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We review recent theoretical and experimental work on the metal to insulator transition in
doped semiconductors. The spin excitations on the insulating side of the transition can be
described in terms of a spin-} Heisenberg antiferromagnet with the spins randomly located in
space. Numerical analysis of this Hamiltonian has led to a fairly complete understanding of the
static spin susceptibility and the electron spin resonance spectrum. The physics on the metallic
side far from the transition is also fairly well understood in terms of a recently developed
theory of the disordered Fermi liquid. The physics near the transition point is, however, still
not clear. All the experimental evidence indicates the presence of local electronic moments on
the metallic side of the transition. Recent theoretical work and open problems in the
description of such a metallic phase are briefly discussed.

I. INTRODUCTION

This paper presents a review of recent theoretical and
experimental work on the study of the metal-insulator tran-
sition in doped semiconductors. We will focus, in particular,
on phosphorus silicon (Si:P) as a prototype system on which
a large body of experiments have been performed recently.’
Although the original studies on this system were performed
two decades ago,” there remain gaps in our understanding of
the physics, especially at doping concentrations n which are
close to the metal-insulator transition density #..

We begin by presenting an overview of the properties of
doped semiconductors as a function of doping concentra-
tion. The physics is best understood by considering three
regions of dopant concentration: (i) insulating, (ii) transi-
tional, and (iii) metallic. These regions are discussed briefly
below, with the details being relegated to the subsequent sec-
tions.

At very low phosphorus doping concentrations the ex-
tra electron carried by phosphorus remains bound to the
excess positive charge carried by the phosphorus nucleus.
The strong Coulomb interactions between electrons coupled
with the strong positional disorder prevent any charge trans-
port and the system is an insulator.® However, the weak orbi-
tal overlap between neighboring electrons leads to an antifer-
romagnetic interaction which dominates the magnetic
properties.* A good model for the low-lying excitations is
therefore a spin-{ Heisenberg Hamiltonian with the spins
located randomly in space. At high temperatures the elec-
tron spins fluctuate independently of one another and yield a
Curie susceptibility. As the temperature is lowered, the spin
fluctuations are gradually quenched and only a smaller num-
ber of spin degrees of freedom remain active. In Sec. II we
briefly discuss a simple picture of condensation of electrons
into tightly bound singlet pairs which gives a satisfactory
explanation of the experimental data.

With an increase in phosphorus density, the overlap
between the electron orbitals increases and the system un-
dergoes an insulator to metal transition. Stress-tuning ex-
periments® have established that this transition is contin-
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uous, i.e., the conductivity o increases continuously from
zero as n goes above n.: o~ (n — n.)*. The exponent y is
expected to be a universal feature of the transition: in other
words, it is independent of the details of the microscopic
interactions and just a property of the scale-invariant critical
point describing the transition. Experimentally x has been
found to be near 0.5 in uncompensated semiconductors like
Si:P but its value in compensated semiconductors (e.g., sili-
con doped with a donorlike phosphorus and an acceptorlike
boron) is near 1.° A number of theoretical works have ad-
dressed the question of the exponents but have not been suc-
cessful in clarifying the experimental situation. In compar-
ing theory to experiments it is important to keep in mind that
the finite-temperature experiments may not be measuring
the true asymptotic critical behavior of the putative zero
temperature scale~invariant theory. If this is the case, then it
is clearly necessary to focus on the “nonuniversal” finite
temperature thermodynamic and magnetic properties in the
transitional region for a complete understanding of the phys-
ics.

As one increases the density further, the system goes
into a noncritical metallic phase. This region can be de-
scribed by a disordered version of Landau’s Fermi liquid
theory.”!° The properties of this Fermi liquid theory are
very similar to those of the conventional Fermi liquid theory
of clean metals. Charge, spin, and energy diffusion occurs by
the excitation of long-lived quasiparticles. Theoretical calcu-
lations of the thermodynamic and magnetic properties of the
system are possible in this region: the dimensionless param-
eter measuring the strength of the disorder is small and can
form the basis of an expansion in perturbation theory.
Further details on this point of view and comparison with
experiments are discussed in Sec. III.

