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We study the textures of generalized “charge densities” (scalar objects invariant under time re-
versal), in the vicinity of non-magnetic impurities in square-lattice quantum anti-ferromagnets, by
order parameter field theories. Our central finding is the structure of the “vortex” in the generalized
density wave order parameter centered at the non-magnetic impurity. Using exact numerical data
from quantum Monte Carlo simulations on an antiferromagnetic spin model, we are able to verify
the results of our field theoretic study. We extend our phenomenological approach to the period-4
bond-centered density wave found in the underdoped cuprates

Introduction: The response of quantum many-body
systems to impurities is a rich subject with important
experimental consequences. At vanishingly small concen-
trations, the impurities behave independently and hence
experimental measurements directly probe the physics of
a single isolated impurity. The response of an other-
wise translationally invariant quantum system to the in-
troduction of a single quantum impurity can teach us
fundamentally new things about many-body quantum
physics; perhaps the most famous example is the intro-
duction of magnetic impurities in non-magnetic metals,
the so-called Kondo problem [1]. Although the role of
single non-magnetic impurities is innocuous in conven-
tional metals, it has been recognized that they can have
profound consequences on strongly correlated quantum
magnets, because the removal of a moment from the lat-
tice results in an uncompensated Berry phase [2]. Im-
portant examples of non-magnetic impurities in quantum
magnets are, Zn substitution of Cu, and La substitution
of Ce, in Cu and Ce based magnetic materials, such as
YBa2Cu3O6+x

[3] and CeCoIn5 [4].
Even small amounts of frustration are known to lead

to enhanced fluctuations of competing order parameters
in quantum magnets. One of the most important class
of such competing orders are generalized “charge den-
sity” waves [5]. We use the phrase “ charge density” in
a very general sense, to imply any order parameter that
is scalar under spin rotation and even under time rever-
sal, and hence includes, e.g., stripes [6, 7, 8, 9, 10] and
valence bond solids [11, 12, 13, 14]. Non-magnetic im-
purities couple e�ciently to these fluctuation since they
break translational symmetry and like the “charge den-
sity” waves do not carry any spin. Hence the response of
a magnet to non-magnetic impurities contains important
information about competing orders and their quantum
fluctuations.

In this paper we address the pattern of “charge den-
sity” modulations in real space around a non-magnetic
impurity in square lattice anti-ferromagnets through or-
der parameter field theories as well as exact quantum
Monte Carlo (QMC) simulations. One of our central
results, that we verify explicitly by QMC, is the de-

(b) plaquette(a) columnar

FIG. 1: Cartoons of predicted modulations of VBS “vortices”
that form around non-magnetic impurities. In both colum-
nar and plaquette VBS phases, four domains form and are
separated by domain walls of the complementary VBS pat-
tern. Unlike the ‘pinwheels’ depicted in earlier work [15, 16],
these structures do not break any symmetry of the impurity
Hamiltonian.

scription of an impurity-centered vortex [15, 16] in the
charge density order parameter as a consequence of a
missing spin-1/2 moment, Fig. 1. The experimental mo-
tivation for our study comes from scanning tunnelling
microscopy (STM), which can obtain detailed real space
images of the described modulations in a number of ma-
terials both with and without impurities [17, 18]. In par-
ticular, our results apply directly to Zn substitution of
Cu in square lattice anti-ferromagnets such as La2CuO4

and Bi2Sr2Dy0.2Ca0.8Cu2O8+�

.
Order Parameter Field Theory: Most of our discussion

will be concerned with insulating square lattice S = 1/2
anti-ferromagnetic spin models, for which the most nat-
ural magnetic state is the collinear Néel state. Consis-
tent with field theoretic predictions [11], a fairly large
body of numerical work using exact diagonlization, se-
ries expansion and quantum Monte Carlo on a variety of
microscopic spin models [19, 20, 21] has found that the
competing “charge density” wave instability of the insu-
lating collinear Néel state is valence bond solid (VBS)
order . The VBS order parameter is represented by a
complex field V (r), the phase containing information of
the specific pattern of VBS ordering [22]. The order pa-
rameter V (r) oscillates at the wavevectors (⇡/a, 0) and
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TABLE I: Transformation properties of the generalized charge
densities. The first row is the VBS order parameter. The sec-
ond and third rows are the CDW order parameters. T

x

:
Translation along the x axis by one lattice site; T

y

: Transla-
tion along the y axis by one lattice site; Rdirect

⇡/2 (Rdual
⇡/2 ) : Ro-

tation by 90� about a direct (dual) lattice site; Idirect
x

(Idual
x

)
: Reflection about the y axis of the direct (dual) lattice; T :
Time reversal.

(0, ⇡/a) (a is the lattice spacing), and hence leads to the
generalized density

�⇢
V

(r) = <
⇥
V (r)

⇤
sin(⇡x/a) + =

⇥
V (r)

⇤
sin(⇡y/a), (1)

where the origin of co-ordinates r = (x, y) is chosen at a
direct lattice site. The representation in Eq. (1) implies
that the space group transformations of V are as in Ta-
ble I, we can then write down the most general action for
the fluctuations of V :
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The coupling ew chooses between columnar ( ew > 0) and
plaquette ( ew < 0) VBS ordering.

