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Experiments on underdoped cuprate superconductors suggest an intricate relation between the
normal-state Nernst effect and stripe order: The Nernst signal appears enhanced near 1/8 hole
doping and its onset temperature scales with the stripe-ordering temperature over some range of
doping. Here, we employ a phenomenological quasiparticle model to calculate the normal-state
Nernst signal in the presence of stripe order. We find that Fermi pockets caused by translational
symmetry breaking lead to a strongly enhanced Nernst signal, with a sign depending on the mod-
ulation period of the ordered state and other details of the Fermi surface. This implies differences
between antiferromagnetic and charge-only stripes. We also analyze the anisotropy of the Nernst
signal and compare our findings with recent data from La1.6−xNd0.4SrxCuO4 and YBa2Cu3Oy.

I. INTRODUCTION

The pseudogap regime of cuprate superconductors1 has
remained mysterious despite more than two decades of
intense research. Among the various proposed explana-
tions for the observed suppression of spectral weight be-
low the doping-dependent pseudogap temperature T ∗ are
phase-incoherent Cooper pairing, symmetry-breaking or-
ders competing with superconductivity, exotic fraction-
alized states, and short-range singlet correlations as pre-
cursor to the half-filled Mott insulator.2,3

Nernst effect measurements have been established as
an interesting probe of pseudogap physics. The Nernst
signal, measuring the transverse voltage induced by a
thermal gradient, is typically small in conventional met-
als. Large positive Nernst signals are known to arise from
the motion of vortices in type-II superconductors.4,5 In
underdoped cuprates, with experiments performed on a
variety of different families, the Nernst signal has been
found to rise upon cooling, with an onset temperature
significantly above the superconducting Tc (although it
is difficult to define a sharp onset).6,7 The data have been
commonly interpreted as evidence for fluctuating Cooper
pairs above Tc; this interpretation appears supported by
the observation of fluctuating diamagnetism which often
varies in proportion to the Nernst coefficient.8 As func-
tion of doping, the onset temperature of the Nernst signal
is maximum around 10%–15% doping and appears to lie
below the T ∗ line identified by other probes, in particu-
lar for doping x < 10%. A plausible conclusion is that
fluctuating Cooper pairs do not account for all of the
cuprate pseudogap. On the theory side, the Nernst sig-
nal arising from Gaussian (i.e. amplitude) pairing fluctu-
ations has been calculated,9,10 and theoretical treatments
of short-lived vortex (i.e. phase) fluctuations have been
put forward as well.11,12 Meanwhile it has also been es-
tablished that a large Nernst signal can occur in metals
with a small Fermi energy, in particular in the presence
of electron and hole pockets.13 In underdoped cuprates,
this situation has been discussed especially in a scenario
of d-density wave order.14,15,16

Recently, a more detailed investigation17 of the Nernst
effect in the La2−xSrxCuO4 (or “214”) family revealed
a new piece of information: In La1.6−xNd0.4SrxCuO4,
which is known to display static stripe order below a
temperature Tch, an additional (positive) peak or shoul-
der in the temperature dependence of the Nernst signal
could be identified, located at an elevated temperature
and distinct from the low-temperature signal ascribed to
superconducting fluctuations. As this high-temperature
feature appears to follow the charge-ordering tempera-
ture Tch upon variation of the doping level, it has been at-
tributed to a Fermi-surface reconstruction due to density-
wave order.

A Fermi surface reconstruction due to density-wave or-
der also appears as a candidate explanation for quan-
tum oscillations, observed in large fields on under-
doped YBa2Cu3Oy samples.18,19,20 Indeed, neutron-
scattering experiments indicate field-induced incommen-
surate spin-density wave order in this cuprate family.22

On the theory side, concrete symmetry-breaking patterns
have been proposed to explain the observed quantum
oscillations.23,24,25 Among the various ordering phenom-
ena, stripe order plays a prominent role: While first es-
tablished in certain 214 cuprates and initially considered
to be special to this family, signatures of (possibly fluctu-
ating or disordered) stripes have meanwhile been found in
a variety of cuprates over a significant doping range.26,27

Recent transport phenomenology in YBa2Cu3Oy at hole
concentration x = 0.12 has shown close similarities to
the 214 cuprates, including a sign change of the Seebeck
coefficient at T ' 50 K and a strongly enhanced normal-
state Nernst signal accessed by strong magnetic fields of
up to 28 T.29 Interestingly, the sign of the normal-state
Nernst effect is negative even at lowest temperatures, and
theoretical explanations of how the sign of the Nernst
coefficent is related to Fermi-surface reconstruction are
lacking.

Taken together, these developments suggest that
density-wave order plays a vital role in the phenomenol-
ogy of underdoped cuprates. It is thus of timely impor-
tance to clarify which experimental results can be un-
derstood in terms of density-wave order of conventional
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quasiparticles, and where physics beyond the quasipar-
ticle picture needs to be invoked. In this paper we
shall present a theoretical calculation of the normal-state
Nernst signal in the presence of uni-directional spin and
charge density wave (i.e. stripe) order.

In fact, in Ref. 30, it was argued that charge-density-
wave fluctuations were important for the pseudogap
Nernst signal, and a general hydrodynamic discussion
was presented at moderately high temperatures above a
charge-ordering critical point. However, a specific com-
parison with experiment requires that we go to lower
temperatures and consider the coherent dynamics of elec-
tronic quasiparticles. Such an analysis was provided for
the electron-doped cuprates in Ref. 31, where it gave a
good account for the experimental observations.32

It is the purpose of the present paper to apply such a
quasiparticle analysis to the hole-doped case, by combin-
ing a mean-field description of stripe order with a Boltz-
mann approach to transport. At low temperatures, the
normal-state Nernst signal varies linearly with T , and
we shall discuss the sign and magnitude of this piece
in connection with the Fermi-surface pockets induced by
the density-wave order. The focus will be on order with
real-space periods 4 (8) and 8 (16) in the charge (spin)
sector, being appropriate for 1/8-doped La2−xSrxCuO4

and YBa2Cu3Oy close to y = 6.5, respectively. In the
light of a recent experiment33 which examined the spatial
anisotropy of the Nernst coefficient in YBa2Cu3Oy we
shall calculate this quantity for thermal gradients both
perpendicular and parallel to the stripes.

We note that recent papers have provided a detailed
discussion of the effect of stripe order on quantum
oscillations23 and the Hall effect,34 using mean-field mod-
els similar to ours below. For both observables, reason-
able agreement with experiment was pointed out, and
we refer the reader to those papers for details. Below, we
shall make use of the results of Refs. 23,34 when appro-
priate.

A. Outline

The remainder of this paper is organized as follows: In
Sec. II we describe the microscopic mean-field model for
stripe order and discuss the Boltzmann transport formal-
ism which we shall use to evaluate the low-temperature
Nernst effect. Sec. III contains our main results for the
Fermi-surface reconstruction and the Nernst signal in
stripe phases with a real-space period of eight sites in the
spin sector, this includes the doping level of 1/8 where
stripes are particularly stable. We shall discuss the ef-
fect of modulations in the spin and charge sectors sep-
arately, and also distinguish between site-centered and
bond-centered stripes. These considerations will be ex-
tended to doping below 1/8 in Sec. IV, where the real-
space modulation period is larger. A summary and com-
parison to experimental data is given in Sec. VI.

