] for some explicit tables. By matching asymptotics, we find that (84)

is in fact the exact result for odd d+ 1, that is to say,

PolSd+1(ν) = 0 (d+1 odd) . (85)

Interestingly, the large ν asymptotic expansion turns out to be purely polynomial in these cases,

without any 1/ν corrections (only with exponentially small corrections). The first few cases are

logZS3 '
πν3

3
, logZS5 ' −

π

12
(ν5

5
+
ν3

3
)
, logZS7 '

π

90
(ν7

4
+
ν5

3
+

ν3

270
)
. (86)

Dividing these expressions by the sphere volume gives the (negative of the) renormalized one loop

free energy density. Comparison to analogous computations of the free energy density in AdS (by

our methods or as tabulated in appendix A of [6]) shows that the results in the last equation are

basically the naive analytic continuations of their AdS counterparts.

For d+ 1 even, the situation is slightly more complicated. The polynomial part Pol(ν) does not

vanish and depends on the renormalization scale ΛRG. For example for d + 1 = 2 we had (78) and

for d+ 1 = 4, we get

PolS4(ν) =
(
−2

9
+

1
6

log(LΛRG)
)
ν4 +

1
12

(−1 + log(LΛRG)) ν2 − 17
1440

log(LΛRG) . (87)

3For example,
P∞
r=0

r2

(r+x)s = (−x+ δs)
2 ζ(s, x) = x2ζ(s, x)− 2xζ(s− 1, x) + ζ(s− 2, x).
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Furthermore, the large ν asymptotic expansion of the full logZ does have an infinite series of 1/ν

corrections.

The result (84) appears to be a simpler expression than any we have been able to find in the

literature for the determinant of a massive scalar on a d + 1 dimensional sphere (although it is

not hard to derive this formula from the conventional expressions for determinants). What made

things simple here is the constraint of holomorphicity in ν, and the fact that unlike the eigenvalues,

the quasinormal frequencies are linear in the quantum numbers, leading to only elementary zeta

functions.

5 Numerical evaluation and WKB

For many spacetimes of physical interest, including the dyonic black holes we considered in [7],

closed form analytic expressions for the quasinormal frequencies do not exist, and one has to re-

sort to numerical computations or approximation schemes. Because our formulae expressing the

one loop determinant as a product over quasinormal modes are all UV divergent, this poses an im-

mediate practical problem: How can we extract the UV divergences and obtain the correct, finite,

renormalized determinants?

In principle, WKB type approximations can be used to control the UV tails of quasinormal

mode series to arbitrarily high order in inverse powers of suitable quantum numbers. Examples of

such computations include [46, 47, 48, 49, 50]. Combined with numerical computations of the low

lying modes which are outside of the WKB regime, this can be used in principle to compute the

renormalized one loop determinant to arbitrarily high accuracy.

A procedure along these lines was developed in [51] for the computation of determinants of flat

space Laplacians with radially symmetric potentials. In their approach, the computation of the UV,

high angular momentum (` > L) tail of the determinant is reduced to the evaluation of a number

of integrals of local expressions similar to heat kernel coefficients, yielding an expansion in powers

of 1/L, in principle to any desired order. The UV divergences are extracted in analytic form and

canceled by local counterterms in the usual way. The IR, low angular momentum part (` < L) is

computed by applying the Gelfand-Yaglom formula [52, 16] to each individual angular momentum

mode, which reduces the computation of the determinant of the radial differential operator at fixed `

to solving a second order linear ODE. Combining the two parts produces a value for the renormalized

determinant which becomes exact in the limit L→∞, and highly accurate already at modest values

of L provided the UV part is computed to sufficiently high order in 1/L.

A similar procedure should be possible in principle for efficient and accurate numerical evaluation
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and renormalization of expressions such as (38). Presumably the UV part can again be expressed in

terms of local quantities, while the IR part must be computed numerically mode by mode. The IR

part will often produce the qualitatively interesting physics; a number of examples are given in the

discussion section.

6 Generalization to other quantum numbers

If there are other conserved quantum numbers such as a momentum, angular momentum or Landau

level, we can derive a generalization of equation (38) where this quantum number takes over the

role of the thermal frequencies. Let’s call the quantum number k, and assume it can take values in

some discrete index set, k ∈ K. Acting on eigenstates of the operator corresponding to this quantum

number, the differential operator D of which we wish to compute the determinant can be written

as D(k), where the part of the operator corresponding to the quantum number k gets replaced by a

c-number determined by k.4 The operator D(k) can be thought of as acting on scalars living on a

dimensionally reduced space, with no explicit appearance anymore of the coordinate dual to k (in the

black hole case considered previously, this coordinate was τ). However, the requirement of regularity

on the original space can lead to particular additional boundary conditions on the reduced space.

