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Abstract
Motivated by recent Monte-Carlo simulations of Höglund and Sandvik (arXiv:0808.0408), we

study edge response in square lattice quantum antiferromagnets. We use the O(3) non-linear
�-model to compute the decay asymptotics of the staggered magnetization, energy density and
local magnetic susceptibility away from the edge. We find that the total edge susceptibility is
negative and diverges logarithmically as the temperature T ! 0. We confirm the predictions of
the continuum theory by performing a 1/S expansion of the microscopic Heisenberg model with
the edge. We propose a qualitative explanation of the edge dimerization seen in Monte-Carlo
simulations by a theory of valence-bond-solid correlations in the Néel state. We also discuss the
extension of the latter theory to the response of a single non-magnetic impurity, and its connection
to the theory of the deconfined critical point.
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I. INTRODUCTION

The Heisenberg antiferromagnet on a square lattice is one of the best known model

magnetic systems. It has been studied extensively both numerically by quantum Monte-

Carlo and analytically by 1/S expansion and field-theoretic methods. It is known to have

an ordered ground state at zero temperature with the staggered magnetization reduced by

quantum fluctuations to Nb = hNi = 0.307 for the spin S = 1/2.1

Despite many years of study, the simple Heisenberg model does not cease to surprise us.

Recent Monte-Carlo simulations2 on the S = 1/2 model have shown that the edge response

in this system is very peculiar. In particular, a negative edge susceptibility is observed at

low temperatures. This result is in contrast with an intuitive picture of a “dangling” edge

spin leading to an enhancement in the susceptibility. The simulation of local susceptibility

near the edge shows that the negative sign does not come from the edge spins per se, whose

susceptibility is, indeed, enhanced, but rather from a tail in the response decaying away from

the edge. Another curious e↵ect observed in Ref. 2 is the dimerization of bond response near

the edge, leading to the appearance of a comb-like structure, as in Fig. 1. The tendency to

dimerize into singlets near the edge was argued in Ref. 2 to be the source of negative edge

susceptibility.

FIG. 1: A schematic picture of the comb structure in bond strengths observed in Monte-Carlo
simulations2, with a free edge on the left side.

In the present paper, we study large-distance asymptotics of the edge response of a

square lattice quantum antiferromagnet by means of an e↵ective O(3) �-model description.

This field-theoretic method is an expansion in powers of energy and momentum, with the

microscopic physics entering at each order through a finite number of parameters, such as

the spin-wave speed c, the spin sti↵ness ⇢s and the value of the staggered moment Nb.1

The O(3) �-model has proved powerful for studying finite temperature/size e↵ects, which

typically lead to a crossover into an O(3) model of lower dimension.3 It turns out to be also

1 We will use the subscript b from here on to denote bulk properties.
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useful for studying the edge behaviour, particularly as no new parameters beyond the bulk

ones are needed to describe the leading low temperature, large distance asymptotics in the

edge response. We concentrate our attention on the staggered moment hN(x)i, the local

energy density h✏(x)i and the local magnetic susceptibility �?(x). We show that at zero

temperature these quantities approach their bulk values away from the edge with simple

power law forms,

hN(x)i �Nb

Nb

= � c

8⇡⇢sx
(1.1)

h✏(x)i � ✏b =
c

16⇡x3

(1.2)

�?(x)� �?,b = � 1

8⇡xc
(1.3)

Integrating eq. (1.3), we conclude that the total edge susceptibility per unit edge length is

negative and diverges logarithmically with the system size,

�?,edge

= � 1

8⇡c
log(L/a) (1.4)

We show that at finite temperature the 1/x power law in the susceptibility (1.3) is cut-

o↵ for distances larger than the thermal wave-length, x & c/T , leading to the total edge

susceptibility,

�?,edge

= � 1

8⇡c
log(c/Ta) (1.5)

Such a log divergent susceptibility is indeed seen in the Monte Carlo simulations2. For the

co-e�cient of the logarithm in �
edge

= (2/3)�?,edge

, with c = 1.69J , we find �0.0157/J ,

while the Monte Carlo has a best fit value of �0.0182/J (see Fig. 2). This is in reasonable

1.00 10.000.100.01
-0.06

-0.04

-0.02

0.00

0.02

T/J

J

FIG. 2: Edge susceptibility: Comparison of the Monte Carlo data of Ref. 2 (dots) with the best fit
line J�

edge

= �0.0182 log(0.219J/T ) to the low T data.
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agreement, with the di↵erence probably attributable to di�culties in numerically reaching

the asymptotic low T limit.

As for the edge comb structure seen in Ref. 2, this is a short distance phenomenon,

which cannot be studied within our continuum O(3) �-model. In fact, the standard, “per-

turbative” treatment of the O(3) model describes only the low-energy excitations which live

near the wave-vector (⇡, ⇡) and cannot provide any information about valence-bond-solid

correlations, which live near (⇡, 0) and (0, ⇡). Because these correlations are gapped in the

antiferromagnet, they must decay exponentially away from the edge, as seen in Monte-Carlo.

To capture the short-distance physics, we have performed a 1/S expansion of the Heisenberg

model on the lattice with an edge. We find the large-distance asymptotics in agreement with

the predictions of our continuum theory. However, we don’t reproduce the multiple short-

distance oscillations of bond energies away from the edge seen by Monte-Carlo. Instead, we

find that the bonds touching the edge are stronger than the bulk, while all the subsequent

bonds are weaker. We conclude that the edge dimerization is, likely, a non-perturbative

e↵ect in 1/S, which is invisible in the spin-wave expansion. It is remarkable that such non-

perturbative e↵ects are present in the simple S = 1/2 Heisenberg model, where the 1/S

expansion yields quantitatively accurate results for many quantities.

In principle, one may be able to explicitly incorporate the non-perturbative physics in

the form of hedgehogs into the semi-classical, large S treatment of the Heisenberg model.

The hedgehog configurations are relevant for the dimerization physics, as they carry Berry

phases,4 which endow them with non-trivial quantum numbers under the lattice symmetry.5

However, studying the hedgehog contribution to the edge physics is technically intractable.

Instead, we pursue a more phenomenological approach, in which we assume that the

system possesses a dynamical valence-bond-solid order parameter with a large correlation

length. This assumption is justified close to a phase transition into a valence-bond-solid

phase, which can be tuned by adding additional frustrating interactions to the Heisenberg

model.6,7 Moreover, even for the pure, nearest neighbour Heisenberg model with S = 1/2, it

has been argued long ago8 that the quantum fluctuations are strong enough that the system

is “proximate” to a phase transition at which the magnetic order is lost. This proximity

is manifested by the existence of an intermediate temperature window, dominated by the

quantum critical point (the low temperature physics is dominated by the antiferromagnet,

while the high temperature physics is dominated by the non-universal lattice e↵ects). The

observation of edge dimerization over more than 5 lattice spacings in the latest Monte Carlo

simulations implies that the correlation length of the valence-bond-solid order parameter in

the S = 1/2 Heisenberg model is rather large, further supporting the proximity to a phase

transition.