II. MODEL AND FORMALISM

To calculate the normal-state quasiparticle Nernst ef-
fect, we consider electrons moving on a square lattice of
unit lattice constant, with the two-dimensional disper-
sion given by

εk = − 2t1(cos kx + cos ky)− 4t2 cos kx cos ky
− 2t3(cos 2kx + cos 2ky) . (1)

For all numerical calculations, we will use the parameters
t1 = 0.38 eV, t2 = −0.32t1 and t3 = −0.5t2,35,36 cho-
sen to reproduce the Fermi surface measured in photo-
emission experiments. The two-dimensional electron
density is n = 1 − x per unit cell. We shall assume a
quasiparticle description with the dispersion (1) to be a
reasonable approximation in the regimes of interest, i.e.,
either at low temperatures and strong fields or above the
superconducting Tc at smaller fields. Effects of pseudo-
gap physics beyond quasiparticles, like phase-fluctuating
Cooper pairs, will be briefly discussed in Sec. V.

A. Stripe order

The term “stripe” shall be used synonymously for uni-
directional spin-density and charge-density wave order.
A spin density wave (SDW) is specified by a vector order
parameter φsα(r, τ), α = x, y, z, and the spin density
modulation is given by

〈Sα(R, τ)〉 = Re
[
eiQs·Rφsα(R, τ)

]
(2)

with ordering wavevector Qs. As charge density wave
(CDW) we will denote a state with modulations in ob-
servables ρ which are invariant under spin rotation and
time reversal, such as site or bond charge density, kinetic
energy, or pairing amplitude. A CDW is described by a
scalar order parameter φc(r, τ), such that

〈ρ(R, τ)〉 = ρ0 +Re
[
eiQc·Rφc(R, τ)

]
(3)

where ρ0 is the background density. If the SDW order
in Eq. (2) is collinear, it has an associated spin-singlet
order parameter, i.e. it induces a CDW with wavevector
Qc = 2Qs.37

Historically, incommensurate SDW order in cuprates
was first found39 in neutron scattering experiments on
La1.6−xNd0.4SrxCuO4, with wavevectors Qsx = 2π(0.5±
εs, 0.5) and Qsy = 2π(0.5, 0.5 ± εs). Corresponding
charge order at Qcx = 2π(±εc, 0) and Qcy = 2π(0,±εc),
with εs = 2εc, was detected as well. Subsequently,
such stripe order, with co-existing SDW and CDW, was
also established to exist in La1.8−xEu0.2SrxCuO4 and
La2−xBaxCuO4. Whereas in La2−xBaxCuO4 the order
is confined to a narrow doping range around x = 1/8,
it appears to extend from low doping up to 20% in
La1.6−xNd0.4SrxCuO4 and La1.8−xEu0.2SrxCuO4.27 In
La2−xSrxCuO4 with x < 0.13 and in YBa2Cu3O6.35,
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quasi-static SDW order was found,40,41,42 while for
larger doping incommensurate dynamic spin fluctua-
tions exist.21,43,44 In both cases, strong magnetic fields
applied to superconducting samples can enhance and
even induce SDW order,22,45,46 suggesting a competi-
tion between SDW and superconducting orders. Static
order in the charge sector has not been detected
in La2−xSrxCuO4, while reports on charge order in
YBa2Cu3Oy remained controversial.41,47 Using scanning
tunneling microscopy (STM) techniques, static short-
range bond-centered modulations in the charge sector
have been detected on the surface of Bi2Sr2CaCu2O8+δ

and Ca2−xNaxCuO2Cl2.48,49 The modulation period was
close to four lattice spacings, similar to the charge or-
der in striped 214 compounds with doping x ≥ 1/8.
The STM data appear to be well described by mod-
ulations in the kinetic-energy terms,50 which moreover
appear to have a large d-wave component.51 Note that
in both Bi2Sr2CaCu2O8+δ and Ca2−xNaxCuO2Cl2 the
charge order appears to exist without long-range mag-
netic order, although spin-glass-like magnetism has been
reported in Ca2−xNaxCuO2Cl2.53

With regard to Nernst effect and quantum oscillation
measurements, we may expect modulations in the spin
sector to be important for the Fermi-surface reconstruc-
tion, as SDW order occurs in both 214 and YBa2Cu3Oy

compounds in strong fields.

B. Mean-field theory

The ordered states shall be described in a mean-field
picture, where quasiparticles with the dispersion (1) are
subject to a periodic modulation in the site chemical po-
tential or bond kinetic energy. Philosophically, we as-
sume that both the quasiparticles and the modulation
arise from a microscopic Hubbard or t–J model at in-
termediate or strong coupling. Suitable self-consistent
mean-field calculations have been reported in the litera-
ture, with results which appear broadly consistent with
the experimental phenomenology (for a review, see e.g.
Ref. 27). Here, we find it appropriate to combine this
previous knowledge with experimental input (e.g. on the
wavevector and magnitude of modulations), and hence
we will add the periodic modulations to the quasiparti-
cle Hamiltonian “by hand”, i.e., without performing a
self-consistent evaluation. We note that SDW order can
in principle be obtained in a controlled manner at weak
coupling,54,55,56 whereas CDW order in cuprates is likely
a strong-coupling phenomenon, with additional stabiliza-
tion by lattice degrees of freedom.26,27

In the spin sector, we shall restrict our attention to
collinear order. Such order leads to a scattering poten-
tial Vs that connects a quasiparticle with momentum k
with all quasiparticle momenta k ± nQ for integer n.
(The same applies to charge order with wavevector Qc

and a scattering potential Vc.) As has been discussed
for Cr, the Fermi surface reconstruction due to collinear

SDW order is caused by a hierarchy of gaps of order
2∆m ∼ 2V ms /tm−1 opening at the crossing points of
bands εk+nQ and εk+(n±m)Q, where Vs is the amplitude
of the spin potential.55 As long as Vs, Vc � t, the Fermi
surface is well described by including the lowest-order gap
only, and we will neglect all matrix elements with m > 1
in the scattering potentials Vc and Vs. In the mean-field
Hamiltonian, we shall use the following terms describ-
ing the density waves; cartoons pictures of the resulting
stripe order are shown in Fig. 1.

Charge density wave. A CDW is described by

V̂1 =
∑
k,σ

(
Vc(k)c†k+Qcσ

ckσ + h.c.
)

(4)

where Vc(k) is in general complex. For the site-centered
case, we modulate the on-site (Hartree-Fock) chemical
potentials such that maxima/minima are located on lat-
tice sites, i.e., with a real Vc(k) ≡ −Vc. A bond-
centered CDW with on-site modulations is character-
ized by Vc(k) ≡ −Vce−iQc/2; for modulations in the ki-
netic energy with primarily d-wave form factor we have
Vc(k) = −δt(cos(kx+ Qc

2 )− cos ky)e−iQc/2; in both cases
Qc = (Qc, 0). In the following, we shall primarily con-
sider the latter d-wave bond modulations, which arise in
a scenario of valence-bond solid formation57,58 and have
been argued51 to be consistent with the STM data of
Ref. 49.

Collinear spin density wave. Choosing the spin quan-
tization axis in z direction, we have in general

V̂2 =
∑
k,σ

σ
(
Vs(k)c†k+Qsσ

ckσ + h.c.
)
. (5)

A site-centered SDW has again a real Vs(k) ≡ Vs,
whereas a bond-centered SDW is captured by Vs(k) ≡
−Vs(1 + e−iQc/2)/(2 cos(Qc/4)) where Qs = (π ±
Qc/2, π). The complex phases of the mean fields in
Eqs. (4) and (5) have been chosen such that the result-
ing order parameters φc and φ2

s are in-phase. Moreover,
with positive Vc (site-centered) and positive δt (bond-
centered) the resulting modulations are such that the
electron density is small where the magnitude of the mag-
netic moment is small (i.e. near the anti-phase domain
walls),59 as in Fig. 1.