The theoretical challenge that remains is to come up
with a theory of the transition region which is capable of
explaining the transport (conductivity), thermodynamic
(specific heat and spin susceptibility), and dynamic spin
(electron spin resonance and nuclear magnetic resonance)
properties. The transition region is bracketed by two differ-
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ent types of behavior, both of which are amenable to descrip-
tion by a simple intuitive picture: antiferromagnetically in-
teracting electron local moments on the insulating side and
non-plane-wave quasiparticles on the metallic side. The
transition region exhibits features of both quasiparticle and
local moment like behavior. In particular, as we shall discuss
in Sec. IV, the experiments now appear to present unambigu-
ous evidence of the presence of local electron moments on
the metallic side of the transition. The interaction of the iten-
erant quasiparticles with the local moments needs to be un-
derstood in greater detail. The problem is clearly enormous-
ly complicated: the interaction of a signal local moment with
electrons in a clean metal is by itself nontrivial'! and the
present situation involves many local moments interacting
with electrons in a dirty metal. Nevertheless, some progress
can be made at a phenomenological level, leading to experi-
mentally testable predictions. Recent attempts by one of us'2
in this direction are described in Sec. IV.

The remainder of the paper is organized as follows: Sec.
Il reviews work on the insulating side of the transition while
Sec. III does the same for the metallic side of the transition.
Section IV presents a discussion of the theoretical implica-
tions of experiments in the transition region and a brief dis-
cussion of a phenomenological theory of this phase.'?

ll. THE INSULATING PHASE

This section will be brief because the situation on the
insulating side of the transition has recently been reviewed in
separate articles.'*'* We only present enough details to
place the discussion on the metallic side of the transition in
context.

Since there is no charge transport in the insulating
phase, it is useful to focus solely on the spin excitations of the
system. These can be described by the Hamiltonian

H=YJ;8;"S;, (1)
i#

where S, is a spin-} operator for the electron localized
around the impurity phosphorus nucleus at R;. The ex-
change constant J;; is positive and depends exponentially
upon the distance between R, and R;.* The positions of the
impurity nuclei R, are assumed to be distributed randomly
in the silicon crystal. This random Heisenberg Hamiltonian
has formed the basis of our understanding of many experi-
ments on the insulator.

An important experimental probe is electron spin reso-
nance (ESR). The total weight under the ESR peak gives the
electron spin paramagnetic susceptibility. In Fig. 1 we show
the electron spin susceptibility measured in this manner for a
variety of dopant concentrations n. We focus on concentra-
tions n < n, in this section. The temperature dependence of
the susceptibility y(T) is described very well by the phe-
nomenological equation

x(I)=A(n)T ~ %, (2)
where A(n) depends on the density and the exponent
a=0.6. ‘

This temperature dependence of the paramagnetic su-
septibility can be understood in terms of a gradual freezeout
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FIG. 1. Temperature dependence of the paramagnetic spin susceptibility of
Si:P for different values of the phosphorus concentration n/n,. The metal-
insulator transition occurs at .

of the electron moments due to their mutual exchange inter-
actions. As the temperature is lowered an increasing number
of electrons condense into tightly bound singlet pairs with
their nearest neighbors; only the unbound spins contribute a
Curie-type susceptibility (y~1/T). The decrease in the
number of unbound spins with temperature is therefore the
reason for the slower than 1/7 temperature dependence of
Eq. (2). A computer renormalization group calculation by
Bhatt and Lee'” has put this picture on a more rigorous foun-
dation and also yielded results for y(7T) which have tem-
perature dependence similar to Eq. (2).

In addition to the variation in the total spin susceptibil-
ity, the ESR linewidth and resonance field also exhibit non-
trivial dependence on temperature and frequency.'® This can
be understood in terms of a slowing down of the diffusion of
spin excitations which must accompany the condensation of
the singlet pairs.'” Over the timescale probed by ESR, the
small diffusion coefficient localizes the electronic excitations
on small clusters (sizes <20). On such small clusters the
secular approximation for evaluating the ESR spectrum
breaks down. It is necessary to resort to computer diagonali-
zations of the spin Hamiltonian; these are fortunately tract-
able because of the small cluster sizes. The results fit the
experiments well, confirming the localized nature of the spin
excitations.