We show that the comb structure of the bond order seen in Monte-Carlo simulations

can be qualitatively understood in the quantum critical language. The particular details

of the critical theory are not very important for this purpose - the physics can be read

o↵ straight-forwardly from the transformation properties of observables under the lattice

symmetry. In particular, we demonstrate that close to the critical point the oscillations of
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bonds perpendicular to the edge and lines parallel to the edge in the comb can be related

to each other.

In another recent paper with Kaul and Melko9, we have discussed the response of the

valence bond solid order to a single non-magnetic impurity (such as a Zn site replacing a Cu

site). We used there a phenomenological theory similar in spirit to that used here for the edge

response. We will review that theory here and also discuss its connection to the impurity

response in the deconfined theory of the Néel to valence bond solid transition discussed in

Ref. 10. For this single-site impurity case, we are able to infer the non-perturbative role of

hedgehogs and Berry phases in somewhat greater detail.

This paper is organized as follows. Section II A is devoted to the description of the edge

in the framework of the O(3) model at zero temperature. In section II B we discuss the

crossover of edge susceptibility to finite temperature. In section III we perform the large S

expansion of the Heisenberg model with an edge. In section IV we discuss edge dimerization

in a quantum antiferromagnet in the proximity to a phase transition into a valence-bond-

solid. Finally, in section V we discuss the related theory of the response near a non-magnetic

impurity. Some concluding remarks are presented in section VI.

II. EDGE RESPONSE IN THE O(3) �-MODEL

A. Zero Temperature

In this section we discuss the large distance asymptotic behaviour away from the edge of

the staggered moment, local uniform susceptibility and the bond energies using the contin-

uum O(3) �-model. The advantage of this approach is that the results obtained are exact,

depending only on a few phenomenological parameters, such as spin-wave velocity c, spin-

sti↵ness ⇢s and bulk staggered moment Nb. These parameters are known from 1/S-expansion

and Monte-Carlo simulations.

The �-model action for the local order parameter ~n, satisfying ~n2 = 1, is

S =
⇢0

s

2

Z
d2xd⌧ (@µ~n)2 (2.1)

Here, we’ve set c = 1, we will restore c at the end of the computations. Since we are studying

the problem with an edge, we also have to consider boundary perturbations. The simplest

terms allowed by symmetries are,

S
bound

=
X

µ

cµ

Z
dyd⌧ (@µ~n)2 (2.2)

This term is irrelevant by power counting (the coupling has scaling dimension �1), and can

be ignored for the leading asymptotic behaviour calculations performed below. Note that

the “lower dimension” surface term ~n@x~n vanishes identically due to the constraint ~n2 = 1.
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The absence of a boundary term, implies that ~n obeys free boundary conditions,

@x~n = 0 (2.3)

as can be seen by varying the action (2.1) with respect to ~n, integrating by parts and

requiring that the surface term be zero.

To set up perturbation theory, we write ~n = (~⇡,
p

1� ~⇡2) and expand the action in ~⇡,

obtaining,

S =
⇢0

s

2

Z
d2xd⌧

✓
(@µ~⇡)2 +

1

1� ~⇡2

(~⇡@µ~⇡)2

◆
(2.4)

The second term in brackets above can be expanded as a power series in ~⇡ - yielding terms

with couplings of scaling dimension �1 and lower. These terms again will not influence the

leading asymptotic behaviour of observables discussed below.

We are, thus, left with the free theory for the Goldstone fields ~⇡, supplemented by the

free boundary condition @x~⇡ = 0. The propagator with these boundary conditions is,

h⇡a(~x, ⌧)⇡b(~x0, ⌧ 0)i =
�ab

⇢0

s

Z
d!

2⇡

dky

2⇡

dkx

⇡

1

!2 + k2

x + k2

y

ei!(⌧�⌧ 0)eik
y

(y�y0) cos(kxx) cos(kxx
0)

=
�ab

⇢0

s

(D(x� x0, y � y0, ⌧ � ⌧ 0) + D(x + x0, y � y0, ⌧ � ⌧ 0)) (2.5)

where D(x) is the standard 3d massless propagator,

D(x) =
1

4⇡|x| (2.6)

Now, we can calculate the observables. Let’s start with the staggered moment h ~Ni.
The microscopic ~N(x) is related to the O(3) field ~n(x) via a multiplicative renormalization,
~N(x) = NbZN~n(x) where Nb is the exact value of the bulk staggered magnetization and ZN

is a formal power series in ⇢�1

s , adjusted order by order to give hN3i = Nb in the bulk.

Hence, the staggered moment, to leading order is,

hn3(x)i = h1� ~⇡2

2
i = 1� 1

⇢0

s

(D(0) + D(2x, 0, 0)) = 1� 1

⇢0

s

(D(0) +
1

8⇡x
) (2.7)

Thus, as limx!1 ZNhn3(x)i = 1, and to leading order ⇢0

s = ⇢s,

ZN = 1 +
1

⇢s

D(0) = 1 +
1

⇢s

Z
d3k

(2⇡)3

1

k2

(2.8)

which is the familiar expression known from calculations with no boundary. So,

hN3(x)i = Nb

✓
1� c

8⇡⇢sx

◆
(2.9)
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FIG. 3: Depletion of the staggered moment, �(h ~N(x)i � Nb) near the edge. The dotted line is
the calculation in the 1/S expansion. The solid line is the O(3) �-model result for asymptotic
behaviour, with phenomenological parameters ⇢s, c, Nb matched to 1/S expansion.

where we’ve reinserted the spin-wave velocity c. The result (2.9) is asymptotically exact

and shows suppression of the Néel moment near the edge. We can check the result (2.9)

against the large distance asymptotics of the 1/S expansion performed in section III. The

parameters ⇢s, c and Nb are known in 1/S expansion to be at leading order,

⇢s = JS2, c = 2
p

2JSa, Nb = S (2.10)

where a is the lattice spacing. Substituting these parameters into (2.9) and comparing to

our numeric integration results from 1/S expansion on the lattice with an edge, we find very

reasonable asymptotic agreement (see Fig. 3).