As the uni-directional density waves break the 90◦ ro-
tation symmetry of the underlying square lattice, the s-
wave and dx2−y2 representations of the point group mix.
This implies that the solution of a mean-field Hamilto-
nian with modulated on-site potentials (which may be
dubbed s-wave) will also contain symmetry-compatible
modulations on the bonds, with inequivalent horizon-
tal and vertical bonds (i.e. a d-wave component). Vice
versa, the solution of a mean-field Hamiltonian with d-
wave bond modulations will display a finite on-site charge
density modulation. Also, solving a Hamiltonian with a
collinear SDW modulation only will lead to a CDW with
Qc = 2Qs.
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c)

b)

a)

FIG. 1: Real-space structure of a) site-centered and b),c)
bond-centered stripes with period-4 (period-8) order in the
charge (spin) sector. Shown are spin and charge distributions,
with the circle radii corresponding to on-site hole densities.
In panel c), showing “valence-bond” stripes,51,52 the structure
of spin-singlet bond modulations is shown as well which has
a dominant d-wave form factor.

In Secs. III and IV we shall present results separately
for the cases of spin-only, charge-only, and combined spin
and charge modulations in the mean-field Hamiltonian.
While the charge-only case corresponds to a situation
without broken spin symmetry, the spin-only and the
combined spin and charge cases have the same symme-
try, but the former is to be understood as density-wave
order driven by the spin sector, with charge order being
parasitic.

C. Semiclassical transport

The Nernst effect is measured as a transverse electrical
response to a thermal gradient, which can also generate a
longitudinal electrical voltage known as thermopower. In
experiment, the electric field can be applied by allowing
for a weak spatial dependence in the chemical potential
µ (which is then, formally, the electrochemical poten-
tial) with 2eE = −∇µ, while the temperature gradient
describes a similar weak spatial dependence in T . The
interplay of electrical and thermal effects necessarily im-
plies three conductivity tensors σ̂, α̂ and κ̂, which relate
charge current J and heat current Q to electric field, E
and thermal gradient, ∇T vectors:(

J
Q

)
=
(

σ̂ α̂
T α̂ κ̂

)(
E
−∇T

)
(6)

It is the off-diagonal component α̂ which relates elec-
trical currents and fields to thermal currents and gradi-
ents. To measure this quantity, appropriate boundary
conditions for the currents and applied fields have to be
obeyed. The Nernst response is defined as the electrical
field induced by a thermal gradient in the absence of an
electrical current, and is given in linear response by the
relation E = −ϑ̂∇T . In absence of charge current (i.e.
when J = 0), Eq. (6) yields:

E = σ̂−1α̂∇T . (7)

Therefore, the Nernst signal defined as the transverse
voltage Ey generated by a thermal gradient ∇xT reads

ϑyx = −σxxαyx − σyxαxx
σxxσyy − σxyσyx

(8)

and ϑxy is obtained from x ↔ y. For a magnetic field
~B = Bẑ in z direction, the Nernst coefficient is usually
defined as νyx = ϑyx/B, which tends to become field-
independent at small B. We employ a sign convention
such that the vortex Nernst coefficient is always positive.
This is achieved by the experimentally used convention
that the three vectors E, ∇T and B form a right-handed
system for the measurements of both νxy and νyx. In
general, the Nernst signal can be negative or positive,
for example if it is caused by the flow of charged quasi-
particles.

We assume that the low-temperature DC transport can
be described by the Boltzmann equation in relaxation-
time approximation72[

− e

~c
(vk ×B) · ∇k +

1
τk

]
gk =[

−evkE− (εk − µ)vk
∇rT

T

](
−∂f

0
k

∂εk

)
. (9)

The right-hand side has been linearized in both temper-
ature gradient and electric field, assuming that those are
weak and spatially uniform. The solution of Eq. (9) is
the deviation g(k) of the non-equilibrium distribution
function f(k) from the equilibrium Fermi distribution
f0(k) = (1 + exp[β(εk−µ)])−1. We further assume, as is
appropriate for low temperatures, that the relaxation is
mainly due to randomly distributed impurities with a low
density,61 leading to a constant relaxation time τk ≡ τ0.
This approximation is known to fail in presence of anti-
ferromagnetic fluctuations, which lead to interaction in-
duced drag between quasiparticles.62 Therefore, the as-
sumption of a single-particle relaxation rate is restricted
to temperatures below the ordering temperatures of spin
and charge order.

From Eq. (9), the non-equilibrium distribution func-
tion g(k) is now readily obtained as

gk = A−1
k

[
−evkE− (εk − µ)vk

∇rT

T

](
−∂f

0
k

∂εk

)
(10)
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where the operator

Ak =
[
− e

~c
(vk ×B) · ∇k +

1
τk

]
(11)

has been defined. From the solution (10), the electrical
and thermal currents J and Q can be calculated as

J = −e
∑
k

vkgk ,

Q =
∑
k

vk(εk − µ)gk . (12)

According to Eq. (6), the transport tensors are deter-
mined from

σµν = 2e2
∑
k

vµkA
−1
k vνk

(
−∂f

0
k

∂εk

)
αµν = −2e

T

∑
k

vµk(εk − µ)A−1
k vνk

(
−∂f

0
k

∂εk

)
. (13)

In the usual manner, A−1
k can be arranged as a perturba-

tive expansion in the magnetic field B (Ref. 72) in order
to obtain transport coefficients that do not depend on
B. For this purpose we define Ak = Kk + MB

k where
Kk = τ−1

k and MB
k the rest. Then

A−1
k = K−1

k −K−1
k MB

k K
−1
k +O(B2) . (14)

The diagonal entries in Eq. (13) are obtained from the
zeroth order in B in Eq. (14), while the lowest-order con-
tribution to the off-diagonal coefficients arises from the
linear order in B in the expansion (14). To this accu-
racy, the expressions (13) can be simplified in form of
the expressions

αxx =
2e
T

∑
k,n

∂f0
k

∂εn(k)
εn(k)τ0(vxk)2

αxy =
2e2B

T~c
∑
k,n

∂f0
k

∂εn(k)
εn(k)τ2

0 v
x
k

[
vyk
∂vyk
∂kx
− vxk

∂vyk
∂ky

]

σxx = −2e2
∑
k,n

∂f0
k

∂εn(k)
τ0(vxk)2

σxy = −2
e3B

~c
∑
k,n

∂f0
k

∂εn(k)
τ2
0 v

x
k

[
vyk
∂vyk
∂kx
− vxk

∂vyk
∂ky

]
(15)

which is the result we employ in the rest of the paper.
On general grounds, the Hall conductivities obey σxy =
−σyx. Such a relation does not hold for αxy,yx in general.
In the low-T limit of the Boltzmann Eq. (15), however,
αxy = −αyx follows from Eq. (16).

It is important to note that the transport quantities
in Eq. (15) describe transport within a single layer
of a cuprate sample only. Apart from weak interlayer
coupling (which we shall neglect here), the most im-
portant aspect of multiple layers is in the stripe direc-
tions. In 214 cuprates with a LTT lattice structure, like

La1.6−xNd0.4SrxCuO4, the stripe orientation of neigh-
boring layers is believed to follow the low-temperature
tetragonal (LTT) distortion in-plane pattern and hence
alternates from layer to layer. Thus, transport quan-
tities have to be averaged over neighboring layers, in
order to obtain the correct bulk transport coefficients.
In contrast, rotation symmetry breaking in YBa2Cu3Oy

compounds can be expected to have the same orienta-
tion in all layers, due to the presence of CuO chains in
this material. Consequently, a single-layer description of
transport is sufficient. In the following, we shall discuss
both the single-layer Nernst coefficients νyx,xy as well as
a symmetrized version ν = (νxy + νyx)/2 obtained from
averaging over layers.

