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We study experimental signatures of the Ising nematic quantum phase transition in d-wave su-
perconductors, associated with the change of lattice symmetry from tetragonal to orthorhombic in
the superconducting state. The characteristic feature of this transition is that the ratio between
the Fermi velocity vF and gap velocity v∆ flows to a maximally anisotropic fixed point, i.e. the
renormalization group fixed point is situated at (v∆/vF )∗ = 0. Our main point is that the logarith-
mic approach to this fixed point has visible signatures in the thermal transport. The analysis of
the quasiparticle contribution to the thermal transport is carried out in the framework of a kinetic
approach, which shows that the thermal conductivity is enhanced near the nematic critical point.
Another aspect of our study is the interplay of dilute disorder and electronic interactions in the
measured thermal transport coefficients.

PACS numbers:

I. INTRODUCTION

Electronic nematic phases were discussed in the con-
text of doped Mott insulators1, and have by now been
experimentally observed in a number of systems. They
have been observed in semiconductor heterostructures2,
in the bulk transition metal oxide Sr3Ru2O7

3, as well as
in YBCO. In all these cases the thermal transition to the
nematic phase seems to be second order, whereas the na-
ture of the quantum phase transition is much less clear.
In the case of Sr3Ru2O7 it seems to be first order3.

Now there is evidence that a nodal nematic phase oc-
curs in at least some of the underdoped cuprate supercon-
ductors. In the nematic phase, the square lattice sym-
metry is broken down to tetragonal symmetry, a con-
sequence of the instability of the interacting electronic
system to partial stripe-like order. The best evidence
for this comes from measurements of strongly temper-
ature dependent transport anisotropies in underdoped
YBa2Cu3O6+δ

4 and from neutron scattering experiments
in underdoped YBa2Cu3O6.45

5.
On the theoretical side, Vojta et al.6 analyzed possible

quantum phase transitions in d-wave superconductors in
the framework of a renormalization group (RG) analy-
sis. An initial RG analysis found runaway flow for the
nematic ordering instability at zero temperature based
on an expansion in 3− d, where d denotes the spatial di-
mensionality. In a recent work, Kim et al.7 found in the
framework of a large-N analysis the existence of a second
order transition to a nematic phase. Based on an RG
analysis in the large-Nf framework, where Nf denotes
the number of electronic spin components (the physical
case corresponding to Nf = 2), Huh8 et al. confirmed
the existence of such a second order transition. The au-
thors found an RG fixed point at order 1/Nf describing
a second-order quantum phase transition associated with
the onset of long-range nematic order. The scaling prop-
erties near the fixed point are very peculiar. There is a
dangerously irrelevant parameter v∆/vF , where v∆ and

vF are the velocities of the nodal fermions parallel and
perpendicular to the Fermi surface, which controls the
fixed point. The fixed point lies at ”infinite anisotropy”,
i.e. (v∆/vF )∗ = 0, which has to be contrasted from the
other relativistic fixed points found for other competing
orders6. In order to calculate physical quantities one has
to use a fully two-dimensional theory, since the flow of
the anisotropy to zero is logarithmically slow as a func-
tion of the relevant energy scale, as is described by Huh
et al..8

In the present paper we study thermal transport prop-
erties at the nematic to isotropic quantum phase tran-
sition (QPT) deep within the d-wave superconducting
phase of a quasi two dimensional tetragonal crystal7 in
the framework of the Boltzmann equation. The main re-
sult of our analysis is the logarithmic enhancement of the
thermal conductivity upon lowering the temperature.

The paper is organized as follows. We start with a
general review of the model for the second order ne-
matic phase transition and its properties in a few lim-
iting cases in Sec. II. This closely follows the presen-
tation in Refs. 7,8. We proceed with the definition of
the heat current operator of the electronic quasiparticles
in Sec. III. This discussion is complemented by the dis-
cussion on the bosonic contribution to the thermal con-
ductivity presented in Appendix D. In Sec. IV we in-
troduce the Boltzmann equation framework and explain
the formalism used to solve. This discussion uses a lot of
symmetry properties, which are more explicitly detailed
in Appendix A. In Sec. IVA we review a Boltzmann
equation analysis of a disordered d-wave superconduc-
tor without a nematic mode, which makes connection to
existing results12,19. Then we analyze the full problem
in Sec. IVB. The numerical solution of the Boltzmann
equation is presented in Sec. VB and several different
situations are discussed, such as the interplay of inelastic
and elastic scattering. Finally, in Sec. VI we conclude
and comment on possible experimental implications of
our analysis. Appendix C provides some additional infor-
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mation on transport in clean systems and complements
the discussion in Sec. III and Appendix D.

II. THE MODEL

The model under consideration throughout this work
has been discussed in the literature in great detail7,8.
Therefore we will only repeat the key features. The rel-
evant low-energy description of the electronic system in
a two-dimensional d-wave superconductor with a pure
dx2−y2 pairing symmetry is given by the following BCS-
type Hamiltonian

H =
∑

k,σ

Ψ†
1σk

(

v1
F · k v1

∆ · k
v1

∆ · k −v1
F · k

)

Ψ1σk

+
∑

k,σ

Ψ†
2σk

(

v2
F · k v2

∆ · k
v2

∆ · k −v2
F · k

)

Ψ2σk , (2.1)

where the dispersion has been linearized around the four
nodal points. The Fermi velocities v1

F , v2
F and the gap

velocities v2
∆, v2

∆ are defined as

v1
F =

∂εk
∂k

|k=K1 v1
∆ =

∂∆k

∂k
|k=K1 (2.2)

and

v2
F = −vv1

∆ v2
∆ = v−1v1

F with v =
vF

v∆
, (2.3)

where the vectors Ki denote the location of the nodal
points in the Brillouin zone in clock-wise direction start-
ing with K1 lying at (π/2,π/2). Furthermore, for later
convenience, we introduced the anisotropy parameter
v = vF /v∆ in the above equations. This parameter plays
a vital role since it is a direct measure of the velocity
anisotropy and has a nontrivial flow under the renormal-
ization group transformation8. The results relevant for
the calculations performed in this paper are repeated in
Appendix B. Furthermore, it is notationally very conve-
nient to introduce the nodal fermions, called f1, f2, f3,
and f4 living at the respective nodes in k-space. The
Nambu spinors are composed of the nodal fermions in
the following form

Ψ1σk =

(

f1σk

εσ,−σf †
3−σ−k

)

Ψ2σk =

(

f2σk

εσ,−σf †
4−σ−k

)

,

(2.4)

where εσ,−σ is the antisymmetric tensor and σ is a gen-
eralized flavor index, which will finally allow the large-N
treatment in the limit of a large number of flavors, de-
noted Nf .

The electronic Hamiltonian in Eq. (2.1) has a Dirac
Hamiltonian structure and is readily diagonalized with
a standard Bogoliubov transformation. This is achieved
by a transformation according to

γ†1σk = ukf †
1σk − vkf3−σ−k ,

γ3−σ−k = ukf3−σ−k + vkf †
1σk , (2.5)

and respectively for nodes 2 and 4; uk and vk are the
coherence factors9. The corresponding unitary matrix is
given by

U−1
ak =

1

2εa(k)

(

va
∆k −va

∆k
εa(k) − va

F k εa(k) + va
F k

)

. (2.6)

where the energies for the Bogoliubov quasiparticles are
given by

εi(p) =







√

(v1
F · p)

2
+ (v1

∆ · p)
2

i = 1, 3
√

v2 (v1
∆ · p)

2
+ v−2 (v1

F · p)
2

i = 2, 4
(2.7)

In our later discussion of the thermal transport properties
in terms of the Boltzmann equation it is mandatory to
work in the basis of these quasiparticles23,24.