Next we consider the uniform transverse susceptibility �?. Recall, the uniform magnetic

field enters (2.1) as,

SH =
⇢0

s

2

Z
d2xd⌧

�
(@⌧n

a � i✏abcHbnc)2 + (@i~n)2

�
(2.11)

The corresponding response function is,

�ab(x, x0) =
�2 log Z

�Ha(x)�Hb(x0)
= ⇢0

s(�
ab � hnanb(x)i)�3(x� x0)� (⇢0

s)
2✏acd✏befhnc@⌧n

d(x)ne@⌧n
f (x0)i

(2.12)
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Specializing to the transverse susceptibility, a, b = 1, 2 and expanding in ~⇡,

�ab(x, x0) ⇡ �µ⌫⇢
0

s(�
ab � h⇡a(x)⇡b(x0)i)�2(~x� ~x0)�(⌧ � ⌧ 0)

� (⇢0

s)
2✏ac✏bd(h@⌧⇡

c(x)@⌧⇡
d(x0)i+ (h@⌧⇡

c(x)(⇡d~⇡@⌧~⇡ �
1

2
~⇡2@⌧⇡

d)(x0)i+ (x$ x0, c$ d)))

(2.13)

Now, we are actually interested in local response to a static, uniform external field,

�ab
? (x) = lim

q
y

!0

Z
dx0dy0d⌧ 0�ab(x, x0)e�iq

y

(y�y0) (2.14)

Note that for a finite system size/temperature relevant for Monte-Carlo simulations, at zero

external field, there is no distinction between parallel and transverse susceptibility, and we

expect,

�(x) =
2

3
�?(x) (2.15)

Since we are working with the static susceptibility, the contribution of the terms in the last

two lines of (2.13) is zero, and

�ab
? (x) = ⇢0

s(�
ab � h⇡a(x)⇡b(x0)i) = ⇢0

s�
ab(1� 1

⇢0

s

(D(0) + D(2x, 0, 0))) (2.16)

We know that in the bulk, �?,b = limx!1 �?(x) = ⇢s by Lorentz invariance. The bare

spin-sti↵ness ⇢0

s = ⇢sZ⇢ where Z⇢ is a formal power series in 1/⇢s. Thus,

Z⇢ = 1 +
1

⇢s

D(0) = 1 +
1

⇢s

Z
d3k

k2

(2.17)

and we recognize the standard renormalization factor for ⇢s. Note that the equality of the

first non-trivial terms in ZN and Z⇢ is an accident, which occurs in the O(3) model (for

O(N) the coe�cients are generally di↵erent). Thus,

�?(x) =
⇢s

c2

� 1

8⇡xc
(2.18)

where we’ve reinserted c. Note that the deviation of �?(x) from its bulk value is negative,

in agreement with Sandvik’s simulations. Moreover, the long distance contribution to the

total edge susceptibility (per edge length) is given by,

�?,edge

=

Z 1

0

dx(�?(x)� �?,b) ⇠ �
1

8⇡c
log(Lx/a) (2.19)

At zero temperature, the log divergence of the long-distance tail will always overpower any

short-distance contribution (which can be positive as suggested by the 1/S calculation in

section III), leading to a negative total edge susceptibility, as seen by Sandvik. At a finite

8



temperature T (and in the infinite volume limit) the log Lx divergence will be cut-o↵ at the

“thermal length,” c T�1, leading to

�?,edge

⇠ � 1

8⇡c
log
⇣ c

Ta

⌘
(2.20)

This result will be confirmed by an explicit calculation in the next section.

Finally, we come to the behaviour of the bond energies. We observe that the sum of

bonds energies along the x and y directions is just the local energy density

✏(x) ⇠ J

a2

(~Si
~Si+x̂ + ~Si

~Si+ŷ) (2.21)

For the free field theory describing our Goldstones, in Minkowski space,

✏(x) =
⇢s

2

�
(@t~⇡)2 + (@i~⇡)2

�
(2.22)

Continuing this to Euclidean space,

✏(x) =
⇢s

2

�
�(@⌧~⇡)2 + (@i~⇡)2

�
(2.23)

Now,

⇢s

2
h@µ~⇡(x)@⌫~⇡(x)i = lim

x!x0

@2

@xµ@x0⌫
(D(x�x0, y� y0, ⌧ � ⌧ 0)+D(x+x0, y� y0, ⌧ � ⌧ 0)) (2.24)

The first term on the righthandside is independent of the distance from the edge and,

therefore, we drop it. Noting,

@µ@⌫D(x) = � 1

4⇡|x|3

✓
�µ⌫ � 3

xµx⌫

|x|2

◆
(2.25)

the second term in (2.24) yields,

⇢s

2
h(@⌧~⇡)2(x)i = �@2

⌧D(2x, 0, 0) =
1

4⇡(2x)3

(2.26)

⇢s

2
h(@x~⇡)2(x)i = +@2

xD(2x, 0, 0) =
2

4⇡(2x)3

(2.27)

⇢s

2
h(@y~⇡)2(x)i = �@2

yD(2x, 0, 0) =
1

4⇡(2x)3

(2.28)

Collecting terms we obtain,

h✏(x)i =
c

16⇡x3

(2.29)

Note that energy density is enhanced near the edge, corresponding to a decrease of bond

strengths, �h~Si
~Sji. We can again compare the asymptotically exact expression (2.29) to

9
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FIG. 4: Asymptotic increase of local bond energy near the edge. The dotted line is the calculation
in the 1/S expansion. The solid line is the O(3) �-model result for asymptotic behaviour, with
phenomenological parameters ⇢s, c, Nb matched to 1/S expansion.

the results of the 1/S expansion in section III, by using the parameters (2.10). We see from

Fig. 4 that the agreement is rather good.

B. Edge susceptibility at finite temperature

To compute the uniform susceptibility at finite temperature T ⌧ ⇢s, we follow the usual

strategy of dividing the field n(~x, ⌧) into zero frequency piece, n(~x) and finite frequency

modes ⇡↵(~x, ⌧),

na(~x, ⌧) =
p

1� ⇡↵⇡↵na(~x) + ⇡↵(~x, ⌧)ea
↵(~x) (2.30)

where ↵ = 1, 2 and ~e↵(~x) and ~n(~x) form an orthonormal basis. The strategy is to first inte-

grate over the “fast” modes ⇡↵ to obtain an e↵ective action for the slow ~n field. Expanding

the action in powers of ⇡ to leading order,

S ⇡ ⇢0

s

2

Z
d2xd⌧ (@µ⇡↵)2 +

⇢0

s

2

Z
d2xd⌧ ((@in

a)2(1� ~⇡2) + @ie
a
↵@ie

a
�⇡↵⇡� + 2@ie

a
↵ea

�⇡↵@i⇡�)

(2.31)

In setting up the perturbation theory in ⇡ the first term above is treated as the free piece,

while the coupling of ⇡ to the slow fields in the second term is treated as a perturbation.