In the present symmetry analysis, the e↵ect of an im-
purity is modeled by the inclusion of additional terms in
the action which break the translational symmetry, but
remain invariant under Rdirect

⇡/2 , Idirect
x

, and T . For a site
centered impurity that maintains square lattice symme-
try, the simplest allowed perturbation is:
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To get some intuition for the physics of Simp,V

, we make
a Gaussian approximation and truncate S

V

at quadratic
order (for eK2 = 0):
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Near the impurity, this has the solution

V (|r|! 0) ⇠ ei✓

|r| (4)

showing that Simp,V

induces a vortex in the complex VBS
order parameter! The divergence at r = 0 will be cuto↵

(a) QMC (b) Mean−Field

FIG. 2: Comparison of exact quantum Monte Carlo data
with saddle-point mean field theory. (a) Dimerization D(x

ij

)
of H

JQ

with a non-magnetic impurity (a missing spin) on
17 ⇥ 17 system with open boundary conditions. J/Q = 0.1,
T/J = 0.02. For this value of coupling the system is in the
Néel phase. (b) Mean-field results for the generalized charge
density �⇢

V

(r) evaluated on the bonds of a 17⇥17 open square
lattice, evaluated from the saddle point value of V (r) (which
contains an impurity-centered vortex) from S

V

+ Simp,V

. We

have set a = 0.1, eK1 = 1, eK2 = 0, es = �0.01, eu = 0.3,
ew = 0.1, and the impurity coupling �1 = 0.5. The width and
darkness of the bonds are related linearly to the plotted quan-
tities. From Fig. 3 it is clear that there is a large contribution
from the boundary [23]. Both the e↵ect of the boundary and
the single impurity are captured well by the mean field theory.
The mean-field theory results are “generic” and the couplings
were not picked to tune the agreement with Monte Carlo.

by the discreteness of the underlying lattice. The winding
of the phase of the order parameter has a direct physi-
cal implication [15, 16]: four domains must form around
the impurity separated by domain walls. The simplest
pattern that does not break any symmetries present in
the problem is shown in Fig. 1 for both a columnar and
plaquette VBS ordered state.

We have also done a numerical saddle point minimiza-
tion of the full S

V

+Simp,V

on finite lattices and verified
that for su�cient large �1 a vortex is indeed induced in
the VBS order parameter, V (r), as shown in Fig. 2(b);
note that this configuration is roughly the ‘negative’ of
the schematic in Fig. 1(a).

Quantum Monte Carlo: We now turn to a concrete
realization of this simple, yet remarkable, e↵ect in a mi-
croscopic model. We present the results of exact quan-
tum Monte Carlo simulations of a model square lattice
S = 1/2 anti-ferromagnet [20] with a missing spin,

H
JQ

= J
X
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S
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using the stochastic series expansion method of Ref. 21.
In the spin model, defining the VBS order parameter on
the sites of the square lattice:

<[V (r)] = (�1)rx [hS
r

· S
r+x

i � hS
r

· S
r�x

i]
=[V (r)] = (�1)ry [hS

r

· S
r+y

i � hS
r

· S
r�y

i] . (5)



3

The phase of this complex VBS order parameter contains
information about the pattern of VBS ordering and it
is this phase which should wind into a vortex around a
non-magnetic impurity. We shall return to the patterns
in the phase shortly. First, we study the the quantity
�⇢

V

on the bonds of the square lattice in our field the-
oretic approach. This corresponds to the dimerization
D(x

ij

) = hS
i

· S
j

i, for the quantum anti-ferromagnet.
Note that it is a generalized “charge density” because
D(x

ij

) is a scalar under spin rotation and even under
time reversal. We present some sample results for the
dimerization patterns in Fig. 2(a) on a 17 ⇥ 17 system
with open boundary condition. For comparison, we have
also calculated �⇢

V

from our order parameter field the-
ory by saddle point minimization of the action on V (r)
with the same lattice geometry. Results are plotted in
Fig. 2(b). It is satisfying that the results of our phe-
nomenological theory appear in the dimerization pattern
in the exact QMC simulations, including the e↵ect of the
boundary. Since the mean field solution for V (r) has a
vortex according to Eq. (4) and our explicit evaluation,
the agreement between the mean-field theory and Monte
Carlo simulations are indirect evidence of the presence
of a vortex. To test the presence of the VBS vortex in-
dependently and eliminate the e↵ects of the boundary
we have simulated larger 32 ⇥ 32 systems with periodic
boundary conditions and then explicitly constructed the

complex VBS order parameter according to Eq. (5). The
data in Fig. 3 clearly shows the winding of the phase of
the VBS order parameter. Although in real materials,
like the cuprates, the form of microscopic Hamiltonian is
not expected to be exactly the H

JQ

model, our results
are based on very general arguments and are expected to
be generic to S = 1/2 quantum anti-ferromagnets. It is
also perhaps worth noting that the e↵ects we discuss are
completely quantum mechanical and are not expected to
be captured in a semi-classical spin-wave approach.