In the theory considered6,7,8 an Ising-symmetric ne-
matic order parameter couples to the nodal fermions.
The corresponding interaction term has the form of an
additional s-wave order parameter, whose condensation
has the effect of breaking the four-fold rotation symme-
try in k-space down to a two-fold one6,7. Consequently,
it assumes the following form

Sint = λ

Nf
∑

σ=1

∫

d2xdτφ
(

Ψ†
1στ

xΨ1σ +Ψ†
2στ

xΨ2σ

)

.(2.8)

Kim et al.7 showed that the leading quantum fluctuations
at the large-N level after a quadratic expansion around
the saddle point lead to a non-analytic form of the effec-
tive bosonic theory. This calculation is a straightforward
but tedious calculation10,11, relying on the appropriate
usage of Feynman parameters. Retaining only the terms
which are relevant at low energies in the RG sense (as-
suming the mass of the bosonic action is tuned to criti-
cality), the effective bosonic action assumes the following
form

Sφ =
γ

2β

∑

n

∫

d2k

(2π)2

(

ω2
n + ε21(p) −

(

v1
∆p

)2

√

ω2
n + ε21(p)

+
ω2

n + ε22(p) − v−2
(

v1
F · p

)2

√

ω2
n + ε22(p)

)

|φ(p)|2 , (2.9)

where

γ =
λ2

32vF v∆
. (2.10)

This implies that the effective propagator of the bosonic
modes is given by

Dωn

k =
1

γ

(

ω2
n + ε21(p) −

(

v1
F p

)2

√

ω2
n + ε21(p)

+
ω2

n + ε22(p) − v2
(

v1
∆ · p

)2

√

ω2
n + ε22(p)

)−1

. (2.11)
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Higher order terms are as usual in large-N theories down
in powers of 1/Nf . At this point it is instructive to dis-
cuss the above propagator in two extreme cases, namely
for v = 1, i.e. isotropic velocities, and for v " 1.

For v = 1 the corresponding bosonic propagator is sim-
ply given by

Dωn

k =
1

γ

(

2ω2
n + ε2(p)

√

ω2
n + ε2(p)

)−1

, (2.12)

where the energies ε1 and ε2 are now identical due to
the perfect isotropy. It is important to note that the
present propagator implies the existence of quasiparticle-
like peaks sitting on top of a continuum in the spectral
function7. In the limit of extreme anisotropy (v " 1),
which is the main focus in this paper since the RG fixed
point sits at infinite anisotropy, the propagator reads

Dωn

k =
1

γ

(

√

ω2
n + (v1

F · p)2 +
√

ω2
n + (v2

F · p)2
)−1

.(2.13)

This propagators plays an important role in determining
the contribution of the bosonic sector to thermal trans-
port, which we discuss in Appendix D. It was already
pointed out that the presence of the nematic order pa-
rameter and its interaction with the Bogoliubov quasi-
particles leads to a finite quasiparticle lifetime7.

In order to discuss transport in a realistic setting we
will also add some dilute disorder. On a Hamiltonian
level this reads

Hdis =

∫

∑

i,j,σ

d2k

(2π)2
d2k′

(2π)2
V ij
kk′f

†
iσkfjσk′ , (2.14)

where V ij
kk′ stands for the scattering matrix element of

an electron living around node i with momentum k into
an electron living around node j with momentum k′. In
contrast to Refs. 12,13 we assume a source of isotropic
scattering, which implies that V ij

kk′ = Vkk′ = û. However,
all the results of the following calculations can in prin-
ciple be extended to account for the more generic case
including different scattering strenghts.

III. DERIVATION OF THE HEAT CURRENT
OPERATOR

The derivation of the heat current operator in interact-
ing electronic systems is a long-standing problem stem-
ming from the fact that a temperature gradient cannot be
represented as a mechanical perturbation29,31,35,41. Com-
monly, a Lagrangian approach is adopted to derive the
appropriate relations. In the case of an electronic system
interacting with a bosonic system, the microscopic ex-
pression for the heat current was derived for the case of
phonons by Vilenkin et al. 28. This procedure, however,
does not exactly apply to our problem, due to the fact
that the effective low-energy action of the bosonic mode

is created by the electrons themselves. In general, for
the system described by Eqs. (2.1), (2.8), and (2.9) it is
practically impossible to disentangle the contributions to
the energy current due to the electronic and the bosonic
degrees of freedom. We will further address this issue in
Appendix D.

First, we will start with the contribution carried solely
by the quasiparticles, which will constitute the basis for
a Boltzmann equation approach. For a general supercon-
ductor, irrespective of the pairing symmetry, we can refer
the reader to Refs. 12,19,20,25,31 for a proper derivation
of the appropriate operator. The final expression for the
heat current carried by the Bogoliubov quasiparticles is
readily given by the intuitive expression

jE =

Nf
∑

σ=1

4
∑

i=1

∫

d2k

(2π)2
εi(k)

∂εi(k)

∂k
f i
σ(k) . (3.1)

This expression will constitute the starting point for our
Boltzmann transport equation analysis in Sec. IV.

IV. BOLTZMANN TRANSPORT EQUATIONS

Within this section we access the thermal transport
properties using the semiclassical Boltzmann-equation
approach. This approach has proven to be a powerful
tool to compute transport properties of quantum critical
systems14,15,21,22,23,24.

The central object in Boltzmann transport theory is
the distribution matrix of the quasiparticles. In our case
those are the Bogoliubov quasiparticles. We introduce a
distribution function of quasiparticles of the form

f i
σ(k, t) = 〈γ†iσ(k, t)γiσ(k, t)〉 . (4.1)

For all our following considerations it is important to
assume that the Bogoliubov particles constitute reason-
ably sharp quasiparticles. In equilibrium, i.e. in the ab-
sence of external perturbations (such as an applied volt-
age, temperature gradient, ...), the distribution function
is given by familiar Fermi-Dirac distribution

f i
σ(k, t) = n0

f (εi(k)) =
1

e
εi(k)

T + 1
, (4.2)

where εi(k) is given in Eq. (2.7).
In order to deal with all the Bogoliubov quasiparticles

on equal footing, we introduce a local basis, where the
node is again parametrized by i. We assume that we
apply a temperature gradient across the system, such
that the temperature at position r is given by T (r) =
T + r ·∇T . The driving term assumes the generic form
(we drop the spin-index for reasons of simplicity; it will
trivially be accounted for by a factor of 2 in the end)

Xi =
∂εi

∂k(k)

∇T

T 2
εi(k)n0

f (εi(k))n0
f (−εi(k)) ,

∂εi(k)

∂k
=

(

vi
F (vi

F · k) + vi
∆(vi

∆ · k)
)

εi(k)
. (4.3)
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The form of Eq. (4.3) is markedly different from an
isotropic system. In an isotropic system it is always pos-
sible to choose a basis such that one can formulate the
problem in terms of the angle enclosed between ∇T and
k, i.e., Xi ∝ v2

F |∇T |k cos (∠(∇T,k))23,24. This allows
to find a much simpler solution than in our case, where
the angular dependence has to be taken seriously. Our
strategy to properly account for the anisotropy will be
to consider two independent equations for the particles
moving parallel and perpendicular to the nodal points.