Thus, in a theory with the edge at finite temperature, the bare propagator for the ⇡ field

still satisfies free boundary conditions,

h⇡↵(~x, ⌧)⇡�(~x0, ⌧ 0)i =
1

⇢0

s

�↵�Dn(x, x0) (2.32)
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where,

Dn(x, x0) = D̂(x� x0, y � y0, ⌧ � ⌧) + D̂(x + x0, y � y0, ⌧ � ⌧ 0) (2.33)

with

D̂(~x, ⌧) =
1

�

X

!
n

6=0

Z
d2k

(2⇡)2

1

k2 + !2

n

ei(~k~x+!
n

⌧) (2.34)

Now, expanding the susceptibility (2.12),

�ab(x) = ⇢0

s(�
ab � hnanb(x)i)� (⇢0

s)
2✏acd✏bef

Z
d3x0hec

↵ed
�(~x)ee

�e
d
�(~x

0)⇡↵@⌧⇡�(x)⇡�@⌧⇡�(x
0)i

(2.35)

At leading order, we may factorize the correlator of slow e and fast ⇡ fields in (2.35).

Moreover, since at finite temperature rotational invariance is restored,

hnanb(x)i =
�ab

3
h~n2(x)i =

�ab

3
(2.36)

Hence, the local susceptibility becomes,

�ab(x) =
2

3
⇢0

s�
ab � (⇢0

s)
2✏acd✏bef

Z
d3x0hec

↵ed
�(~x)ee

�e
d
�(~x

0)ih⇡↵@⌧⇡�(x)⇡�@⌧⇡�(x
0)i (2.37)

We see that the susceptibility involves a convolution of correlators of slow and fast fields.

Evaluating the correlation function of the fast fields explicitly,

�ab(x) =
2

3
⇢0

s�
ab � ✏acd✏bef (�↵���� � �↵����)

Z
d3x0hec

↵ed
�(~x)ee

�e
f
� (~x

0)i(@⌧Dn(x, x0))2

(2.38)

We note,

Z
d⌧ 0(@⌧Dn(x, x0))2 =

1

�

X

!
n

!2

nDn(~x, ~x0, !n)2

=
1

�

X

!
n

!2

n(D(~x� ~x0, !n)2 + 2D(~x� ~x0, !n)D(~x�R~x0, !n) + D(~x�R~x0, !n)2)

(2.39)

where R denotes reflection across the edge at x = 0. In the absence of an edge, we can

drop the last two terms in (2.39). Then we note that the correlation function of ⇡0s decays

exponentially for large distances, hence only |~x � ~x0| . T�1 contribute to the integral in

(2.37). The slow degrees of freedom ~n(~x) and ~e↵(~x) fluctuate only on much larger distances

(in fact T�1 serves as an e↵ective short-distance cut-o↵ for the slow degrees of freedom),

hence we can to leading order set ~x = ~x0 in the correlation function of the e’s. This leads to
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a considerable simplification as,

ea
↵eb

↵ = �ab � nanb (2.40)

and,

(�↵���� � �↵����)hec
↵ed

�(~x)ee
�e

f
� (~x)i =

1

3
(�ec�df � �cf�de) (2.41)

and

�ab(x) =
2

3
�ab

✓
⇢0

s � 2

Z
d3x0(@⌧Dn(x, x0))2

◆
(2.42)

Now let’s introduce the edge back. We wish to compute the deviation of local susceptibility

from its bulk value. The major di↵erence from the situation in the bulk is that eq. (2.39)

no longer depends just on the di↵erence ~x� ~x0. For xT . 1, the integral over ~x0 in (2.38) is

saturated with x0T . 1 and hence, we can e↵ectively set x = x0 = 0, y = y0 in the correlation

function of the e’s and recover the simple form (2.42). However, for xT � 1, the part of the

integral in (2.38) that represents �(x)��b is no longer saturated at x0 ⇠ x. Hence, one really

has to compute the correlation function of the slow degrees of freedom. For T�1 ⌧ x ⌧ ⇠,

we expect this to modify �(x) � �b (which, as we shall see, is exponentially suppressed as

e�4⇡Tx) by logarithmic corrections. On the other hand, for x & ⇠, we expect additional

exponential suppression coming from the slow degrees of freedom. As we shall see, the total

edge susceptibility is saturated by xT . 1 and, hence, can be computed directly from (2.42).

Keeping the above remarks in mind, we obtain from (2.39) and (2.42),

�(x) =
2

3

 
⇢0

s � 2
1

�

X

!
n

6=0

!2

n

Z 1

�1
dx0
Z 1

�1
dy0(D(~x� ~x0, !n)2 + D(~x� ~x0, !n)D(~x�R~x0, !n))

!

(2.43)

The first term under the integral in (2.43) is the familiar temperature dependent correction

to bulk susceptibility, while the second term represents the edge contribution. Performing

the integral over x0,

�(x) = �b(T )� 4

3

1

�

X

!
n

6=0

d2k

(2⇡)2

!2

n

(k2 + !2

n)2

e2ik
x

x (2.44)

where,

�b(T ) =
2

3

 
⇢0

s � 2
1

�

X

!
n

6=0

Z
d2k

(2⇡)2

!2

n

(k2 + !2

n)2

!
=

2

3

⇢s

c2

(1 +
T

2⇡⇢s

) (2.45)

Now, we can compute the asymptotics of (2.44). For xT/c ⌧ 1, we can replace the sum

over !n by an integral,

�(x)! �b(T )� 4

3

Z
d3k

(2⇡)3

!2

(k2 + !2)2

e2ik
x

x = �b(T )� 1

3

Z
d2k

(2⇡)2

1

k
e2ik

x

x = �b(T )� 1

12⇡xc
(2.46)
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which agrees with our earlier T = 0 result (2.18) upon the usual replacement (2.15). In the

opposite limit xT/c� 1, the sum in (2.44) is going to be dominated by the smallest thermal

mass, !n=1

, and,

�(x)! �b �
2

3

T

c2

✓
xT

2c

◆ 1
2

e�4⇡Tx/c (2.47)

As noted earlier, this result will be modified by logarithmic corrections for x ⌧ ⇠ and

additional exponential suppression for x� ⇠. It is also now clear from (2.47) that the total

edge susceptibility is saturated by xT . 1, so that the corrections mentioned above can be

ignored for its computation, and we can use eq. (2.44), which obeys the scaling form,

�(x)� �b = Tf�(Tx) (2.48)

Thus,

�
edge

=

Z 1

a

dx(�(x)� �b) =

Z 1

Ta

duf(u) (2.49)

where a is a short distance cut-o↵. We observe that the singular behaviour of �
edge

for T ! 0

can be extracted from the short distance asymptotic of �(x) (2.46). Noting, f�(u)! � 1

12⇡u

for u! 0,

�
edge

⇠ � 1

12⇡

Z

Ta

du

u
= � 1

12⇡c
log
⇣ c

Ta

⌘
(2.50)

as predicted from T = 0 behaviour in the previous section.