Let us make a few more remarks on the validity of
the transport equations (15); a more extensive discus-
sion can be found in Ref. 31. By neglecting the energy
dependence of the relaxation time,61 one neglects contri-
butions to the Nernst signal which are proportional to
the energy derivative of the relaxation time, defined by
the derivative with respect to the position of the Fermi
surface, ∂τ/∂µ|EF . This can be seen from the Mott re-
lation

αij = −π
2

3
k2
BT

e

∂σij
∂µ
|EF , (16)

which is valid at temperatures sufficiently below the
Fermi temperature. By employing the Mott relation
in equation (8), one can see that a sizeable contribu-
tion to the Nernst signal from an energy dependence
of the relaxation time requires that σxxαyx and σyxαxx
have the same order of magnitude. From experiments
on the hole-doped cuprates, it is known that the contri-
bution of −αyx/σyy is dominating the low-temperature
Nernst signal in order of magnitude,63 although this sig-
nal is dominated by the vortex contribution. In the
electron-doped cuprates, magnetic fields can suppress the
vortex contribution to the Nernst signal with a Nernst
signal that remains dominated by the contribution of
σyxαxx/(σxxσyy),32 and it appears reasonable to neglect
an energy dependence of the relaxation time. In addition,
various contributions of interband transitions to quasi-
particle transport are neglected in the transport equa-
tions (15). These can result from thermal excitations,
magnetic breakdown or also scattering on impurities. We
will discuss corrections due to these effects where neces-
sary. In general, such effects are small in the experimen-
tally relevant regimes as long as stripe order induces band
gaps of order 0.1 eV.

In order to integrate the transport equations (15) we
calculated the first-order and second-order partial deriva-
tives of the eigenvalues for each k-point of the reduced
Brillouin zone by an iterative procedure64 and discretized
the Brillouin zone integrals with a mesh around the Fermi
surface of an energy width proportional to temperature
and extrapolated the result to zero temperature. In this
limit, it follows from Eq. (16) that the Nernst signal be-
comes linear in temperature, with a prefactor controlling
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sign and magnitude of the Nernst signal. The relaxation
rate τ−1

0 remains a parameter in this low-temperature
calculation, with the Nernst signal being proportional to
τ0. Below we shall briefly discuss the temperature depen-
dence of the Nernst signal as well; there we will employ
suitable phenomenological parametrizations of τ(T ).

III. NERNST EFFECT FROM STRIPE ORDER
FOR x ≥ 1/8

As discussed in Sec. II A, for 214 cuprates with doping
level x ≥ 1/8 the experimentally detected modulation
in the spin sector is characterized by εs ' 1/8, i.e. the
magnetic ordering wavevector is Q∗s ' π(3/4, 1). In this
section, we shall investigate in detail the Fermi-surface

reconstruction and the arising Nernst signal as functions
of various modulation strengths, keeping Qs fixed at Q∗s.
Wavevectors corresponding to longer modulation periods
and doping x < 1/8 will be discussed in Sec. IV.

By using the stripe-induced scattering potentials de-
fined above, the quasiparticle dispersions needed for a
semiclassical calculation can be obtained by numerical
diagonalization of the Hamiltonian matrix. The quasi-
particle bands are spin degenerate because the paramag-
netic (antiferromagnetic) stripe-states are invariant un-
der global spin-flips (global spin-flips plus a translation
by one lattice spacing along the stripe-direction). Thus
the spatially averaged quantities, including the quasi-
particle dispersions, cannot depend on the electron spin.
The general form of the Hamiltonian matrix for period-8
stripe order is (with Q∗c = π(1/2, 0))



εk V ∗c 0 Vc 0 V ∗s Vs 0
Vc εk+(π2 ,0) V ∗c 0 0 0 V ∗s Vs
0 Vc εk+(π,0) V ∗c Vs 0 0 V ∗s
V ∗c 0 Vc εk+( 3π

2 ,0) V ∗s Vs 0 0
0 0 V ∗s Vs εk+(π4 ,π) V ∗c 0 Vc
Vs 0 0 V ∗s Vc εk+( 3π

4 ,π) V ∗c 0
V ∗s Vs 0 0 0 Vc εk+( 5π

4 ,π) V ∗c
0 V ∗s Vs 0 V ∗c 0 Vc εk+( 7π

4 ,π)


. (17)

For brevity, in this matrix we dropped the momentum
dependence in the scattering potentials. Of course, these
potentials in some cases depend on momentum, and this
dependence is easily obtained by labeling a potential con-
necting energies with momenta k + q and k + q + Q∗c/s
with the momentum k + q in the matrix (17). In Fig. 1,
the spin and charge distributions corresponding to both
bond-centered and site-centered period-8 stripe order are
sketched. Without loss of generality, we shall choose spin
potentials with Vs > 0. Using the conventions given be-
low Eqs. (4, 5) and Vs being real, it follows from the
modulation of the chemical potential corresponding to
Fig. 1 that Vc(k) ≡ −Vc < 0 for site modulations,59 i.e.,
the s-wave part of the charge order. Its d-wave part,51

described by bond modulations δt, will be chosen such
that sites with large spin density are connected by hori-
zontal bonds (dimers), Fig. 1c, which implies δt > 0.

A. Fermi-surface reconstruction

The particular geometry of the Fermi surface resulting
from the diagonalization of Eq. (17) strongly influences
the Nernst signal. Typically, open electron orbits tend
to give small contributions to the Nernst signal, since
they constrain the electronic motion mostly along one
spatial direction and lead to a small transverse flow of

carriers, as we also checked numerically. This can be
understood from the expressions for the electrical and
the thermoelectrical Hall conductivity in Eq. (15). Their
size is proportional to mass terms that measure the band
curvature, which tends to be small for open orbits as
compared to closed orbits.

Concerning the Nernst signal as resulting from closed
electron orbits, a large Nernst signal resulting from
quasiparticles usually requires the existence of oppositely
charged carriers, as it is strictly zero in the simple Drude
model as already noted by Sondheimer.65 Generally, in
any realistic system, such a cancellation will be incom-
plete. As has been discussed in Ref. 23,34, for the for-
mation of closed electron orbits in the Fermi surface, a
finite spin-stripe potential is required, see Fig. 2. Charge
stripe order can only produce hole-like pockets which
eventually vanish in the limit of large charge stripe poten-
tial. Electron-like pockets pinch of at the zone boundary
in presence of finite spin stripe order, becoming smaller
upon increasing spin stripe potential.

Thus, order in the spin sector seems crucial to produce
a sizable Nernst signal. These aspects motivate that we
concentrate in the following on pure spin stripe order
(in the sense that charge order is only parasitic, see the
discussion in Sec. II B). Later on, we also study modifica-
tions due to charge stripe order. The impact of charge or-
der on Fermi surfaces as resulting from pure spin stripes
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a) b)

FIG. 2: Fermi surfaces for the bond-centered period-8 stripe
states with a) pure bond modulation, δt = 0.05 eV, and b)
pure spin modulation, Vs = 0.09 eV, plotted in the first quad-
rant of the Brillouin zone of the underlying square lattice.
The Fermi surfaces are qualitatively equivalent to those ob-
tained from site-centered spin or charge potentials. Without
spin order (case a), besides open orbits only small hole-like
closed orbits with a large aspect ratio are present. Spin order
(case b) induces both hole-like and electron-like closed orbits.

a) b)

FIG. 3: Fermi surfaces for the bond-centered period-8 stripe
states with combined spin and charge modulation, plotted
in the first quadrant of the Brillouin zone of the underlying
square lattice. a) Vs = 0.09 eV, δt = 0.02 eV. b) Vs = 0.09 eV,
δt = 0.055 eV. With increasing bond modulation, the small
hole-like pockets shrink (case a) and disappear (case b).

is illustrated in Fig. 3. For very large charge potential,
the electronic motion is directed along the stripe direc-
tion, and closed electron orbits break up even in presence
of sizeable spin stripe potentials, as can be seen from
Fig. 4.