The Boltzmann equation assumes the following form

∂tf
i(k, t) − Xi = −Ii

coll , (4.4)

and since we are only interested in the time-independent
solution we arrive at the following simple equation

Xi = Ii
coll , (4.5)

which provides the basis for further discussions. It proves
convenient to introduce the following simplifications at
this point. We rescale momenta to eliminate all factors
of vF , v∆, and T , and go into a representation in polar
coordinates, yielding the following compact form of the
driving term

X̃i = −
(

vi
F ξi + vi

∆∆i

)

k
∇T

T
n0

f (k)n0
f (−k)

= X̃F
i + X̃∆

i (4.6)

where

ξi(θ) = = cos
(

θ + (i − 1)
π

2

)

,

∆i(θ) = sin
(

θ + (i − 1)
π

2

)

. (4.7)

Also note that in the above expression the temperature
has been scaled out of the Fermi function n0

f , rendering
all expressions dimensionless. The splitting of the driv-
ing term accounts for the fact that we finally solve two
independent equations for the parallel and perpendicu-
lar electrons and is consistent with treatments using the
Kubo formula12.

The structure of the driving term motivates an ansatz
for the solution of the Boltzmann transport equation
given by

δf̃i(k, θ) = vi
F ξi(θ)

vi
F∇T

T
n0

f (k)n0
f (−k)Ψi

F (k, θ, v)

+ vi
∆∆i(θ)

vi
∆∇T

T
n0

f (k)n0
f (−k)Ψi

∆(k, θ, v) ,

(4.8)

where the superscript i of the functions Ψi
F (k, θ, v) and

Ψi
∆(k, θ, v), respectively, accounts for the fact that we can

define a local basis for every Dirac point itself. Again, it is
worthwhile to contrast this expression from an isotropic
system like graphene. In such a system we would not
need to distinguish the two different nodal directions and

we could simply choose an ansatz of the form Ψ(|k|)∇T ·k
due to the spherical symmetry of the problem.

A few words on the symmetry of the obtained expres-
sions are in order here, since this will help to simplify life
a lot in the following. A refined discussion of the sym-
metries is presented in Appendix A. The symmetry of
the driving term under exchange of vis-a-vis nodes, i.e.
Xi(k, θ) = Xi+2(k, θ), enforces δf̃i(k, θ) = δf̃i+2(k, θ).
Furthermore we can deduce from the symmetries of the
driving term that

Ψi
F/∆(k, θ, v) = Ψi

F/∆(k,−θ, v) = Ψi
F/∆(k, θ ± π, v) .

(4.9)

Following Eq. (3.1) we can derive an expression for the
energy current carried by the Bogoliubov particles of the
form (note that we have Nf = 2 in this expression)

jE =
2T 2

vF v∆

4
∑

i=1

∫

dΩkdk

(2π)2
k2

[

vi
F ξi + vi

∆∆i

]

δf̃i(k, θ)

=
4T 2

vF v∆

2
∑

i=1

∫

dΩkdk

(2π)2
k2

[

vi
F ξi + vi

∆∆i

]

δf̃i(k, θ) .

(4.10)

Taking into account all the aforementioned symmetries
of the problem we finally arrive at a relatively simple
expression for the thermal current carried by the quasi-
particles under an applied thermal gradient across the
sample

jE = VF

∫

dΩkdk

(2π)2
k2ξ2

1(θ)n0
f (k)n0

f (−k)Ψ1
F (k, θ, v)

+ V∆

∫

dΩkdk

(2π)2
k2∆2

1(θ)n
0
f (k)n0

f (−k)Ψ1
∆(k, θ, v) ,

(4.11)

where the terms mixing vF and v∆ vanish according to
Eq. (4.9), due to

∫

dθ∆i(θ)ξi(θ)Ψ
i
F/∆(k, θ, v) = 0 . (4.12)

This is analogous to the vanishing of mixed terms in the
treatment by Durst and Lee12. We furthermore intro-
duced the following abbreviation:

VF/∆ =
4T 2

vF v∆

(

v1
F/∆v1

F/∆∇T + v2
F/∆v2

F/∆∇T
)

.

(4.13)

Since we are interested in the transport coefficient κxx

(all others follow from symmetry) we can give a generic
expression as

κxx = −4T 2v

∫

dΩkdk

(2π)2
k2ξ2

1(θ)n0
f (k)n0

f (−k)Ψ1
F (k, θ, v)

−
4T 2

v

∫

dΩkdk

(2π)2
k2∆2

1(θ)n
0
f (k)n0

f (−k)Ψ1
∆(k, θ, v) .

(4.14)
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The collision integral Ii
coll for a particle living at node

i will in general be composed of two sources of relax-
ation, namely the contribution due to disorder, hence-
forth called Ii

dis, and the contribution due to the inelastic
scattering, Ii

inel, i.e.,

Ii
coll = Ii

dis + Ii
inel . (4.15)

The following sections are devoted to the understanding
of the single and combined effect of those two scattering
mechanisms.

A. Thermal transport in a disordered d-wave
superconductor

Within this subsection we investigate the thermal
transport in a system where the only relaxation mech-
anism is provided by dilute disorder. This has also been
discussed in the thesis by Paaske25 and simply serves as
a reference. We introduce a parameter measuring the
strength of impurity scattering

α =
2nimpû2

vF v∆
, (4.16)

where

û2 =
(

V ij
kk′

)2

. (4.17)

Expanding the collision term due to disorder to linear
order in the deviation from equilibrium leaves us with
the following expression

Ii
dis =

αkT

4

∫

dΩk′

2π

4
∑

j=1

T +
ij (θ,φ)

[

δf̃i(k, θ) − δf̃j(k,φ)
]

,

(4.18)

where we introduced the short-hand notation

T κ
ij(θ,φ) = 1 + κξi(θ)ξj(φ) − κ∆i(θ)∆j(φ) , (4.19)

with ξi(θ) and∆i(θ) defined in Eq. (4.7) and κ = ±. This
factor simply accounts for the usual coherence factors9.
We are thus left with the task of solving the equation

X̃i = Ii
dis . (4.20)

Plugging in the ansatz (4.8) we see that

Ii
dis = αkT δf̃i(k, θ) −

αk

2

2
∑

j=1

∫

dΩk′

2π
δf̃j(k,φ)

= αkT δf̃i(k, θ) . (4.21)

where the second term in the first line vanishes due to
the isotropic nature of the impurity scattering, which we
assumed for reasons of simplicity. In the more generic
case25 this is no longer true. In our problem, however,

the second term will always vanish also in the presence
of the inelastic scattering by virtue of Eq. (4.9).