III. LARGE S EXPANSION OF THE HEISENBERG MODEL WITH AN EDGE

In this section we perform the large S expansion of the Heisenberg model on a square

lattice with an edge. We start with the usual nearest neighbour Hamiltonian,

H = J
X

hiji

~Si
~Sj (3.1)

and use the Holstein-Primako↵ representation of spin operators, which at leading order in

1/S reads,

Sz
i = S � b†

ibi, S+

i =
p

2Sbi, S�
i =

p
2Sb†

i , i 2 A (3.2)

Sz
i = �S + c†

ici, S+

i =
p

2Sc†
i , S�

i =
p

2Sci, i 2 B (3.3)

where A and B are the two sublattices. We place the edge at ix = 0. Utilizing the transla-

tional invariance along the y direction,

bi
x

,i
y

=
1p

Ny/2

X

k
y

bi
x

,k
y

eik
y

i
y , ci

x

,i
y

=
1p

Ny/2

X

k
y

ci
x

,k
y

eik
y

i
y (3.4)
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where �⇡/2 < ky < ⇡/2 and Ny is the number of sites in the y direction, we obtain the

Hamiltonian,

H = 4SJ
X

k

X

i,i0

 
bi,k

c†
i,�k

!†

hii0

 
bi0,k

c†
i0,�k

!
(3.5)

with

hii0 =

 
Aii0 Bii0

Bii0 Aii0

!
, Aii0 = �ii0(1�

1

4
�i0), Bii0 =

1

2
cos k�ii0 +

1

4
(�i0,i+1

+ �i0,i�1

) (3.6)

We perform a Bogoliubov transformation by writing,

 
bi,k

c†
i,�k

!
=
X

�>0

⇣
�+�(i)�#�,k + ���(i)�†

"�,�k

⌘
(3.7)

where the �’s obey canonical commutation relations and the two component vectors ��(i) =

(u�(i), v�(i)) are eigenstates of ⌧ 3h,

⌧ 3h�+� = ��+� (3.8)

⌧ 3h��� = ����� (3.9)

Explicitly, ��� = ⌧ 1�+�. We normalize the �’s as,

h�+�|⌧ 3|�+�0i = ��,�0 (3.10)

Then, up to a constant,

H = 4SJ
X

k

X

�>0

�(�†
"�,k�"�,k + �†

#�,k�#�,k) (3.11)

The solutions to the eigenvalue problem (3.8) with positive eigenvalues can be divided into

the normalizable and non-normalizable branches. The normalizable branch has dispersion

� =
1p
2
| sin ky| (3.12)

The continuum branch can be parameterized by momentum 0 < kx < ⇡ � ky and has

dispersion,

� =

r
1� 1

4
(cos kx + cos ky)2 (3.13)

We normalize our continuum solutions to,

h�(kx)|⌧ 3|�(k0x)i = (2⇡)�(kx � k0x) (3.14)
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Explicit forms of the eigenstates are given in Appendix A. We note that for fixed ky ! 0,

the energies of both the normalizable state and the continuum threshold tend to 1p
2

|ky|,
with the splitting between these two energies of order k3

y. This is the reason why the bound

state does not show up in the e↵ective low energy O(3) description - it is treated as being

part of the continuum.

Now, we can compute the observables. The staggered magnetization is given by,

hNji = S � hc†
jcji = S �

Z ⇡/2

�⇡/2

dky

⇡

X

�>0

|v�(j)|2 (3.15)

We have evaluated the sum (integral) over the eigenstates numerically - the result is plotted

in Fig. 3. The staggered moment is depleted near the edge and approaches its bulk value

monotonically. If we plug S = 1/2 into our expansion, the staggered moment at the edge

is N
edge

= 0.217 compared to Nb = 0.303 in the bulk. As already noted, the long distance

asymptotics of the staggered moment are in good agreement with the predictions of the O(3)

continuum theory.

Similarly, we can compute the bond energies,

h~Sj
~Sj+xi = �S2 + S(hb†

jbji+ hc†
j+xcj+xi+ hbjcj+xi+ hb†

jc
†
j+xi)

= �S2 + S

Z ⇡/2

�⇡/2

dky

⇡

X

�>0

(|v�(j)|2 + |v�(j + 1)|2 + v�(j + 1)⇤u�(j) + u�(j)⇤v�(j + 1))

h~Sj
~Sj+yi = �S2 + S(hb†

jbji+ hc†
j+ycj+yi+ hbjcj+yi+ hb†

jc
†
j+yi)

= �S2 + S

Z ⇡/2

�⇡/2

dky

⇡

X

�>0

(2|v�(j)|2 + (u�(j)⇤v�(j) + v�(j)⇤u�(j)) cos ky)

(3.16)

The short distance behaviour of the bond energies is shown in Fig. 5. We see that both the

perpendicular and parallel bonds touching the edge are stronger than in the bulk (h~Si
~Sji is

more negative), while all the subsequent bonds are weaker than in the bulk. Substituting

S = 1/2 into our expansion, we find that at the edge h~Sj
~Sj+xi = �0.352, h~Sj

~Sj+yi = �0.368,

while in the bulk, h~Sj
~Sj+µi = �0.329. Thus, comparing to the results of quantum Monte

Carlo, the 1/S expansion reproduces qualitatively the behaviour of the first two rows of

bonds away from the edge, but fails to capture the subsequent oscillations in bond strengths

on short distances. We expect that these oscillations cannot be seen in the perturbative 1/S

expansion. In the next section, we will argue that the appearance of such oscillations can be

linked to the existence of a competing valence-bond-solid order parameter. As for the long

distance asymptotics, we can compare the sum of bond strengths along x and y directions

to the local energy density computed in the continuum O(3) model; the two are in good

agreement (see Fig. 4) .
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FIG. 5: Bond strength deviation from bulk value along x (circle) and y (square) directions computed
in the 1/S expansion.