1Il. THE METALLIC PHASE

On the metallic side of the metal-insulator transition
powerful analytic methods are available for the calculation
of the magnetic, transport, and thermodynamic properties
of the system.”® All these methods rely upon a perturbation
expansion in the disorder present in the system. Deep on the
metallic side of the transition, where the large number of
dopant electrons raises the Fermi energy E, it can be shown
that E. is the largest energy in the problem rather than dis-
order and electron-electron interactions; consequently the
perturbation expansion may be expected to work reasona-
bly. As we shall discuss in this section, it is in this region that
the analytic methods have been most sucessful. The pertur-
bation methods can also be combined with renormalization-
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group methods to make predictions all the way up to the
metal-insulator transition but these have been far less suc-
cessful.

The zeroth-order description for the metallic side of the
transition is the system with no disorder. This system is as-
sumed to be described completely by Fermi liquid theory.
Spin, charge, and energy transport in the system occurs via
movement of quasiparticle excitations. The quasiparticles
have mass m* interact with each other via the Fermi liquid
constants 4 ; and 4 { in the density and spin channels respec-
tively. The usual Landau interaction constants F; and F§
areé related to these by

F; A4i/[1-4i/21 1] 3)

and similarly for F{. For technical reasons, the 4 parameters
are more convenient in disordered systems. Performing and
physically interpreting a consistent perturbation theory
about this state is not easy; although the initial insights for
Altshuler and Aronov'® came eight years ago, it is only re-
cently that a proper physical understanding of the structure
of the perturbation theory has emerged.”®!° The perturba-
tion expansion is easiest to organize in two dimensions where

infrared cutoff (the larger of the temperature T or measure-
ment frequency w). Keeping terms to leading order in pow-
ersof |In Tr|/(Ep7), where ris the elastic scattering time, it
is then argued that a resummation of these same terms cap-
ture the important physics in 2 + € dimensions. Following
the example of classical phenomena, it is hoped that this will
yield useful results in three dimensions. Such a procedure
yields a description of the metallic state in terms of a disor-
dered Fermi liquid. This Fermi liquid has several features
which are identical with the clean system: the low-lying exci-
tations are quasiparticle and quasihole-like states which are
responsible for charge, spin, and energy diffusion. The quasi-
particle wave functions, however, are no longer planewave-
like: the elastic scattering from the impurities yields wave
functions which average over the nonzero angular momenta
interaction constants and only the 4  and 4 § terms survive.
Another important feature of this disordered Fermi liquid is
that the interaction constants and the quaisparticle weights
are now scale dependent; the temperature T (frequency w)
defines relevant length scale of the system D /T (VD /w)
where D is the diffusion constant.

Far away from the metal-insulator transition this theory
can be used to make definite predictions. The conductivity

one obtains logarithmically divergent terms involving the  §(7) is predicted to have the temperature dependence'®-?!
14143 -
O'(T')=l+ ﬂ l {4 3 +| Okln(1+|A8|))(TT)e/2 (4)
o4 (QQE7)'+<\ VH

in a space of dimension 2 + € where o, is the conductivity
and 4 § a Fermi liquid interaction constant of the clean Fer-
mi liquid, and S is phase-space factor of order unity. We
replace eby 1 in the above expression to get an estimate of the
conductivity in three dimensions. The resulting 7 term in
the conductivity can have either sign depending upon the
magnitude of 4 5. This.expression has been fit successfully to
the temperature depgndence of the conductivity in Ge:Sb.?
The coefficient of the /T term is arbitrary in the fit and can
be used to determine the value of the Fermi liquid interaction
constant. A more stringent test would require the use of this
known interaction constant in some other experiment, but
this has not been done for Ge:Sb.1n Si:P, the physics is com-
plicated by the presence of six valleys in the conduction band
and the scattering of electrons between the valleys. The val-
ley scattering rate is an additional parameter which affects
the conductivity and makes a determination of the coeffi-
cient of the YT term from first principles difficult.?>

In a similar manner the spin susceptibility y, (T) is
found to have the enhancement®2+2%

where v is a phase space factor of order unity. Examining
Fig. 1 again we see that in the region #n> n_ the spin suscepti-
bility does have a weak upturn at low temperatures which

can be fit to a /T term. However, an n approaches n_, the
spin susceptibility increases much more rapidly at low tem-
perature, and smoothly crosses over the T~7 dependence
upon the insulating side of the transition. This rapid increase
is clearly beyond the applicability of the perturbation theory
expression in Eq. (5). The spin diffusivity has corrections
which are exactly the inverse of the spin susceptibility, as
might be expected in any Fermi liquid.