We can now find a simple solution given by

Ψi
F (k, θ, v) = Ψi

∆(k, θ, v) =
1

α
. (4.22)

Using Eq. (4.14) it is straightforward to arrive at an ex-
pression for the thermal transport coefficient, given by

κxx =
πT

12nimpû2

(

v2
F + v2

∆

)

, (4.23)

which is the central result of this section. Paaske25

showed that this discussion can easily be extended to in-
clude the case of anisotropic scattering, which means we
are formally allowing for three different scattering matrix
elements: intranodal scattering, which we denote V 11

kk′ ,
scattering between adjacent nodes called V 12

kk′ , and V 13
kk′

for scattering across the Brillouin zone. In this more gen-
eral case the thermal conductivity reads

κxx =
πT

12nimpu2
0

(

v2
F

1 − δ
+

v2
∆

1 + δ

)

, (4.24)

where

u2
0 =

(

V 11
kk′

)2
+

(

V 13
kk′

)2
+ 2

(

V 12
kk′

)2

4
,

δ =

(

V 11
kk′

)2
−

(

V 13
kk′

)2

2u2
0

. (4.25)

This expression nicely reduces to Eq. (4.23) for isotropic
scattering, i.e., V 11

kk′ = V 12
kk′ = V 13

kk′ .
However, in the following sections we will concentrate

on isotropic scattering, since we are interested in the in-
terplay of disorder scattering and scattering from the ne-
matic order parameter. Another comment on this result
is in order here. In contrast to the universal conduc-
tivity12,19 this result depends upon the impurity con-
centration explicitly, which also implies that the non-
interacting problem in the clean limit has an infinite
thermal conductivity. Experimental evidence, however,
points towards the existence of a universal conductiv-
ity in the limit T → 0 independent of the scattering
strength16,17,18. The universal conductivity obtains in
the limit when temperature T is much smaller than the
impurity bandwidth γ, i.e. T ( γ, see Ref. 19. Our cal-
culation, however, addresses the opposite limit, such that
this discrepancy does not constitute a problem and is fur-
thermore consistent with Ref. 24. In the limit T ( γ,
the above treatment must be, in the spirit of a quantum
Boltzmann equation19, supplemented by a field renor-
malization stemming from the real part of the self-energy
(this is neglected in the above Boltzmann equation, but
can be incorporated in a straightforward manner26,27),
which cancels the explicit dependence upon the impu-
rity scattering. This establishes the equivalence with
the Kubo-formula calculations employing a self consis-
tent Born approximation12, where the impurity scatter-
ing induces a finite density of states at the Fermi level,
leading to the famous universal conductivity.
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B. Thermal transport at the nematic transition

Within this section we consider the electronic scatter-
ing off the nematic mode. The central approximation
in this section is to assume the bosonic sector to be in
equilibrium, which implies that the bosonic system is not
excited by the temperature gradient. One argument in
favor of this point of view is to consider a situation in
which the temperature gradient is applied along the vF

direction of the electrons at the nodal point denoted 1.
This implies, that for the nodal particles living around
nodes 2 and 4, only the electrons moving along the gap
direction, v∆ are excited, and thus in the limit of large
anisotropy subdominant in their contribution to the ther-
mal transport. The propagator of the bosonic mode is
linked to contributions from all the fermionic nodes, and
so its response to the thermal gradient is suppressed by
a factor of 1/Nf . A similar discussion has been carried
out in the study of transport in bosonic theories in the

large-N limit14.

Another argument in favor of this approximation
comes from rewriting the problem integrating out the
bosons, which leads to a purely fermionic problem, see
Appendix C. In the fermionic language one can clearly
see that a scattering involving fermions at adjacent nodes
can relax the thermal current, whereas scattering be-
tween electrons at the same node or nodes across the Bril-
louin zone cannot. This argument, however, only works
for large anisotropy, i.e. v " 1. Furthermore, we will
show in Appendix C, that in the limit v = 1, where we
have a relativistically invariant theory, we recover an in-
finite thermal conductivity, as was found in graphene23

and for generic relativistically invariant theories6,54.

We first elaborate on the collision integral stemming
from the scattering of the nodal fermions from the ne-
matic order parameter fluctuations. It assumes the fol-
lowing generic form

I1
inel =

Tλ2

4vF v∆

∫

dΩk′

2π
dk′k′T−

11(θ,φ)D
′′k−k′

k−k′

(

(

nB(k − k′) + n0
f (−k′)

)

δf̃1(k, θ) −
(

nB(k − k′) + n0
f (k)

)

δf̃1(k
′,φ)

)

+
Tλ2

4vF v∆

∫

dΩk′

2π
dk′k′T−

13(θ,φ)D
′′k+k′

k−k′

(

(

nB(k + k′) + n0
f (k′)

)

δf̃1(k, θ) −
(

nB(k + k′) + n0
f (k)

)

δf̃1(k
′,φ)

)

,

(4.26)

which is a generalization of the expressions shown in
Refs. 44,45 accounting for the coherence factors and the
different nodes. Furthermore, we exploit the fact that
δf̃i(k, θ) = δf̃i+2(k, θ) and introduced D̃

′′k−k′

k−k′ being the
γ times the imaginary part of the retarded Green’s func-
tion of the bosonic modes, which was introduced in its
imaginary frequency form in Eq. (2.11). The full problem
is analytically not tractable and has to be solved numeri-
cally. We thus use a variational approach43,44,45,46, which
allows to determine a bound for the conductivity. The
interaction parameter λ drops out of the problem exactly

which simpliy reflects the fact that the present perturba-
tion theory is not controlled in the smallness of λ, but
in the smallness of 1/Nf . It is interesting to note that
the functions ΨF/∆(k, θ, v) acquire a true angular depen-
dence in contrast to the pure isotropic impurity scatter-
ing problem. The presence of the nematic mode leads to
a non-trivial renormalization of the velocity-parameter v,
see Ref. 8, which will be taken into account later.

We set up the variational problem defining the appro-
priate matrix elements
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Q = QF + Q∆ = X −N −D

X =
T

vi
F∇T

∫

kdkdθ

(2π)2
cos θΨi

F (k, θ, v)X̃F
i (k, θ, v) +

T

vi
∆∇T

∫

kdkdθ

(2π)2
sin θΨi

∆(k, θ, v)X̃∆
i

N =
4T

Nf

∫

kdkdθ

(2π)2
dφ

2π
dk′k′T−

ii (θ,φ)D̃
′′k−k′

k−k′ n0
f (k)n0

f (−k)
(

nB(k − k′) + n0
f (−k′)

) (

cos θΨi
F (k, θ, v) − cosφΨi

F (k′,φ, v)
)2

+
4T

Nf

∫

kdkdθ

(2π)2
dφ

2π
dk′k′T−

ii (θ,φ)D̃
′′k−k′

k−k′ n0
f (k)n0

f (−k)
(

nB(k − k′) + n0
f (−k′)

) (

sin θΨi
∆(k, θ, v) − sinφΨi

∆(k′,φ, v)
)2

+
4T

Nf

∫

kdkdθ

(2π)2
dφ

2π
dk′k′T−

ii+2(θ,φ)D̃
′′k+k′

k−k′ n0
f (k)n0

f (−k)
(

nB(k + k′) + n0
f (k′)

) (

cos θΨi
F (k, θ, v) − cosφΨi

F (k′,φ, v)
)2

+
4T

Nf

∫

kdkdθ

(2π)2
dφ

2π
dk′k′T−

ii+2(θ,φ)D̃
′′k+k′

k−k′ n0
f (k)n0

f (−k)
(

nB(k + k′) + n0
f (k′)

) (

sin θΨi
∆(k, θ, v) − sinφΨi

∆(k′,φ, v)
)2

D =
αT

2

∫

kdkdθ

(2π)2
kn0

f (k)n0
f (−k)

(

cos θΨi
F (k, θ, v)

)2
+
αT

2

∫

kdkdθ

(2π)2
kn0

f(k)n0
f (−k)

(

sin θΨi
∆(k, θ, v)

)2
, (4.27)

where X encodes the driving term, N denotes the scatter-
ing from the nematic mode, and D is simply the scatter-
ing from impurities. The above form is relatively simple
and the reasons for its simplicity are explained in more
detail in Appendix A in a general discussion of symme-
tries. In the following calculation we will assume Nf = 2.
In this framework it is possible to obtain the Boltzmann
transport equation by demanding a maximization of the
functional in the following sense

∂Q

∂ cos θΨi
F (k, θ, v)

=
∂Q

∂ sin θΨi
∆(k, θ, v)

= 0 . (4.28)

By virtue of Eq. (4.12) the contribution associated with
the direction perpendicular to the Fermi surface and the
one associated with the parallel (gap) direction decou-
ple nicely, and we are left with two equations that we
can solve independently. Furthermore, comparing the
expression for X in Eq. (4.27) and the expression for the
transport coefficient κxx given in Eq. (4.14), it is obvious
that we can extract the final solution by comparison. In
order to solve the above integral equation we can now
make a variational ansatz and maximize the above func-
tional with respect to the coefficients. It seems sensible
to choose the following ansatz

Ψi
F/∆(k, θ, v) = −aF/∆(v) − bF/∆(v) cos 2θ , (4.29)

which again amounts to dealing with fermions perpen-
dicular and parallel to the Fermi surface, separately.