Now we turn our attention to the local transverse magnetic susceptibility

�?(jx) =
1

2TNy

lim
q
y

!0

X

j0
x

hS+(jx, qy)S
�(j0x,�qy)i (3.17)

where

S+(jx, qy) =
X

j
y

S+(jx, jy)e
�iq

y

j
y (3.18)

A finite momentum ~q is needed as a regulator, since we are working in an infinite volume;

it is convenient to choose ~q along the y direction. At leading order in the 1/S expansion,

�?(j) =
1

2T
S
X

j0

h(bj,q + c†
j,�q)(b

†
j0,q + cj0,�q)i (3.19)

=
1

2T
S
X

j0

X

�>0

(u�(j, q) + v�(j, q))(u�(j0, q) + v�(j0, q))⇤(1 + 2n(�)) (3.20)

where n(�) = (e�/T � 1)�1 is the bose distribution. As expected, for q ! 0, the form-factor

in (3.20) vanishes upon summing over j0, unless �! 0. Thus, we may replace, n(�)! T/�,

obtaining,

�?(j) = S
X

j0

X

�>0

1

�
(u�(j, q) + v�(j, q))(u�(j0, q) + v�(j0, q))⇤ (3.21)

A short calculation then yields,

�?(j) =
1

8J
(1 + (�1)j(

p
2 + 1)�(2j+1)) (3.22)
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This result is saturated by normalizable modes and states at the bottom of the continuum

band. We see that as j ! 1, the susceptibility approaches its bulk value �?,b = 1

8J
. We

can define the edge susceptibility (per unit edge length) as,

�?,edge

=
X

j

(�?(j)� �?,b) =
1

8J
2�3/2 (3.23)

So, at leading order in 1/S the edge susceptibility is positive, moreover, the approach of �?(j)

to its bulk value is governed by an oscillating exponential decay. Based on our continuum

treatment in the previous section, we expect these results to be strongly modified at higher

orders in 1/S. Indeed, at T = 0, from eq. (2.18) on large distances �?(x)� �?,b falls o↵ as

1/x. However, the coe�cient of this power law is of order 1/S and, hence, is not captured

by the leading order result (3.22). When integrated over all space, the large distance power

law, which is subleading in the 1/S expansion, will lead to a logarithmic divergence in the

size/inverse temperature of the system, which would overpower the leading term in 1/S

coming from short distances. Thus, the combination of eqs. (2.18), (3.22) naturally explains

the results of Monte Carlo simulations, which see a positive susceptibility of the “dangling”

edge spin combined with the negative total edge susceptibility coming from a large distance

tail in �(x).

IV. THE COMB STRUCTURE

In this section we explain the appearance of the comb structure (Fig. 1), seen near the

edge in recent Monte Carlo simulations. In our description, we assume the existence of a

dynamic valence-bond-solid (VBS) order parameter V (x) with a large correlation length in

the Néel state. Our treatment becomes exact near a phase transition into a valence-bond-

solid phase. This phase transition has attracted a lot of attention in the recent years as it lies

outside the Landau-Ginzburg paradigm.11 It is described by the hedgehog suppressed O(3)

�-model, with the valence-bond-solid order parameter V (x) being the hedgehog insertion

operator. However, the particular details of the phase transition will not be important for

our discussion below.

We begin by defining a microscopic VBS order parameter (which lives on the direct

lattice),

Vx(i) = (�1)i
x

+1/2

⇣
~S(i)~S(i + x̂)� ~S(i)~S(i� x̂)

⌘
(4.1)

Vy(i) = (�1)i
y

+1/2

⇣
~S(i)~S(i + ŷ)� ~S(i)~S(i� ŷ)

⌘
(4.2)

In this section, we take the origin to lie on the dual lattice. It is customary to group Vx,

Vy into a complex order parameter V = Vx + iVy which has the following transformation
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a! b!

FIG. 6: a) Lattice order with hVxi 6= 0. b) Bond order with hOxi 6= 0.

properties under elements of the square lattice space group:

T †
xV (ix, iy)Tx = �V †(ix � 1, iy) (4.3)

T †
y V (ix, iy)Ty = V †(ix, iy � 1) (4.4)

I†dual

x V (ix, iy)I
dual

x = V (�ix, iy) (4.5)

I†dual

y V (ix, iy)I
dual

y = V (ix,�iy) (4.6)

R†dual

⇡/2

V (ix, iy)R
dual

⇡/2

= iV †(iy,�ix). (4.7)

Here Tx,y are translations by one lattice spacing in the x, y directions, Idual

x,y are x, y, reflections

about a dual lattice point, and Rdual

⇡/2

is a 90� rotation about about a dual lattice point. For

completeness we also list the transformation property of V under rotations about direct

lattice point (�1/2,�1/2),

R†dir

⇡/2

V (ix, iy)R
dir

⇡/2

= iV (iy,�1� ix) (4.8)

A non-zero expectation value of the VBS order parameter V would lead to a bond pattern

shown in Fig. 6 a). As already noted, the operator V (x) is represented by the hedgehog

insertion operator in the continuum description of the antiferromagnet - valence bond solid

transition.

Clearly, the order parameter V is adequate for describing the oscillations of horizontal

bonds in the comb structure (Fig. 1). However, the oscillations of the vertical lines in the

comb structure (Fig. 1), shown separately in Fig. 6 b) are not of the “dimer form.” To

describe them, we introduce a new order parameter,

18



Ox(i) = (�1)i
x

✓
~S(i +

1

2
x̂ +

1

2
ŷ)~S(i +

1

2
x̂� 1

2
ŷ)� ~S(i� 1

2
x̂ +

1

2
ŷ)~S(i� 1

2
x̂� 1

2
ŷ)

◆

Oy(i) = (�1)i
y

✓
~S(i +

1

2
ŷ +

1

2
x̂)~S(i +

1

2
ŷ � 1

2
x̂)� ~S(i� 1

2
ŷ +

1

2
x̂)~S(i� 1

2
ŷ � 1

2
x̂)

◆

Ox describes vertical bond lines which are oscillating in strength along the x direction (see

Fig. 6 b)). Similarly, Oy describes horizontal bond lines, which are oscillating in strength

along the y direction.

We can group Ox and Oy into a single complex order parameter O = Ox + iOy. The

transformation properties of O are,

T †
xO(ix, iy)Tx = �O†(ix � 1, iy) (4.9)

T †
y O(ix, iy)Ty = O†(ix, iy � 1) (4.10)

I†dual

x O(ix, iy)I
dual

x = �O†(�ix, iy) (4.11)

I†dual

y O(ix, iy)I
dual

y = O†(ix,�iy) (4.12)

R†dual

⇡/2

O(ix, iy)R
dual

⇡/2

= iO(iy,�ix) (4.13)

and for rotations about direct lattice point (�1/2,�1/2):

R†dir

⇡/2

O(ix, iy)R
dir

⇡/2

= iO†(iy,�1� ix) (4.14)

Now we may ask whether it is possible in the continuum to construct an operator with the

transformation properties of O(x) out of V (x). Clearly, any function of V with no derivatives

cannot do the job, since under dual lattice reflections Idual

x,y , O transforms non-trivially, while

V transforms trivially. Thus, a static uniform condensate of V (not surprisingly) cannot give

rise to the order in Fig. 6 b). However, we can obtain an expression with the transformation

properties of O if we allow for derivatives of V . Considering expressions with one power of

V and one derivative, we obtain,

Ox ⇠ @xVx, Oy ⇠ @yVy (4.15)

(with the same proportionality constant).

Thus, if dimerization of horizontal bonds is present and is inhomogeneous along the x

direction then we automatically obtain the “secondary” order in Fig. 6 b).

Now, we may ask, how a non-zero expectation value of the VBS order is generated?