B. Nernst effect from spin modulations

Based on the above Fermi-pocket analysis, we consider
a situation of spin-driven stripe order first, i.e., our mean-
field Hamiltonian has modulated spin-dependent chemi-
cal potential as in Eq. (5). (For a modulation period of
8, this will induce weak charge order with period 4.)

1. Nernst signal as function of modulation strength

To set the stage, we concentrate on the Nernst signal
near 1/8 doping, where the strong positive enhancement
is observed in experiments on La1.6−xNd0.4SrxCuO4.17

FIG. 4: As in Fig. 3, but for site-centered period eight
stripe order. a) Vs = 0.1 eV, Vc = 0.1 eV. b) Vs = 0.1 eV,
Vc = 0.15 eV. As above, with increasing charge modulation
the Fermi pockets disappear in favor of open one-dimensional
orbits.

FIG. 5: Nernst effect for period-8 antiferromagnetic stripes at
doping x = 1/8 as function of the spin modulation; the results
are identical for the site-centered and bond-centered cases.
The Nernst coefficient becomes negative at Vs ' 0.1 eV, cor-
responding to maximal local moments of 2µB〈Sz〉 ' 0.3µB .

Here and in the following, νyx is Nernst signal for ~∇T ‖ x̂.
The stripes have a modulation wavevector ‖ x̂, i.e., run along

ŷ, such that νxy (νyx) is defined with ~∇T parallel (perpendic-
ular) to the stripes.

Our result for the Nernst coefficient is shown in Fig. 5;
note that for our Hamiltonian the results for ν/T do not
depend on whether the spin stripes are site-centered or
bond-centered, as the eigenvalues of the matrix (17) do
not depend on the complex phase of Vs if Vc = 0. For
small values of the spin potential, the Nernst coefficient
is positive and highly enhanced in comparison to the
non-ordered state. For larger spin-stripe potentials, the
Nernst coefficient becomes negative and then again posi-
tive for even larger spin stripe potentials. These changes
can be traced back to the stripe-induced changes of Fermi
pockets: Upon increasing Vs, the small hole pockets (see
e.g. Fig. 2b) disappear at the maximum of ν/T in Fig. 5,
whereas the remaining open orbits split and form pock-
ets at the minimum of ν/T (not shown). The spatial
anisotropy of the Nernst signal is small for all Vs.

To connect the parameter Vs to experiments, the or-
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dered magnetic moment may be used. Experimentally,
the maximum moment in the stripe structure at doping
1/8 in 214 compounds has been estimated to be half of
that of the undoped parent compound (roughly 0.3µB or
〈Sz〉 = 0.15),27,67 with different experimental techniques
giving somewhat different results. (It can be expected
that the moment is smaller away from x = 1/8.) In
YBa2Cu3Oy, ordered magnetism in zero field is only ob-
served for y ≤ 0.45, but the order appears significantly
field-enhanced.22 (Based on the neutron-scattering and
µSR data of Ref. 22 one may estimate the moment to be
0.05µB at zero field and 0.07µB at 15 T.) In our mean-
field calculation, we find that 〈Sz〉max = 0.15 corresponds
to a scattering potential Vs ' 0.1 eV for both bond and
site-centered stripes. This value of Vs is close to the max-
imum in the Nernst coefficient, and values of Vs beyond
this maximum correspond to unrealistically strong mag-
netic order.

2. Nernst signal as function of doping

We continue to study the doping dependence of the
Nernst coefficient, for dopings x ≥ 1/8 where the stripe
period is doping-independent. Stripe order is maxi-
mally stable near x = 1/8. Experimentally, an ex-
trapolation of the magnetic ordering temperature in
La1.6−xNd0.4SrxCuO4 yields a critical doping xc = 0.24
where spin stripe order is suggested to vanish.17,66 The
simplest model assumption is then a mean-field depen-
dence of the spin stripe order parameter, φs ∝

√
x− xc

for x < xc at low T . As the order parameter is linearly
proportional to the modulation potential Vs, we shall em-
ploy

Vs(x) = V0

√
1− x/xc , (18)

for x below xc = 0.24 and Vs = 0 elsewhere, while keep-
ing the ordering wavevector fixed at ~Q∗s. The amplitude
V0 is set by the maximal local moment at x = 1/8, and
we choose it such that 〈Sz〉max = 0.15 at this doping. In
Fig. 6 we display the doping evolution of the Nernst coef-
ficient resulting from these assumptions, i.e., the doping
axis in this figure corresponds to a variation of both the
band filling and the stripe amplitude. As expected from
the data in Fig. 5, an enhanced positive Nernst coeffi-
cient occurs over a large doping range, with a maximum
at 1/8 doping, and little difference between site-centered
and bond-centered spin stripes. In the overdoped region,
the Nernst coefficient becomes negative, as is also ob-
served in experiment.13 At lowest temperatures, the over-
all behavior agrees therefore well with the experimental
observations in La1.6−xNd0.4SrxCuO4.17

Close to the critical doping x ' xc, modifications of
these results due to magnetic breakdown have to be con-
sidered. If modifications of the band structure by mag-
netic fields are neglected, the transmission amplitude is
analogous to Zener breakdown60 and is given by the ex-

FIG. 6: Doping dependence of the Nernst coefficient for
period-8 antiferromagnetic stripes, assuming a doping depen-
dence of the stripe order described by Eq. (18) and V0 = 0.15.
It can be seen that the Nernst coefficient is similarly enhanced
near x = 1/8 for both types of stripe order.

pression

α = exp
[
−π

2
∆2

e~B|vxvy|

]
, (19)

where the Fermi velocities vx, vy ' vF are taken at the
related crossing point of the bare bands and ∆ = 2Vs
is the gap induced by SDW order. Using the mean field
dependence (18) of the SDW gap, the doping range where
the transmission amplitude is of O(1) is of the order

∆x ' e~v2
FB/(V

2
0 )xc ' 5.3× 10−3Bxc ,

where we employed V0 = 0.15 eV and the universal Fermi
velocity28 vF = 2.3 × 107 cm/s. Considering magnetic
fields of O(10 T), this doping range is well separated from
the important value x = 1/8.

3. Nernst signal as function of temperature

We now turn to the temperature dependence of the
Nernst coefficient. In order to analyze how our quasipar-
ticle calculation compares with experiment, we model the
effects of finite temperature by a temperature-dependent
spin stripe potential V0

√
1− T/Tsp, with Tsp ' 60 K at

x = 1/8 in La1.6−xNd0.4SrxCuO4 as observed by neu-
tron scattering.69 In addition, we model the tempera-
ture dependence of the quasiparticle scattering rate by
various parameterizations, e.g. by the linear behavior
τ−1 = a + bT , with b = a/70 K, such that τ−1(T = 0) '
2τ−1

0 (T =70 K).74 (Here, a ≡ τ−1
0 remains a free param-

eter.) Since the Nernst coefficient is proportional to the
relaxation time, this temperature dependence has no ma-
jor influence on the overall shape of the coefficient. Our
numerical results show a peak in the Nernst coefficient
at around T = 20 K. Comparing this peak with the peak
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FIG. 7: Temperature dependence of the Nernst coefficient for
period-8 antiferromagnetic stripes. Upon increasing temper-
ature, the Nernst coefficient increases strongly to a large pos-
itive value which becomes maximal at around 20 K. Slightly
below the ordering temperature Tsp ' 60 K, the coefficient
becomes negative, as observed in experiment. The differ-
ent scattering rates have been parameterized with a = τ−1

0 ,
b = a/70 K and c = a/800 K2, and we set V0 = 0.1 eV

structure of height 50 nV/(KT) observed in Nernst mea-
surements in La1.8−xEu0.2SrxCuO4,17 our calculation re-
quires a reasonable relaxation time τ ' 0.5~/(kBT ) to
reproduce this peak height if the scattering rate is as-
sumed to be proportional to temperature, as observed
experimentally in most parts of the Brillouin zone.74

For a comparison to experiments, it has also to be con-
sidered that a positive rise in the Nernst coefficient is
already observed at twice the charge ordering temper-
ature, T = 2Tch.17 Therefore, it appears that already
stripe fluctuations can enhance the Nernst coefficient.