Of course, the whole series cos 2nθ with n being an in-
teger is allowed for symmetry reasons. However, it is easy
to check that only n = 1 contributes to the heat current,
which is why we concentrate on this mode. We choose
the mode with no k-dependence, since this is the mode
associated with energy conservation in a clean system,
see Appendix C. This mode in a clean system with a
fully relativistic Hamiltonian is not relaxed and leads to
an infinite thermal conductivity. One can of course im-
prove upon the approximation by including more modes,

which is however beyond the scope of this work, since we
are mainly interested in qualitative features. It is impor-
tant to note that the expressions for X and D can be
calculated analytically, yielding

X =
π

24

(

aF + a∆ +
bF

2
+

b∆

2

)

D =
αTπ

48

(

a2
F + a2

∆ +
b2
F

2
+

b2
∆

2
+ aF bF + a∆b∆

)

.

(4.30)

The thermal conductivity will finally be given by the sim-
ple expression

κxx

T
=

π

6
v

[

aF (v) +
bF (v)

2

]

+
π

6

1

v

[

a∆(v) +
b∆(v)

2

]

. (4.31)

This expression neglects the contribution of the effective
bosonic modes to the heat conductivity. In Appendix D
we further comment that fact.

V. THERMAL CONDUCTIVITY AT THE
NEMATIC PHASE TRANSITION

We now turn our attention to the numerical solution
of Eq. (4.31) in various situations.

In a first part, Sec. VA, we will analyze a clean system,
in which the only current relaxation stems from inelastic
scattering of the electronic quasiparticles from the effec-
tive bosonic mode. In a second step, Sec. VB, we will
add dilute disorder to the problem and consider the full
problem.

It was shown that the nematic phase transition is de-
scribed by a fixed point located at infinite anisotropy, i.
e. vF /v∆ → ∞8 . This fixed point is approached in a
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logarithmic manner upon lowering the temperature. This
implies that in order to do a realistic calculation of the
thermal conductivity one has to take into account the log-
arithmic flow of the velocity-anisotropy, which will lead
to a logarithmic enhancement of the thermal conductiv-
ity.

We review the flow equations of the velocities under the
renormalization group transformation in Appendix B to
the extend needed for the calculations presented in this
section.

All the plots presented in this section originate from
a combination of Eq. (4.31) and the flow equations pre-
sented in Appendix B.

A. Quasiparticle thermal conductivity in a clean
system

In this section we consider a clean system, in which the
only source of thermal current relaxation stems from in-
elastic scattering. For a relativistically invariant theory,
which is the case for v = 1, an infinite thermal conduc-
tivity is to be expected6,23,24,54. However, in Appendix C
we show that in an anisotropic system the zeromode of
the isotropic system acquires a mass and is consequently
relaxed.

Experimental evidence suggests a value of vF /v∆ ≈ 20.
Our reference point in the following plot is thus given by
this ratio; since we are only interested in the qualitative
features the initial temperature of the integrated flow is
chosen arbitrarily and called T0. Fig. 1 contains a com-
parison of three curves in the clean limit. The uppermost
curve is the full curve with all parameters flowing, i.e. it
simply plots the numerical solution of Eq. (4.31). The
middle curve is a plot of Eq. (4.31), where, in contrast
to the upper curve, the temperature dependence of aF/∆

and bF/∆ is not taken into account. This is thus the
curve which obtains if in the universal conductivity for-
mula12 the running velocity ratio is taken into account.
The third curve simple serves as a reference showing an
unrenormalized flat curve.

In the next section we will additionally consider the in-
terplay between disorder and interaction with the bosonic
mode.

B. Quasiparticle thermal conductivity in a
disordered system

As we showed in the discussion of the thermal con-
ductivity in a disordered d-wave superconductor, the im-
purity scattering strength does not vanish if the field
renormalization is not taken into account, see Sec. IVA.
This of course has consequences if one considers the prob-
lem taking into account both scattering mechanisms, as
shown in Fig. 2. We see that for different disorder levels,
parametrized by α, the curve has different offsets, being
maximal in the clean system, as one would expect. On

0.05 0.10 0.15 0.20 0.25 0.30 0.35
T

142.0

142.5

143.0

143.5

144.0

Κxx

T

Figure 1: (Color online) The uppermost curve (solid/blue)
shows the full numerical solution of Eq. (4.31), taking
into account the temperature renormalization effect of the
anisotropy ratio. The middle curve (short dashes/red)
shows the universal limit conductivity with running couplings,
whereas the lowest curve (long dashes/green) simply serves as
a reference curve. All plots employ an initial anisotropy ratio
vF /v∆ = 20 at an arbitrary temperature T0.

0.05 0.10 0.15 0.20 0.25 0.30 0.35
T

125

130

135

140

Κxx

T

Figure 2: (Color online) This plot shows different impurity
strengths in increasing order from top to bottom with the
uppermost curve being for the clean system (α = 0, α =
0.05, α = 0.1, α = 0.2), i.e. κxx/T , for an initial anisotropy
ratio vF /v∆ = 20 at an arbitrary temperature T0 for different
disorder levels.

top of this, by the definition of α given in Eq. (4.16), the
disorder strength is flowing under the renormalization
group transformation. This effect is illustrated in Fig. 3,
where the upper curve takes into account the disorder
renormalization, whereas the lower curve, for reference,
neglects this effect.

VI. CONCLUSION

In this paper we have shown that at the nematic tran-
sition there is an enhancement of the thermal conduc-
tivity due to renormalization effects towards the fully
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0.1 0.2 0.3
T

140.8

141.8

142.8

Κxx

T

Figure 3: (Color online) This plot shows the effect of disorder
renormalization (initial value α = 0.01) due to the RG flow
of the velocities. The upper curve (solid/blue) shows the full
solution of Eq. (4.31) taking into account the disorder renor-
malization, whereas the lower curve (dashed/red) is plotted at
fixed disorder, but everything else renormalized. Again, i.e.
κxx/T is plotted for an initial anisotropy ratio vF /v∆ = 20
at an arbitrary temperature T0.

anisotropic RG fixed point at (v∆/vF )∗ = 0. The cen-
tral result of this paper is thus given by Eq. (4.31) and
shown in Fig. 1. We addressed this experimentally rele-
vant issue in the framework of the Boltzmann equation
for the fermions, arguing that thermal transport of the
collective bosonic excitation is suppressed in the large Nf

limit14. Even though we have taken this limit, we believe
that our treatment correctly captures the logarithmic en-
hancement as the central signature of the nematic tran-
sition. The full treatment including the bosonic mode is
beyond the scope of this paper and requires a full discus-
sion in the framework of coupled Keldysh equations or a
treatment in the framework of the memory matrices55.
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Appendix A: SYMMETRIES OF THE DRIVING
AND SCATTERING TERMS