Indeed, in the Néel phase, in the bulk, the Z
4

lattice rotation symmetry is unbroken and

hV i = 0. However, the edge possesses a smaller lattice symmetry group than the bulk -

in particular, the lattice rotation symmetry is explicitly broken. This is manifested in the
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continuum formulation by the appearance of an edge perturbation,

�S =
1

2
h

Z
d⌧dy (V + V †) = h

Z
d⌧dy Vx (4.16)

In the phase where V is gapped, we expect such a coupling will lead to an appearance of

hVx(x, y)i decaying away from the edge. Hence, we will also have hOx(x, y)i 6= 0, which close

to the critical point can just be obtained from (4.15). Thus, the appearance of the comb

structure is very natural.

Based on the known results on boundary critical behaviour,12 we may write down the

scaling forms for hV (x)i, hO(x)i in the critical region. The edge perturbation �S is relevant

at the critical point provided that �V < 2, where �V is the scaling dimension of operator

V (x). Then the scaling forms become universal (up to overall multiplicative factors),

hVx(x)i ⇠ 1

⇠�

V

g(x/⇠) (4.17)

hOx(x)i ⇠ 1

⇠�

V

+1

g0(x/⇠) (4.18)

Here ⇠ is the correlation length of the VBS order parameter in the Neel phase (which

is proportional to the inverse spin sti↵ness c/⇢s with some universal amplitude). In the

deconfined criticality scenario, ⇠ will be given by the inverse skyrmion mass. Note that

due to the extra derivative in O compared to V , the modulations of lines parallel to the

edge become parametrically weaker than those of dimers perpendicular to the edge as we

approach the phase transition. We may also write down short and long distance asymptotics

of g(u),

g(u) ⇠ 1

u�

V

, u! 0 (4.19)

g(u) ⇠ e�u, u!1 (4.20)

where we have not specified the likely power-law prefactor for the long distance asymptotic

(4.20).

V. A NON-MAGNETIC IMPURITY

This section will briefly discuss the case of a di↵erent defect in a perfect square lattice

antiferromagnet: a single site with a missing spin. This is often experimentally realized in

Cu antiferromagnets by replacing Cu with Zn. We are interested in the configuration of VBS

order around this impurity—this was addressed recently in Ref. 9 using methods similar to

those used in Section IV. Our purpose is to connect these phenomenological approaches to

the field-theoretic treatment near the deconfined critical point presented in Ref. 10.

As in Section IV, we begin by describing the influence of the impurity by writing down the
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action for V consistent with the symmetries of the impurity Hamiltonian; here the action

has to be invariant under Rdirect

⇡/2

, Idirect

x , and time-reversal. Then the analog of the edge

perturbation in Eq. (4.16) for an impurity at ~x
imp

is9

S
imp,V = ��

1

Z
d⌧

✓
@V

@x
+

@V †

@x
+ i

@V

@y
� i

@V †

@y

◆����
~x=~ximp

(5.1)

As shown in Ref. 9, this perturbation induces ‘vortices’ in the VBS order around the impurity.

We now discuss the origins of the term S
imp,V in the critical theory of the Néel-VBS transition

in the insulator. This will determine the behavior of the coupling �
1

near this transition.

The behavior of a non-magnetic impurity near this transition has been described in

Refs. 10,13,14. For the bulk model without an impurity, a field theoretic description of the

vicinity of the quantum critical point11,15,16 is provided by the CPN�1 theory at N = 2:

S =

Z
d2rd⌧


|(@µ � iAµ)z↵|2 + s|z↵|2 +

g

2

�
|z↵|2

�
2

+
1

2e2

(✏µ⌫�@⌫A�)
2

�
. (5.2)

Here µ, ⌫, � are spacetime indices, z↵, ↵ = 1 . . . N = 2 is a complex scalar which is a

SU(N) fundamental, and Aµ is a non-compact U(1) gauge field. As discussed in Ref. 13,

the most important perturbation to Eq. (5.2) induced by the non-magnetic impurity near

the deconfined critical point is the impurity Berry phase:

S
imp

= iQ

Z
d⌧A⌧ (~x = 0, ⌧) (5.3)

where Q is a ‘charge’ characterizing the impurity. The value of Q does not flow under the

RG, and so Q is a pure number which controls all universal characteristics of the impurity

response.

Let us now discuss the symmetries of S+S
imp

. In addition to the global SU(N) symmetry,

this model has a global U(1)' symmetry which is the dual of the U(1) gauge invariance. The

primary action of this symmetry is on the monopole operator, V (~x, ⌧), which transforms as

U(1)' : V ! V ei'

R✓ : V ! V (5.4)

At the moment, this U(1)' ‘flux’ symmetry is independent of spatial rotations R✓, and this

has been indicated above for completeness. The physical Z
4

lattice rotation symmetry is the

combination of ⇡/2 rotations in U(1)' and R✓ - thus, the monopole operator V is identified

with the VBS order parameter.

A key property10 of the theory S+S
imp

is the operator product expansion for the monopole

operator V in the vicinity of the impurity

lim
|~x|!0

V (~x, ⌧) ⇠ |~x|�V

imp e�iQ✓ V
imp

(⌧) (5.5)
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where ✓ is the azimuthal angle of ~x, and �V
imp

is the impurity correction to the scaling

dimension of V (�V ) as defined in Ref. 10. Here V
imp

is a fluctuating impurity degree of

freedom with a non-trivial scaling dimension. The presence of the e�iQ✓ factor indicates a

Q-fold winding in the phase of the VBS order parameter around the impurity. Thus, the

e↵ect of the impurity Berry phase term is to induce vortex-like correlations in bond order

near the impurity.

However, the way this vortex is pinned to the lattice is determined by additional impurity

perturbations, the most relevant of which is given by Eq. (5.1). We can understand this

by continuing our symmetry analysis. The combination of Eqs. (5.4) and (5.5) implies the

following transformations of V
imp

under the flux symmetry and spatial rotations:

U(1)' : V
imp

! V
imp

ei'

R✓ : V
imp

! V
imp

e�i✓ (5.6)

Here, and henceforth, we specialize to the case Q = 1, although the generalization to other

Q is not di�cult. We note that the quantum numbers of V
imp

are the same as those of the

perturbation (5.1). Hence, the two will mix and we may replace (5.1) by,

S 0
imp,V = ��0

1

Z
d⌧ V

imp

(⌧) (5.7)

Now, there are two possibilities. If the perturbation (5.7) is relevant at the critical point,

which occurs for

dim[V
imp

] = �V + �V
imp

< 1 (5.8)

the coupling �0
1

will flow to infinity. In this case, at criticality, the VBS order parameter will

be given by,

hV (~x, ⌧)i ⇠ ei✓

|~x|�V

(5.9)