C. Nernst effect from charge modulations

Long-range static charge order has been observed
mainly in 214 cuprates, using neutron and x-ray
scattering.26,27 In addition, short-range static mod-
ulations in the charge sector have been detected
on the surface of underdoped Bi2Sr2CaCu2O8+δ and
Ca2−xNaxCuO2Cl2.49 However, reliable information
about the amplitude of the charge modulation is lacking:
Most scattering experiments are not directly sensitive to
the charge modulation, with the exception of resonant
soft x-ray scattering on La15/8Ba1/8CuO4

70 whose quan-
titative analysis (which gave a factor of 4 modulation
of oxygen hole densities) is, however, model dependent.
From the STM data49 one may infer a typical modu-
lation amplitude in the charge sector of ±20 . . . 30%, if
the contrast in the tunneling asymmetry is interpreted
as density modulation.

Charge order (i.e. order in the spin-singlet sector)

FIG. 8: Nernst effect for period-4 charge-only stripes at dop-
ing x = 1/8 as function of a) site-centered chemical-potential
modulation and b) bond-centered bond modulation. The
direction-averaged Nernst coefficient is clearly either nega-
tive or much less enhanced than for spin stripe order for
site-centered stripe order. In addition, it is small everywhere
where modulation in the charge channel does not exceed 30%,
corresponding to δt . 0.06 eV and Vc . 0.1 eV. The large
anisotropy in panel b is due to the presence of extremely elon-
gated hole pockets.

may exist without spin order, both at T = 0 and at
finite temperatures.37 The latter is clearly seen e.g. in
La1.8−xEu0.2SrxCuO4 in the temperature range between
Tch ' 80 K and Tsp ' 45 K near x = 1/8.

In this subsection, we consider the effect of charge-only
modulations on the Nernst coefficient. As discussed in
Sec. II B, order in the charge sector may be described by
modulated on-site potentials for site-centered stripes or
by a spatially modulated hopping amplitude (describing
bond order) in the case of bond-centered stripes. Sample
results for the Nernst coefficient are shown in Fig. 8.

A few remarks are in order. First, charge order with
charge modulation below 30% cannot produce closed
electron orbits, as shown in Fig. 2, and only hole-like
orbits emerge. For site-centered stripes, this was already
stated in Ref. 23. The direction-averaged Nernst coeffi-
cient shown in Fig. 8 is negative (or positive, but small)
for both site-centered and bond-centered charge order.
Overall, the magnitude of the signal is also rather small



10

for reasonable potential strengths (δt = 0.055 eV leads to
20% (30%) modulation of vertical (horizontal) bond den-
sity, while site-centered stripes with Vc = 0.1 eV lead to
30% modulation of charge density). Thus, it cannot ac-
count for the positively enhanced Nernst coefficient which
has been measured in presence of stripe order.17 One in-
teresting feature of Fig. 8b is the large anisotropy of ν in
the range δt ≈ 0.06 . . . 0.08 eV. This can be traced back
to elongated hole pockets as in Fig. 2a which exist in this
parameter range. Everywhere else the Nernst anisotropy
is moderate or small.

D. Combined spin and charge modulations

We are thus lead to consider the effects of combined
spin and charge stripe order. Adding charge order on
top of spin stripe order has the effect of breaking up
closed electron orbits into open orbits for sufficiently
strong charge order, see Fig. 4. It is therefore natu-
ral to expect that transport properties resulting from
pure spin stripe order will qualitatively change if charge
stripe order becomes too strong. For on-site modula-
tions, a quantitative measure for charge modulation is
the relative local deviation from the mean conduction
electron density. In the site-centered case, a deviation of
20% corresponds to Vc = 0.07 eV in presence of a spin
potential of Vs = 0.1 eV. It turns out that the Nernst
coefficient remains strongly enhanced for charge poten-
tials of up to about Vc = 0.05 eV , while the coefficient
becomes very small or negative for stronger charge po-
tentials, see Fig. 9c. This behavior would therefore be
compatible with the normal-state Nernst coefficient in
La1.6−xNd0.4SrxCuO4 if charge order leads only to mod-
ulations of 15% or below in the charge sector. A similar
behavior is obtained for bond-centered spin stripes with
additional bond modulations, shown in Fig. 10. For a
strong bond modulation of δt = 0.055 eV with a kinetic
energy modulation of about 20 − 30%, the Nernst co-
efficient is negative only in a small range of spin stripe
potential, Fig. 10a. Finally, if the spin stripe potential
is larger than Vs = 0.1 eV (as is required to produce a
maximal local moment of 0.2µB or more), the Nernst co-
efficient is positive also for the large bond modulation
of δt = 0.055 eV . In order to account for the observed
positive normal-state Nernst coefficient17, this behavior
suggests rather a bond-centered nature of charge order
in La1.6−xNd0.4SrxCuO4 if the modulation in the charge
sector exceeds 15%.

IV. NERNST EFFECT BELOW DOPING x = 1/8

The underdoped regime of the cuprates with hole dop-
ings below x = 1/8 is of interest for various reasons.
First of all, the ordering wave vector in stripe-ordered
214 compounds is strongly doping dependent, εs ' x,
in contrast to the constant modulation period observed

FIG. 9: Nernst effect for site-centered period-8 stripes with
combined spin and charge order. a) Fixed Vc = 0.03 eV as
a function of Vs. b) Fixed Vc = 0.1 eV as a function of Vs.
c) Fixed Vs = 0.1 eV as a function of Vc. For a spin stripe
potential of Vs = 0.1 eV, charge potentials above the mod-
erate value Vc = 0.05 eV lead to a negative or small Nernst
coefficient, see panel c).

for x ≥ 1/8. In addition, recent high magnetic field ex-
periments on underdoped YBa2Cu3Oy at hole doping of
about x = 0.1 have reported quantum oscillations, inter-
preted in terms of multiple small Fermi pockets18,38 and
a negative Hall coefficient.38

Very recently, also a negative normal-state Nernst coef-
ficient has been reported in underdoped YBa2Cu3Oy,29

which, moreover, was found to display a strong spatial
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FIG. 10: As in Fig. 9, but for bond-centered period-8 stripes.
a) Fixed δt = 0.055 eV as a function of Vs. b) Fixed Vs =
0.09 eV as a function of δt. As is depicted in panel a), for
a wide range of spin stripe potentials below Vs ' 0.09 eV
the Nernst coefficient is positively enhanced. (Vs = 0.1 eV
corresponds to an ordered moment of ' 0.3µB). For bond
modulations δt . 0.05 eV, the Nernst coefficient can remain
positive, see panel b).

anisotropy.33 We note that in YBa2Cu3Oy, tendencies
toward stripe order appear weaker than in 214 materials.
While incommensurate low-energy spin fluctuations have
been observed over a large doping range of YBa2Cu3Oy,
which become static around y = 6.45, there is no clear-
cut evidence for charge order in these materials.