Throughout the whole calculation we have made heavy
use of symmetry properties of the present problem to
simplify occurring expressions. In the derivation of the
transport functional we have dealt with an expression of
the following kind (we only keep angular variables at this
point to simplify notation)

∑

i

∫

dθdφT−
11(θ,φ)D′′(θ,φ)

[

ξi(θ)Ψ
i
F (θ)

] [

ξi(θ)Ψ
i
F (θ) +∆i(θ)Ψ

i
∆(θ) − ξi(φ)Ψi

F (φ) −∆i(φ)Ψi
∆(φ)

]

+
∑

i

∫

dθdφT−
13(θ,φ)D′′(θ,φ)

[

ξi(θ)Ψ
i
F (θ)

] [

ξi(θ)Ψ
i
F (θ) +∆i(θ)Ψ

i
∆(θ) − ξi(φ)Ψi

F (φ) −∆i(φ)Ψi
∆(φ)

]

. (A1)

Taking a careful look at all the symmetries reveals that

T−
11(θ,φ) = T−

11(−θ,−φ) = T−
11(θ ± π,φ± π)

T−
13(θ,φ) = T−

13(−θ,−φ) = T−
13(θ ± π,φ± π)

Dk−k′

(θ,φ) = Dk−k′

(−θ,−φ) = Dk−k′

(θ ± π,φ± π) .

(A2)

This restricts a possible Fourier series of

G(θ,φ) = T−
11(θ,φ)Dk−k′

(θ,φ) + T−
13(θ,φ)Dk+k′

(θ,φ)

(A3)

to

G(θ,φ) =
∑

m,n

a2na2m cos 2nθ cos 2mφ

+ a2n+1a2m+1 cos(2n + 1)θ cos(2m + 1)φ

+ b2n+1b2m+1 sin(2n + 1)θ sin(2m + 1)φ

+ b2nb2m sin 2nθ sin 2mφ . (A4)

This property together with Eq. (4.9) implies that
∫

dφdθξi(θ)∆i(θ)Ψ
i
F (θ)Ψi

∆(θ)G(θ,φ)

=

∫

dφdθξi(θ)∆i(φ)Ψi
F (θ)Ψi

∆(φ)G(θ,φ) = 0 .

(A5)

This allows to rewrite Eq. (A1) as



10

1

2

∑

i

∫

dθdφT−
11(θ,φ)D′′(θ,φ) ×

×
[

ξi(θ)Ψ
i
F (θ) − ξi(φ)Ψi

F (φ)
]2

+
1

2

∑

i

∫

dθdφT−
13(θ,φ)D′′(θ,φ) ×

×
[

ξi(θ)Ψ
i
F (θ) − ξi(φ)Ψi

F (φ)
]2

. (A6)

Appendix B: RG EQUATIONS

The full details of the derivation of the renormaliza-
tion group equations were presented elsewhere8, so we
only repeat the crucial formulae. The methodology of
the applied RG approach differs slightly from the more
standard hard cutoff scheme, since a soft cutoff is more
favorable in order to deal with the anisotropic veloci-
ties. Under the renormalization group transformation
the fermionic velocities vF and v∆ modify according to

dvF

d0
= (C1 − C2)vF (B1)

and

dv∆

d0
= (C1 − C3)v∆. (B2)

This implies that the ratio of the two velocities scales like

d(v∆/vF )

d0
= (C2 − C3)(v∆/vF ) , (B3)

where the functions C1, C2, and C3 are given by

C1 =
2v−1

π3Nf

∫ ∞

−∞

dx

∫ 2π

0

dθf+,−,−(θ, v)G(x, θ)

C2 =
2v−1

π3Nf

∫ ∞

−∞

dx

∫ 2π

0

dθf−,+,−(θ, v)G(x, θ)

C3 =
2v−1

π3Nf

∫ ∞

−∞

dx

∫ 2π

0

dθf+,+,−(θ, v)G(x, θ) .(B4)

Furthermore,

G−1(x, θ) =
x2 + sin2 θ

√

x2 + v−2 cos2 θ + sin2 θ

+
x2 + cos2 θ

√

x2 + cos2 θ + v−2 sin2 θ
(B5)

is the φ propagator inverse and

fa,b,c(θ, v) =
(ax2 + b cos2 θ + cv−2 sin2 θ)

(x2 + cos2 θ + v−2 sin2 θ)2
(B6)

with a, b, c = ±. This is the full set of equations re-
quired for the calculation of all running parameters used
in Sec. IVB.

Appendix C: COMMENTS ON FINITE
CONDUCTIVITIES IN IDEAL SYSTEMS

Naively, in a clean system neglecting Umklapp scatter-
ing one would expect infinite response of the system to
small perturbations, i.e. infinite transport coefficients, if
interactions are momentum-conserving.

If we consider a clean Fermi liquid with electron-
electron interactions we observe the following. If we ap-
ply an electrical field across the system and forbid Umk-
lapp scattering, no current is relaxed and the response is
infinite. Physically, this is very intuitive, formally, how-
ever, this requires some work. Two complementary ap-
proaches are conveniently used to calculate transport co-
efficients. In the framework of linear response theory us-
ing the Kubo formula the use of a conserving approxima-
tion scheme is obligatory. This implies self-energies and
vertex corrections are not independent of each other, but
have to be chosen accordingly. This was shown by Ya-
mada and Yoshida33, and later by Rosch34 who pointed
out the importance of Umklapp scattering in the Bethe-
Salpeter equation for the current-vertex in order to ob-
tain a finite electrical conductivity in clean systems. On
the level of a Boltzmann equation, this can be seen very
naturally. The scattering integral for electron-electron
interaction assumes the well-known schematic form51

I =

∫

F [Xk + Xk1
− Xk−q − Xk1+q] . (C1)

It is obvious from the above equation that the right hand
side vanishes by choosing

Xk = ck , (C2)

which just restates the conservation of momentum. Since
the solution of the Boltzmann equation requires the in-
version of the scattering operator, there is no solution
due to the existence of a mode with zero eigenvalue, a
so-called zero-mode and usually associated with a con-
served quantity (in this case momentum), which makes
the matrix-inversion singular. In a simple application of
a relaxation time approximation this point can easily be
missed. However, the existence of a zero mode implies the
existence of a mode, which cannot decay, i.e. the associ-
ated scattering time diverges, which also implies the con-
ductivity as defined by the Drude51 formula to diverge.
One would expect the same kind of reasoning to apply for
the thermal conductivity. That this, however, is not true
was already point out by Langer in 196235, who argued
that in the presence of electron-electron interactions the
Wiedemann-Franz law should not generally apply. This
was later also shown in Refs. 31,40,41. The reason for
that is that in general electron-electron interactions can
carry an energy current. Therefore, momentum conser-
vation does not imply heat current conservation and a
finite thermal transport time is possible in systems with
Galilean invariance36,37,38. As an extreme example one
might consider a Hubbard-Model in its Mott insulating
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phase. In such a system, no charge is transported, how-
ever, heat can be transported by spin-waves. This is just
to illustrate that heat and charge transport are not as
intimately connected as one might think.

It is instructive to compare the above reasoning with
a relativistically invariant electronic theory, such as the
Dirac theory in the way it applies to intrinsic graphene
in the clean limit. It was pointed out in Refs. 23,24 that
the conductivity in such a system can be finite, i.e. a mo-
mentum conserving interaction can relax a current due
to the special particle-hole structure of the Dirac Hamil-
tonian. However, this is not true for the thermal conduc-
tivity, which is infinite. This can be traced back to the
conservation of the energy component of the momentum-
energy tensor and it is a generic property of relativisti-
cally invariant theories without any sort of translational
symmetry breaking6,54.