Period-4 Charge-density Wave: Our formalism is eas-
ily extended to other density waves. As an important
example we study the ubiquitous [17, 18] density wave
instability in the doped cuprates, period 4 charge den-
sity waves (CDW). We represent these by complex order
parameters �

x

, �
y

. These are the Fourier components
of a “generalized density” modulation �⇢(r). So we have

�⇢�(r) = Re
⇥
�

x

(r)eiK

x

·(r�r0) + �
y

(r)eiK

y

·(r�r0)
⇤
, (6)

where r0 = (a/2, a/2), and the wavevectors are K
x

=
(⇡/2a, 0), K

y

= (0, ⇡/2a). Eq. (6) implies the transfor-
mation properties of �

x,y

that are recorded in Table I.
The most general action [24, 25] in powers and gradients
of �

x,y

which is consistent with the symmetries in Table I
is

S� =
Z

d2rd⌧
h
|@

⌧

�
x

|2 + |@
⌧

�
y

|2 + K1

�
|@

x

�
x

|2 + |@
y

�
y

|2
�

+ K2

�
|@

y

�
x

|2 + |@
x

�
y

|2
�

+ s
�
|�

x

|2 + |�
y

|2
�

+ u
�
|�

x

|2 + |�
y

|2
�2 + v|�

x

|2|�
y

|2 � w
�
�4

x

+ �4
y

+ c.c.
�i

. (7)

The CDW ordering is stripe-like and not checkerboard for
v > 0. Also, the density modulations are bond-centered
(site-centered) for w > 0 (w < 0). In principle, linear
spatial derivative terms like �⇤

x

@
x

�
x

are also allowed, and
serve to move the ordering wavevectors away from the
commensurate values K

x,y

: we will ignore such incom-
mensurations here, assuming the lock-in term w serves
to retain the commensurate value.

The CDW and VBS density waves may also couple to
each other by the term,

S�V

=
Z

d2rd⌧
h
�V † �
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x

+ �†2
x

+ i�2
y

+ i�†2
y
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i

Just like we had impurity terms that coupled to V (r),
we can write down similar terms for �

x

and �
y

. The
most relevant is a linear terms without derivatives:

Simp,� = ��2

Z
d⌧

�
�

x

� i�†
x

+ �
y

� i�†
y

�
(8)

We can now execute numerical minimizations of the
action S� +S

V

+S�V

+Simp,V

+Simp,�, i.e., we will add
the period 4 CDW order parameters �

x,y

to the VBS
vortex configurations discussed in the discussion for the
insulator. The physical idea is that at short distances
around the impurity, the description of V (r) of the insula-
tor remains appropriate; for this reason, in our numerical
results below, we set �2 = 0. However, at longer scales
we have to account for the CDW orders, which are the
primary order parameters. The coupling  will then play
the role in transferring the vortex correlations from V to
�

x,y

. Given the density wave interpretation of the VBS
vortex above, we can expect corresponding phase shifts
in the period 4 density waves in �

x

and �
y

. Our numer-
ical minimization of S� + S

V

+ S�V

+ Simp,V

+ Simp,�

led to a large number of metastable solutions, dependent
upon the initial conditions. Sample results for �⇢

V

+�⇢�,
are shown in Fig. 4; in the left panel we started from the
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FIG. 3: VBS order parameter on 32⇥32 system with periodic
boundary conditions from QMC simulations. The figure on
the left is the dimerization, D(x

ij

) plotted in exactly the same
way as Fig. 2. From the D(x

ij

) data, we can construct a site-
centered complex VBS order parameter, according to Eq. (5).
The plot on the right shows the phase of this order parameter,
clearly demonstrating a VBS vortex around the impurity.

FIG. 4: CDW and VBS order obtained by minimizing the
free energy for a 20⇥ 20 lattice with a = 0.15; the left panel
has a vortex, while the right has a domain wall in only one
direction. The parameters are eK1 = 1, eK2 = 0, es = 0.5(1),
eu = 1, ew = 0.1(0.05), K1 = 1, K2 = 1, s = �0.7(1), u = 4,
v = 0.1, w = 0,  = 4(8) and the impurity couplings �1 = 3(8)
and �2 = 0 for the left (right) panels.

VBS vortex and then ramped up the coupling to �
x,y

,
and in the right from random initial conditions.

We have studied the textures formed by density wave
order parameters around non-magnetic impurities in
square lattice anti-ferromagents. We first studied insu-
lating S = 1/2 anti-ferromagnets for which the natural
“charge density” was described by a single complex VBS
order parameter, V (r). We found that introducing an
impurity perturbation in a phenomenological theory for
V (r) results in the formation of a VBS vortex. Using ex-
act QMC simulations we were able to detect this vortex
explicitly. We then extended our theory to make spe-
cific predictions for the density modulations in a lightly
doped anti-ferromagnet with both period-4 charge den-
sity waves �

x

and �
y

, and V (r). These results may apply
close to Zn impurities in the lightly doped cuprate mate-
rials and we hope they will be tested in that case.
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