In the following, we consider two cases of stripe order
with collinear spin order of periods 10 and 16 in order to
analyze the normal-state Nernst coefficient correspond-
ing to far underdoped samples. Period 10 is motivated
by the doping level x = 0.1 where quantum oscillations
have been reported, period 16 is motivated by the neu-
tron scattering work on YBa2Cu3Oy with y = 6.45 where
incommensurate correlations at ~Qs = 2π(0.5 ± εs, 0.5)
with εs ' 0.06 were detected.21,22 As before, we will ne-
glect the interlayer hopping part of the dispersion as well
as effects of bilayer splitting and the ortho-II potential.
(Note that various experiments have been performed on
non-ortho-II ordered samples, e.g. quantum oscillations
have been reported for such samples.71)

FIG. 11: Nernst coefficient νyx for a period-16 SDW order
as a function of Vs with x = 0.1. For Vs & 0.07 eV (cor-
responding to a maximal local moment of m & 0.20µB) the
Nernst coefficient turns negative with an enhanced amplitude
in comparison to the non-ordered state. Note that in a stripe
(or SDW) picture for YBa2Cu3Oy, the stripes run along the
b axis (as inferred from neutron scattering21,22) and our νyx

corresponds to the Nernst signal with ~∇T along the a axis.

A. Period-16 stripe order

Following Ref. 24, we will approximate the experimen-
tally detected21,22 incommensurability εs = 0.06 by the
rational value 1/16 in order to obtain the reconstructed
Fermi surface from the eigenvalues of a finite matrix.
In this approximation, gaps of order 2∆m ∼ 2V ms /tm−1

with m � 1 are neglected. For experimentally relevant
field strengths of 10 T or more, these gaps are broken
through if Vs � t ∼ t1 and can indeed be neglected.
This is especially the case for the ratio Vs = t1/6 used
in Ref. 24, for which the transmission amplitude through
the m = 3 gap in B = 20 T is ' 94.1% (according to
formula (19), using vF = 2.3 × 107cm/s28). In addition,
we neglect also all other gaps with m > 1. These are
either broken through by magnetic breakdown for m > 2
or they do not lead to closed orbits (m = 2), as discussed
in Ref. 23 .

Including both spin and charge order to our modelling
leads to the 16× 16 Hamiltonian matrix

H =



εk V ∗s V ∗c . . . Vc Vs
Vs εk+Qs

V ∗s . . . 0 Vc
Vc Vs εk+2Qs

. . . 0 0
...

...
...

. . .
...

...
V ∗c 0 0 . . . εk+14Qs

V ∗s
V ∗s V ∗c 0 . . . Vs εk+15Qs

 .

(20)
Again, momentum dependence of the scatttering poten-
tials has been dropped in Eq. (13.9) and can be restored
by labeling a potential connecting energies with momenta
k + q and k + q + Q∗c/s with the momentum k + q in
the matrix (20). Results for the Nernst coefficient of
period-16 spin stripe order are shown in Fig. 11. The
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modulation parameter Vs can again be connected to the
magnitude of ordered moment. As stated above, the ex-
perimentally detected moment increases from 0.05µB at
zero field to 0.07µB at 15 T,22 which suggests that in
field of 50 T as applied in quantum oscillation measure-
ments an ordered moment of significantly above 0.1µB
may be reached. Note that the maximum local moment
in a collinear stripe structure is larger than the one in-
ferred from neutrons which averages over the oscillation
period.

Taken together, we consider values of Vs & 0.07 to be
appropriate to cause a negative Nernst signal. From the
experimental results reported in Ref. 29 and our results in
Fig. 11, we then would infer that field strengths of around
20–30 T are sufficient to produce a large negative normal-
state Nernst coefficient in underdoped YBa2Cu3Oy. We
assume that effects of Landau quantization are negligible
in this regime.

B. Period-10 stripe order

Assuming εs = x for doping x < 1/8 (as observed
in 214 cuprates), a doping of x = 0.1 corresponds to
Qs = π(4/5, 1), leading to period-10 spin stripe order.
In this case, it is not possible that both charge and spin
modulations have extrema positioned on the bond cen-
ters, and we will assume a site-centered stripe geometry
in the following. The Hamiltonian matrix corresponding
to this type of order is thus analogous to the model for-
mulated in Eq. (20) and can be expressed by a 10 × 10
matrix with the appropriate ordering wavevector. We
neglect a corrugation of the Fermi surface along the z-
direction, which has so far only been observed in YBCO.
Typical Fermi surfaces resulting from this model are de-
scribed in Fig. 14.

The Nernst coefficient resulting from pure spin stripe
order shows a change to negative sign at a spin poten-
tial strength of Vs ' 0.09 eV corresponding to a maxi-
mal local moment of 0.25µB , remaining negative up to a
maximal ordered moment of 0.4µB , see Fig. 12 a). The
negative sign can be explained by the shrinkage of the
small electron-like pockets shown in Fig. 14 upon increas-
ing Vs above Vs = 0.1 eV, leading to a dominance of the
closed hole-like orbits. As we checked numerically, for
these orbits αxxσxy � αxyσxx. Since both αxx and σxy
are positive for hole-like carriers, the resulting Nernst
coefficient has to be negative. Adding charge order has
the effect to finally eliminate the electron-like orbits (see
Fig. 14 b). This stabilizes a negative Nernst coefficient
for charge potentials corresponding to up to 30% charge
modulation, see Fig. 12 b).

A discussion of the finite temperature properties of the
Nernst coefficient is analogous to the case of period eight
stripe order. Assuming a mean-field dependence Vs(T ) =
V0

√
1− T/Tsp with V0 = 0.12 eV and Tsp = 50 K taken

from neutron scattering experiments,69 the resulting
Nernst coefficient shows the two sign changes depicted

FIG. 12: Nernst effect for site-centered period-10 stripe or-
der. Spin only stripe order (a) ) leads to a negative Nernst
coefficient for spin potentials above Vs = 0.09 eV. Adding
additional charge order to a spin potential of Vs = 0.1 eV
does not change the sign of the Nernst coefficient for charge
potentials Vc ≤ 0.1 eV, which correspond to realistic charge
modulations of up to 30% ( b)).

in Fig. 13. These features are robust against specific pa-
rameterizations of the quasiparticle scattering rate τ−1,
as long as its temperature dependence is not too strong.
In conclusion, in underdoped La1.6−xNd0.4SrxCuO4 sam-
ples with hole concentrations of about x = 0.1 our result
predicts a negative peak in the Nernst coefficient as a
function of temperature. To observe this peak, eventu-
ally large magnetic fields have to be applied in order to
increase spin stripe order and to decrease vortex contri-
butions to the Nernst coefficient.

V. INFLUENCE OF PSEUDOGAP AND LOCAL
PAIRING

The model calculations presented so far have as-
sumed the existence of metallic quasiparticles, with a
large Fermi surface in the underlying symmetry-unbroken
state. In underdoped cuprates, pseudogap phenomena
are prominent in the temperature range Tc < T < T ∗

where T ∗ is the pseudogap temperature. According to
photoemission experiments on Bi2Sr2CaCu2O8+δ,75 the
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FIG. 13: Nernst effect for period-10 stripe order at finite
temperatures. Upon decreasing temperature to below about
25 K, the Nernst coefficient changes sign and becomes nega-
tive. Upon increasing temperature above about 25 K, the co-
efficient becomes positive and significantly enhanced. Slightly
below the ordering temperature Tsp ' 50 K, the coefficient be-
comes negative again. The different scattering rates have been
parameterized with a = τ−1

0 , b = a/70 K and c = a/800 K2,
and we set V0 = 0.12 eV.

a)

FIG. 14: Fermi surfaces as resulting from period-10 stripe
order, plotted in the first quadrant of the Brillouin zone of
the underlying square lattice. Pure spin stripe order with
Vs = 0.08 eV produces both electron-like and hole-like closed
orbits, see a). Adding additional charge stripe order with
Vc = 0.07 eV eliminates the electron like orbits and the re-
maining closed orbits are all hole-like, see b).

Fermi surface is partially gapped, with Fermi arcs re-
maining near the Brillouin zone diagonals. In stripe-
ordered La2−xBaxCuO4,76,77 only nodal points appear
to survive as low-energy excitations below the stripe-
ordering temperature.