This again can very nicely be seen in a Boltzmann
transport approach. Here again, the collision integral
assumes the generic form shown in Eq. (C1) and the
existence of a zero-mode implies a diverging scattering
time. Here, the roles with respect to the Fermi liquid are
reversed and the zero-mode of the scattering integral is
only excited by a temperature gradient, but not by an
electrical field, hence the finite electrical conductivity.

We can now turn to our problem. In order to discuss
the issue of a finite thermal conductivity in our model,
it proves favorable to restate the transport problem in
a completely fermionic language, which is achieved by
integrating out the effective bosonic degrees of freedom.
This leads to a long-range electron-electron interaction,
in analogy to the model for interacting fermions which
applies to graphene23,24. One can conclude the follow-
ing. For no anisotropy, i.e. v = 1, the scattering in-
tegral posesses a zero-mode for heat transport, which
implies a diverging thermal conductivity. However, for
finite anisotropy, the zero-mode ceases to exist, which
implies the decay of thermal current even in a clean sys-
tem, leading to a finite heat conductivity. The full details
of this reasoning can be found below.

1. Recovery of infinite thermal conductivity in the
clean system in the isotropic case

In this section we want to reconcile our approach
with the fact that in a relativistically invariant theory

in a clean system an infinite heat conductivity is ex-
pected6,23,24,54. In order to address this question prop-
erly we restate the initial problem in terms of fermions
only by integrating out the bosonic degrees of freedom.
The problem now is equivalent to a set of Dirac fermions
interacting via a long-range interaction, described by the
following action

Sint ∝ T 3
∑

ω1,ω2,ν

∫

k,k′,q

∑

a,b=1,2

N
∑

σ=1

D(ν,q) ×

Ψ†
a,k+q,σ(ω1 + ν)τxΨa,k,σ(ω1) ×

× Ψ†
b,k′−q,σ(ω2 − ν)τxΨb,k′,σ(ω2) . (C3)

We will sketch the derivation of the kinetic equation,
which has been presented elsewhere23,56. The starting
point of our discussion is given by the kinetic equation56,
which has to be generalized to incorporate a possible ma-
trix structure of the Green’s function (in our case the
Green’s function lives in spinor space within a structure
due to the Nf spin and the nodal index, and thus has a
2Nf × 2Nf structure)

[∂T −∇RU(R, T )∇k]Ga<(k,ω;R, T ) =

− Ga<(k,ω;R, T )Σa>(k,ω;R, T )

+ Ga>(k,ω;R, T )Σa<(k,ω;R, T ) (C4)

The self-energy diagrams are the RPA-type contribution
and the maximally crossed diagram56. This set of di-
agrams is commonly called the second order Born ap-
proximation. In a large-Nf framework the contribution
of the maximally crossed diagram will be suppressed by
a relative factor of 1/Nf with respect to the RPA-term
and will consequently be dropped. In a next step we find
that the Fourier transform with respect to the relative
coordinates reads

Σ
a>,<
αβ (k,ω; T ) =

∫

d2k1

(2π)2
dω1

2π

d2k2

(2π)2
dω2

2π

d2k3

(2π)2
dω3

2π
(2π)3δ(k + k1 − k2 − k3)δ(ω + ω1 − ω2 − ω3) ×

×
∑

b

[

|DR(ω − ω2,k − k2)|2Gb<,>
γδ (k1,ω1)G

a>,<
αβ (k2,ω2)G

b>,<
δγ (k3,ω3)

]

. (C5)

We transform the above expression into the appropriate
Bogoliubov quasiparticle basis of the γi through

Ga<,>(k,ω) = U−1
ak ga<,>(k,ω)Uak

where the unitary matrix U−1
k was introduced in

Eq. (2.6).
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Accounting for the fact that the operators γ describe
sharp quasiparticles the lesser and greater Green’s func-
tions are given by

ga<
λ (k,ω; T ) = 2πδ(ω − εaλ(k, T ))fλ(k, T )

and

ga>
λ (k,ω; T ) = 2πδ(ω − εaλ(k, T )) [1 − fλ(k, T )] ,

where we assumed the distribution function of the quasi-
particles to have no off-diagonal components, which is

justified to linear order in the temperature gradient. Fur-
thermore, we introduced the following convention

εaλ(k) =

{

εa(k) λ = 1, 3
−εa(k) λ = 2, 4

. (C6)

The diagonal part of the distribution function using

Ma
λλ1

(k,k1) =
[

Uakτ
xU−1

ak1

]

λλ1
(C7)

reads

[∂T −∇RU(R, T )∇k] fµ(k, T ) = 2πN
∑

b

∫

d2k1

(2π)2
d2q

(2π)2
δ(εaµ(k) + εbλ(k1) − εaλ1

(k + q) − εbλ2
(k1 − q))

×
[

|DR(εaµ(k) − εaλ1
(k + q),q)|2Mλ2λ(k1 − q,k1)Mλλ2(k1,k1 − q)Mµλ1(k,q + k)Mλ1µ(q + k,k)

]

×

× [(1 − fµ(k, T ))(1 − fλ(k1, T ))fλ1(q + k, T )fλ2(k1 − q, T )

− fµ(k, T )fλ(k1, T )(1− fλ1(q + k, T ))(1 − fλ2(k1 − q, T ))] . (C8)

It is interesting to note that in the case of isotropic ve-
locities there is no need to distinguish the energy func-
tions εa and εb any more, and the whole discussion of
transport coefficients parallels the discussion in graphene,
see Ref. 23. In this case all the observations made in
graphene, including the presence of a collinear forward
scattering divergence, hold. The only modification stems
form the fact that the interaction is different, giving an-
other numerical value of the universal prefactor. Further-
more, in this case the thermal conductivity is infinite due
to the presence of a momentum mode, which is unaltered
by the present of the electron-electron interaction. The
situation changes in the case of anisotropic velocities. In
this case it is obvious that we have two qualitatively dif-
ferent scattering processes. Here, for the term scattering
from a to b with a = b it is still possible to find a zero

mode, since we can always rescale the moment in the lo-
cal nodal basis, leading to an expression as in graphene,
however with a different global prefactor. This is not true
for the term scattering a to b with b ,= a. This term does
not allow for such a simple rescaling operation and the
vanishing of the zero mode is thus responsible for a non-
infinite thermal conductivity. It is thus to be expected
that in a clean system with a velocity anisotropy we find
a finite thermal conductivity. This comes about natu-
rally in the case where we consider electronic scattering
off the effective bosonic propagator.