Alternatively, if the coupling �0
1

is irrelevant, we can treat it in perturbation theory and

obtain,

hV (~x, ⌧)i ⇠ ei✓

|~x|2�

V

+�

V

imp�1

. (5.10)

Now let us move into the Coulomb phase of S, where there is a mass gap, m, for the z↵

spinons. We are interested in the e↵ective theory for V (x) at energy scales smaller than this

mass gap. The only low energy degree of freedom is the (pseudo)-Goldstone ' associated

with spontaneous breaking of the U(1)' symmetry. We identify, V ⇠ m�

V

ei'. The e↵ective

action for the ' field in the absence of impurity takes the form,

S =

Z
d2xd⌧

✓
e2

2(2⇡)2

(@µ')2 � �
4

cos(4')

◆
(5.11)

Here e2 ⇠ m is the e↵ective electric charge in the Coulomb phase and �
4

⇠ mdim[V 4
] is the
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dangerously irrelevant perturbation that breaks U(1)' symmetry to the physical Z
4

. Now,

let’s discuss the impurity perturbations in the e↵ective theory. One such perturbation can

be simply obtained from (5.1) by replacing V ! ei',

S
imp,e↵ = ��

1,e↵

Z
d⌧
�
i(@x' + i@y')ei' + h.c.

�
(5.12)

We are interested in how the coe�cient of this term �
1,e↵ is renormalized. If the perturbation

(5.1) is relevant (see eq. (5.8)), the impurity response will be universal and �
1,e↵ will be a

constant in m by dimensional analysis. Otherwise, �
1,e↵ ⇠ m�

V

+�

V

imp�1.

VI. CONCLUSION

In this paper we have addressed two puzzles raised by recent Monte Carlo simulations of

edge response in square lattice quantum antiferromagnets. The first puzzle is the appearance

of negative edge susceptibility - we have shown that this e↵ect is due to low energy spin-

waves. We predicted that the total edge susceptibility diverges logarithmically as inverse

temperature/system size goes to infinity, and found this to be in good agreement with the

Monte Carlo simulations of Ref. 2. We would like to note here that our results on the low

temperature behaviour of susceptibility apply equally well to a clean and rough edge, as

our continuum O(3) �-model description does not assume translational invariance along the

edge. (However, for the rough edge, there may be additional important contributions to the

susceptibility coming from Berry phase e↵ects, not present in the O(3) � model.) The second

puzzle is the observation of a comb structure in the bond response near the edge. We have

argued that this is likely a purely quantum mechanical e↵ect, which cannot be captured

by the naive 1/S expansion. We have shown that the appearance of the comb structure

can be understood in the framework of a continuum theory involving a dynamical valence-

bond-solid order parameter. Such a description becomes exact in the neighbourhood of a

quantum phase transition to a valence-bond-solid phase. We hope that the simulations of

edge response in Heisenberg model2 will be extended to the so-called JQ model where such

a phase transition is observed.6,7 We have made a few predictions regarding the behaviour of

the comb structure near criticality, e.g. the relation between the behaviour of bonds parallel

and perpendicular to the edge in the comb. Edge response near the quantum critical point

might also be a viable way to extract the scaling dimension of the valence-bond-solid order

parameter, see eqs. (4.17),(4.19).

Finally, in Section V, we briefly discussed some related issues on the problem of a single

non-magnetic impurity, complementary to the more detailed discussion of this case in Ref. 9.
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APPENDIX A: EIGENFUNCTIONS OF BOGOLIUBOV QUASIPARTICLES

First, we define for fixed energy �,

 
u

v

!
=

1p
2�

 
�
p

1 + �p
1� �

!
(A1)

Now, the eigenstates can be expressed as,

Normalizable solution:

� =
1p
2
| sin ky|, �⇡/2 < ky < ⇡/2 (A2)

�(j) = c
1

 
u

v

!
e�s1j + c

2

 
�u

v

!
(�1)je�s2j (A3)

es1 = (
p

2 + 1)(
p

1 + cos2 ky � cos ky), es2 = (
p

2 + 1)(
p

1 + cos2 ky + cos ky) 
c
1

c
2

!
=

2�
3
4 (
p

2� 1)| sin ky|p
1� | sin ky|

p
1 + cos2 ky

 
es2
p

1� ��
p

1 + �

es1
p

1� ��
p

1 + �

!

(A4)

Continuum solutions:

� =
1

2
(cos(kx) + cos(ky)), � =

p
1� �2, 0 < kx < ⇡ � |ky|, �⇡/2 < ky < ⇡/2

(A5)

Branch 1: 0 < kx < cos�1(1� 2 cos ky)

�(j) =
1

|↵|

 
(↵eik

x

j + ↵⇤e�ik
x

j � (�1)je�js)u

(↵eik
x

j + ↵⇤e�ik
x

j + (�1)je�js)v

!
, s = cosh�1(cos kx + 2 cos ky) (A6)

↵ = � 1

2�

✓
�es � 1� i

sin kx

((� cos kx � 1)es + � � cos kx)

◆

(A7)
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Branch 2: cos�1(1� 2 cos ky) < kx < ⇡ � |ky|

k̃x = ⇡ � cos�1(cos(kx) + 2 cos(ky)), ⇡ � |ky| < k̃x < ⇡ (A8)

�
1

(j) = A

 
c
11

cos(kx(j + 1/2))

 
u

v

!
+ c

12

cos(k̃x(j + 1/2))

 
�u

v

!!
(A9)

�
2

(j) = A

 
c
21

sin(kx(j + 1/2))

 
u

v

!
+ c

22

sin(k̃x(j + 1/2))

 
�u

v

!!
(A10)

A = (sin kx)
1
2 (sin((kx + k̃x)/2) + � sin((kx � k̃x)/2))�

1
2 (A11)

c
11

= (1 + �)
1
2

 
2 cos k̃x/2

cos kx/2

! 1
2

, c
12

= (1� �)
1
2

✓
2 cos kx/2

cos k̃x/2

◆ 1
2

(A12)

c
21

= (1� �)
1
2

 
2 sin k̃x/2

sin kx/2

! 1
2

, c
22

= (1 + �)
1
2

✓
2 sin kx/2

sin k̃x/2

◆ 1
2

(A13)

The division of the continuum spectrum into two branches is clear when we look at a plot

of �(kx) (A5) for ky fixed. For
p

1� cos4(ky/2) < � <
p

1� sin4(ky/2) there is only one

corresponding value of kx in the range 0 < kx < ⇡ (there is always a solution with opposite

kx, as well). This is our branch 1. On the other hand, for
p

1� sin4(ky/2) < � < 1 there

are two solutions with 0 < kx < ⇡, which we label by kx and k̃x. These two solutions are

mixed by the edge and form the two linearly independent eigenstates �
1

, �
2

in branch 2.
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