These could have some nonanalytic dependence on k (in the black hole case we had φ ∝ ρ|n|). Let us

assume they are piecewise analytic on subsets Kα of K, α = 1, 2, . . . , N (the analog of the positive

and negative thermal frequencies).

Now we drop the constraint k ∈ K and look for pairs (k?, φα,k?), with k? a to be determined

complex number, solving the equation of motion

D(k?)φα,k? = 0 , (88)

subject to the analytic continuation of the boundary conditions appropriate to the subset Kα. This

is the analog of the quasinormal mode equation (33). We denote the solution set of all k? solving

this problem by K?,α.

For generic complex k? not in K, φk? will not lead to a well defined function when lifted from

the reduced to the original space, as it violates the quantization condition. Only when k? ∈ K do

we have a well-defined function on the original space, and in that case φk? is an actual zeromode

of D. For typical real values of the parameters of the operator D (such as the mass), there will be

no such zeromodes. However after analytic continuation of these parameters to the complex plane,

zeromodes k? ∈ K can be expected to occur at complex codimension one loci in parameter space,
4As a trivial example, if D = −∂2

τ − ∂2
x and x takes values on a circle of radius R, the x-momentum k takes values

in 1
R

Z and D(k) = −∂2
τ + k2.
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which are zeros of the determinant. Denoting the degeneracy of the quantum number k by dk and

by matching poles and zeros as before, we are led to the generalization of (38):

detD = e−Pol
∏
α

∏
k?∈K?,α

∏
k∈Kα

(k − k?)dk , (89)

to be understood in a suitably regularized way, and with Pol a polynomial in the appropriate analytic

parameters, determined by matching e.g. large mass asymptotics.

As a trivial application, we can rederive the determinant for Sn without knowledge of the quasi-

normal modes. We take D = −∇2 + m2 and pick as our quantum number the angular momentum

`. Then D(`) = `(` + n − 1) + m2 and `? = −∆± defined in (82). Furthermore d` = D
(n)
` is given

explicitly in (44). Thus

log detD = −Pol +
∑
±,`≥0

D(n)
` log(`+ ∆±) . (90)

This is identical to (80), so the remainder of the computation is the same as in the remainder of section

4.6. Written in this way, it is clear that this can also be formally obtained from log detD =
∑

log λ

by factorizing the eigenvalues λ(l), with Pol representing a possible factorization anomaly.

7 Discussion

In this paper we have advocated an approach to computing determinants in thermal spacetimes

using sums over quasinormal modes, combined with analyticity in ∆ arguments to fix a ‘local’ or

‘UV’ contribution. We will now discuss possible physical applications of this approach followed by a

discussion of technical directions in which to build upon our results.

In applying the holographic correspondence to strongly coupled field theories at finite temperature

one may occasionally be interested in the contribution of only a few quasinormal modes closest to

the real axis. Such poles can dominate the low energy spectral functions of the theory. Examples of

situations where this occurs include hydrodynamic poles [33, 34], cyclotron resonances [35, 36], near

the onset of bosonic instabilities such as superconductivity [37, 38, 39] and in the vicinity of Fermi

surfaces [40, 41, 42, 43]. It was the last of these that initially motivated us to develop the formalism

presented in this paper [7], but we expect all of the examples just listed to lead to nontrivial physics

at the one loop level.

From the perspective of the holographic correspondence, we have expressed the 1/N correction to

the free energy of a strongly coupled field theory in terms of the poles of retarded Green’s functions

of operators in that theory. This may suggest a reformulation of the finite temperature theory with

the poles of Green’s functions as the ‘elementary’ quantities.
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We obtained various exact expressions for scalar determinants. Of these the thermal AdS3 and

BTZ results matched previously obtained expressions while the compact formula (84) for de Sitter

space in arbitrary dimensions, in terms of a finite sum of elementary Hurwitz zeta functions, appears

new (to us). Similar results can be obtained for thermal AdS in arbitrary dimensions. Furthermore,

determinants in topological black hole backgrounds should be computable in essentially the same

way as the BTZ case; the relevant quasinormal modes have been found in [44]. A recent list of other

spacetimes for which the quasinormal modes are known analytically can be found in the introduction

of [45].

We briefly outlined a scheme for efficient numerical evaluation of renormalized determinants as

products over quasinormal modes in cases where analytic expressions do not exist, by combining UV

WKB results with IR numerics. We leave implementation of this to future work.

Important generalisations of the formalism include the extension to stationary, rather than static,

spacetimes and to more general asymptotic geometries. This should proceed along the general lines

sketched for arbitrary quantum numbers in section 6, but some additional care may be needed e.g.

in doing the Wick rotation or making analyticity arguments. Indeed, at a more formal level it would

be of interest to prove (or disprove) that the various determinants we are computing indeed have the

strong analyticity properties we have assumed.
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