We can make the above stated more substantial by
considering the ansatz introduced in Eq. (4.8), where we
choose a constant function Ψi

F (k, θ, v) = Ψi
∆(k, θ, v) =

const. We can write the linearized version as

I ∝
[

va
F∇T (va

F · k) + vb
F∇T (vb

F · k′) − va
F∇T (va

F · (k + q)) − vb
F∇T (vb

F · (k′ − q))

+ va
∆∇T (va

∆ · k) + vb
∆∇T (vb

∆ · k′) − va
∆∇T (va

∆ · (k + q)) − vb
∆∇T (vb

∆ · (k′ − q))
]

. (C9)

This expression generically vanishes for any anisotropy
as long as a = b. If a ,= b, however, we can rewrite the
above expression to yield

I ∝ va
F∇T (va

F · q)
(

v−2 − 1
)

+ va
∆∇T (va

∆ · q)
(

v2 − 1
)

(C10)

This nicely restates the fact that the momentum mode is
a zero mode of the problem for the isotropic system, i.e.

v = 1, whereas the mode becomes massive once v2 ,= 1.
The vanishing of this zero mode seems to justify the ex-
istence of a finite thermal conductivity even in a clean
system, provided the anisotropy is large, see Sec. IVB.
The analysis of a clean electronic system and the inter-
action mediated thermal conductivity was carried out in
Refs. 39,40, and redone in a decoupling scheme in bosonic
fields by Catelani and Aleiner41.
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Appendix D: CONTRIBUTION OF THE
EFFECTIVE BOSONIC MODE TO THE HEAT

CURRENT

The full action of our problem at hand is given by the
electronic d-wave superconductor coupled to the bosonic
nematic mode, both of which can carry heat current. In
a generic electron-phonon system the complete expres-
sion for the heat operator was given by Vilenkin et al.28.
Our problem, however, is different in the sense, that the
effective dynamics of the bosonic mode is created by the
electrons, see Eq. (2.11). This is very similar to prob-
lems studied in the context of slave particle theories for
the t-J model or in composite fermion theories of the
fractional quantum hall effect, where an effective action

for a U(1)-gauge field is generated and the analysis of
transport quantities is tedious, see Refs. 47,48,49,50,53.

In order to derive an expression for the effective heat
current carried by the bosonic mode we expand the sad-
dle point action to third order following a minimal cou-
pling scheme explained in Refs. 29,31,32. In the follow-
ing we assume a thermal gradient in the direction of
the Fermi-velocity at node 1, without loss of generality.
This implies we have a thermal gauge field without a y-
component in the local basis defined at node 1. Further-
more, we will later make the approximation that v " 1,
which implies that the thermal gradient decouples from
the second term in Eq.(2.1). We thus find the minimally
coupled version of the problem to be given by

S =

∫

dτ
∑

k,k′,σ

Ψ†
1kσ

(

∂τ − vF (kxδk,k′ − iAx
2(k − k′)i

←→
∂ τ ) v∆kyδk,k′

v∆kyδk,k′ ∂τ + vF (kxδk,k′ − iAx
2(k − k′)i

←→
∂ τ )

)

Ψ1k′σ

+

∫

dτ
∑

k,k′,σ

Ψ†
2kσ

(

∂τ − vF kyδk,k′ v∆(kxδk,k′ − iAx
2(k − k′)i

←→
∂ τ )

v∆(kxδk,k′ − iAx
2(k − k′)i

←→
∂ τ ) ∂τ + vF kyδk,k′

)

Ψ2k′σ , (D1)

where
←→
∂ τ = 1

2

(−→
∂ τ −

←−
∂ τ

)

, see Ref. 31. We can proceed

with the derivation of the effective heat vertex of the
bosonic mode, which is achieved calculating the diagram
shown in Fig. 4 a.). The ”heat-vertex” with incoming

frequency Ωn and the external momentum q of the gauge
field equal to zero, i.e. q = 0, equates in the limit of zero
temperature to

Γ(νn,k,Ωn,q = 0) =
vNfkx

16Ωn





v2
F k2

x + (νn + Ωn)2
√

v2
F k2

x + v2
∆k2

y + (νn + Ωn)2
−

v2
F k2

x + ν2
n

√

v2
F k2

x + v2
∆k2

y + ν2
n





+
Nfkx

16Ωnv





v2
F k2

y + νn(νn + Ωn)
√

v2
∆k2

x + v2
F k2

y + ν2
n

−
v2

F k2
y + νn(νn + Ωn)

√

v2
∆k2

x + v2
F k2

y + (νn + Ωn)2





lim
v%1

≈
vNfkx

16Ωn

(

√

v2
F k2

x + (νn + Ωn)2 −
√

v2
F k2

x + ν2
n

)

. (D2)

The derivation of this quantity is very tedious and in-
volves the usage of Feyman parameters, see e.g. Ref. 42.
However, it is interesting to note that the above expres-
sion, before taking the limit 1/v → 0 in the last line,
is exact. With the effective ”heat-vertex” at hand we
can proceed to calculate the bosonic contribution to the
thermal transport. The corresponding diagrammatic ex-
pressions assume the form shown in Fig. 4 b.). At this
stage it is very important to note that the above expres-
sion is even under νn → −νn, Ωn → −Ωn, and k → −k.

This is very important, since it implies that the heat-
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current-heat-current correlation function is given by

K(Ωn,q = 0) ∝ (vNf )2 T
∑

νn

∫

d2k

(2π2)

Γ(νn,k,Ωn,0) (Γ(νn,k,Ωn,0) + Γ(−νn,−k,−Ωn,0))

Gφ(k, νn + Ωn)Gφ(k, νn)

= 2 (vNf )2 T
∑

νn

∫

d2k

(2π2)

Γ(νn,k,Ωn,0)2Gφ(k, νn + Ωn)Gφ(k, νn) . (D3)

One comment has to be made at this stage, which is,
that the heat-vertex in our case has been evaluated us-
ing the free Bogoliubov quasiparticle propagators. This,
in general, constitutes a problem, once the d.c. limit in
a response function is taken, since the resulting integrals
are ill-defined and lead to infinite response coefficients51.
This is also reflected in the large-N calculation in a
fermion-gauge field system as they often appear in gauge
theory descriptions of strongly interacting electronic sys-
tems of Ref. 49, where the calculation becomes invalid in
the low-frequency limit and the temperature has to serve
as a cutoff. It is an interesting aside to mention that
the involved terms agree with the conserving approxi-
mation33, however lacking the self-consistency. Starting
from a heat-vertex calculated from free fermionic prop-
agators, a calculation of the zero-frequency limit of the
bosonic contribution to the thermal conductivity using
the appropriate propagator for v " 1 introduced in
Eq. (2.13) following the prescription given in Ref. 32 does
not yield a finite value. This can be traced back to the
contribution of the free fermions and is an artifact of
the neglect of the self-energies33. We have not explicitly
performed the calculation taking into account the self-
energies. It is, however, straightforward using a spectral
representation of the electronic contributions and intro-
ducing a thermal broadening52. The important point is
that the contribution of the bosonic modes to the ther-

mal conductivity is finite and naively proportional to v0,
which can easily be checked by taking the anisotropic
bosonic propagator (Eq. (2.13)) and scaling all the mo-
menta such as to make the resulting integral dimension-
less. In this sense the bosonic contribution is down by 1/v
with respect to the fermionic contribution steming from
the nodal fermions which move in perpendicular direc-
tion to the Fermi surface, compare Eq. (4.14) in Sec. IV.
However, it is unclear whether this power-counting ar-
gument applies once the self-energies are taken into ac-
count. This question is postponed to later works. For a
perfectly isotropic situation an analysis of the transport
properties in terms of the fermionic model seems more
appropriate, see Appendix C, leading to an infinite ther-
mal conductivity in the absence of disorder. This is an
important consistency check for any Kubo-formula based
calculation of the thermal conductivity. In the isotropic
limit one has to obtain an infinite thermal conductivity
in the isotropic limit, comparable to an infinite electri-
cal conductivity in a clean Fermi-liquid, which dictates

a.) b.)
iνn + iΩn,k + q

τz∂τ τx

iΩn,q

iνn,k

Figure 4: the effective heat vertex proportional to v according
to Eq. (D2) is shown in a.); b.) shows the bosonic contribution
to the thermal current.

the self-energy and vertex diagrams in the conserving ap-
proximation33.
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