Although many theories have been proposed to explain
the pseudogap regime – ranging from phase-fluctuating
preformed Cooper pairs over competing orders to Mott
physics and strong short-range antiferromagnetic fluctu-
ations – its origin is still unclear.1,2,3 As already men-
tioned in the introduction, experimental data suggests
that phase-fluctuating Cooper pairs alone cannot fully
account for the observed pseudogap phenomena. With a
lack of satisfactory descriptions of the pseudogap phase,

we restrict ourselves to a qualitative discussion in the
following.

Regarding the relation between pseudogap and en-
hanced Nernst coefficient at intermediate temperatures,
different scenarios are conceivable, namely pseudogap
and Nernst coefficient may be caused by (i) the same
or (ii) different phenomena. While the resistively de-
fined pseudogap temperature seems to coincide with the
onset of a rapid change in the Nernst coefficient for dop-
ings above 1/8, the normal-state Nernst coefficient is dis-
tinctly peaked near this doping, whereas the pseudogap
continuously increases as the doping is reduced. We in-
terpret this as evidence for scenario (ii). Then, the effect
of translational symmetry breaking on the Nernst coef-
ficient may be investigated, without fully accounting for
(other) possible sources of pseudogap phenomena – this
is the logic underlying the approach presented in this
paper. (Note there is little doubt that the experimen-
tally seen strong enhancement of the Nernst coefficient
at temperatures near Tc is caused by superconducting
fluctuations.)

In strong magnetic fields and at low temperatures, it
is conceivable that the dominant source of corrections
to the quasiparticle picture is given by phase-fluctuating
pairing, with the phase incoherence becoming maximal
near Hc2. One possible explanation how phase fluctua-
tions of the superconducting order parameter are com-
patible with most of the phenomenology of the under-
doped cuprates has been recently invoked in Ref. 68. In
particular, in strong magnetic fields, appropriate to re-
cent measurements of the Nernst and Hall effects, the in-
fluence of phase fluctuations of the superconducting order
parameter was argued to lead mainly to a quasiparticle
renormalization. The scattering of the quasiparticles on
a fluctuating d-wave order parameter is described by the
self-energy correction68

Σ(k, ω) = ∆2
0k

−iω + εk
ω2 + ε2

k + πΓ2
(21)

where Γ is the phase decoherence rate of the order pa-
rameter amplitude ∆0 and ∆0k = ∆0

2 (cos(kx)− cos(ky)).
This correction leads to the renormalized quasiparticle
dispersion E(k) = ε(k) + Σ(k, ω = 0)

E(k) = εk

(
1 +

∆2
0k

ε2
k + πΓ2

)
. (22)

Remarkably, the original Fermi surface remains un-
changed, and only renormalization of band masses and
quasiparticle velocities by a factor 1 + ∆2

0k/(ε
2
k + πΓ2)

occurs. Since Γ is of the order ∆−1
0 near Hc2, we may ex-

pect no qualitative change of transport properties due to
phase incoherent pairing at magnetic fields of the order
Hc2.

A final remark on Fermi surfaces: While various pho-
toemission experiments suggest truncated Fermi surfaces
in the form of arcs in the pseudogap regime, other experi-
ments allow for an interpretation in terms of Fermi pock-
ets, which may be the result of symmetry-broken states
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(as, in our case, stripes). The issue of arcs vs. pock-
ets is not settled, however, it has been proposed that
both matrix-element effects and disorder are responsi-
ble for the invisibility to photoemission of parts of the
pockets.78,79

VI. SUMMARY

We have calculated the normal-state Nernst coefficient
in cuprates in the presence of stripe-like translational
symmetry breaking. The calculations were based on a
simple quasiparticle picture, combined with a Boltzmann
equation approach. The results demonstrate the role
of Fermi pockets for a large quasiparticle Nernst coef-
ficient. The existence of such pockets depends on details
of the symmetry breaking order; in particular charge or-
der alone does not easily generate pockets, but spin order
is required. Depending on both spatial period and am-
plitude of the stripe order, both positive and negative
Nernst coefficients can be generated, with sign changes
as function of the stripe amplitude which can be traced
back to topological changes of the Fermi surface.

A robust positive Nernst signal was mainly found for
period-8 modulated antiferromagnetic order with Qs =
π(3/4, 1), appropriate for cuprates with doping levels
x ≥ 1/8, as long as the magnetic order is not assumed
to be unrealistically strong. For small charge modula-
tion, there is little qualitative difference between bond-
centered and site-centered stripes; for larger charge mod-
ulation, site-centered stripes tend to destroy hole-like or-
bits and induce a negative Nernst coefficient. Charge or-
der alone generates a small and typically negative Nernst
coefficient. Finally, open orbits contribute a small Nernst
signal only, because off-diagonal transport coefficients are
small for quasi-one-dimensional bands.

The single-layer Nernst signal was naturally found to
be anisotropic, but the anisotropy was small, νyx/νxy ∈
[0.5, 2], for most parameter sets. Exceptions were states
with period-4 modulated charge order shown in Fig. 8.
In these cases, hole pockets with large aspect ratios as
shown in Fig. 2a) can be present in the Fermi surface
and can lead to large anisotropies of the Nernst signal.

A. Relation to experiments

Let us connect these results to experimental ones for
the Nernst coefficient in cuprates. Clearly, both quasi-
particles and phase-fluctuating pairing will contribute to
the Nernst coefficient, with the latter not being part of
the calculation presented in this paper. This pairing-
induced piece of the Nernst coefficient has been stud-
ied before9,10,11,12 and is believed to dominate in a tem-
perature region near the superconducting Tc, whereas
an extra piece has been identified at elevated temper-

atures in La1.6−xNd0.4SrxCuO4.17 Our positive quasi-
particle Nernst coefficient for period-8 stripes, Figs. 6
and 7, is in qualitative agreement with these experimen-
tal results. As function of temperature, the quasiparti-
cle Nernst signal peaks below the charge ordering tem-
perature Tch, vanishes linearly as T → 0 and becomes
negative at high T , Fig. 7. (Adding a pairing-induced
positive peak at low T would give a temperature de-
pendence similar to experiment.) Experimentally, the
temperature maximum of the extra piece in the Nernst
signal appears to be above Tch, which may be explained
in terms of strong precursor stripe fluctuations not cap-
tured in our mean-field theory. The doping dependence
of the quasiparticle Nernst signal in the doping range
0.12 < x < 0.24, Fig. 6, is in qualitative agreement with
experiment as well.

For magnetic modulation periods larger than 8 sites,
the quasiparticle Nernst signal displays sign changes as
function of the modulation amplitude. From this, we
predict sign changes in the Nernst signal as function of
temperature (in compounds with well-established stripe
order) or as function of applied field (if the order is pri-
marily field-induced). Indeed, in a recent experiment29

on YBa2Cu3Oy at y = 6.67, corresponding to a dop-
ing level of 0.12, the Nernst effect at a field of 28 T was
found to be negative in the low-temperature limit. The
signal showed substantial field dependence for smaller
fields, with large positive contributions near Tc due to
superconducting fluctuations, but those have been ar-
gued to be negligible in the regime above 25 T. Assum-
ing that such fields induce sizeable SDW order with a
modulation period larger than 8 (note that the observed
spin correlations21 in YBa2Cu3Oy do not follow the rela-
tion εs ' x), these findings could be consistent with our
calculations. Clearly, experiments on more underdoped
YBa2Cu3Oy samples are called for.

The huge anisotropy of the Nernst signal, found re-
cently in YBa2Cu3Oy at intermediate temperatures,33

cannot be easily explained in terms of magnetic stripe
states. Instead, an interpretation80 in terms of nematic
order near a van-Hove singularity appears more appro-
priate, while stripe order may set in at lower tempera-
tures (where indeed the experimental Nernst anisotropy
decreases).
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