Another magnetic property which is correlated with the
spin susceptibility is the ESR linewidth.?’ As on the insulat-
ing side of the transition, the hyperfine interaction of the
electrons with the phosphorus nuclei is an important source
of spin dephasing, although certain spin-orbit scattering pro-
cesses may also be significant. Here we only treat the hyper-
fine term for simplicity. In the clean Fermi liquid the
linewidth is given by a spin relaxation time 1/7, = 27Ny4 %,
where N, is the density of states at the Fermi level. In the
disordered system the suppresion of spin diffusivity leads to

2|4 8|(TT)? (5) adecrease in the amount motional narrowing and a broaden-
ra \LLeT) ¥ ing of the line. A direct calculation shows®>2¢
1/ 2y
= 1+ 2In(14 |48]) |48 (Tr)"z) (6)
(r)a\ (2EF¢)‘+‘[ 43D 1451]

Forsmall 4 § Egs. (5) and (6) predict that the enhancement
of the susceptibility and the linewidth are identical. Experi-
mentally this prediction is borne out by the experiments on
Si:P.?” In actuality the proportionality between the electron
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spin susceptibility and the ESR linewidth persists all the way
to n.; this cannot be understood in the framework of this
perturbation theory. This proportionality is an important
constraint which should be satisfied by any theory of the
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transitional phase in uncompensated semiconductors.

Mention was made earlier of the valley structure of the
silicon conduction band which complicated effects in the
comparison of the theory with the data on Si:P. It was shown
in Ref. 28, however, that this valley structure can be turned
into an advantage by making experimentally testable predic-
tions which are a nontrivial consequence of the structure of
the disordered Fermi liquid theory. Using an analogy be-
tween the valley and spin quantum numbers, it was noted
that the decrease in spin diffusivity with falling temperatures
should have a parallel in the temperature dependence of the
valley diffusivity. The valley diffusivity measures the rate at
which a polarization of the electron population in the valley
configuration would diffuse. Such a polarization is dynami-
cally created by an ultrasonic wave propagating through the
silicon crystal. It is therefore not surprising that the attenu-
ation rate of the ultrasonic wave is proportional to a valley
relaxation time. This valley relaxation time is the analog of
the spin relaxation time that is measured in an ESR experi-
ment. Reasoning in analogy with the spin relaxation time we
can therefore conclude that the ultrasonic attenuation in
multivalley doped semiconductor like Si:P should have a
temperature dependent increase at low temperatures which
can be correlated with the broadening of the ESR line. This
temperature dependence of the ultrasonic attenuation has a
clear signature in its dependence on the direction of propaga-
tion and polarization of the ultrasonic wave. An experimen-
tal measurement of the ultrasonic attenuation should there-
fore provide a rather unambiguous test of the applicability of
the disordered Fermi liquid theory in Si:P.

IV. THE TRANSITION REGION

In this section we discuss the region just around #.. As
noted in the introduction, no complete theory of this region
exists. We will discuss a few significant experiments and
present recent theoretical attempts in understanding this re-
gion.

Reexamining Fig. 1 we see that the spin susceptibility
gradually crosses over from a weak T correction at high
densities to the almost Curie-type behavior in the insulating
phase. A remarkable feature of the data is that on the metal-
lic side of the transition (at a density of 1.09#, ) the suscepti-
bility at 50 mK is over ten times larger than that at 10 K.
This clearly cannot be explained by the expression in Eq.
(5). A similar point is made by Fig. 2: in this figure we have
plotted the temperature dependent susceptibility as a func-
tion of the conductivity for two different metallic samples
(n=1.09n. and 1.25n_). The almost vertical slope of the
line clearly indicates that the temperature dependence of the
susceptibility is far stronger than that of the conductivity.
This disagrees with Eqs. (4) and (5) which predict a change
in the conductivity and susceptibility of the same order of
magnitude. We also show in Fig. 2 the results of a renormal-
ization group calculation®®?° for the temperature depen-
dence of the susceptibility and conductivity. This calculation
can be interpreted as a resummation of an infinite number of
terms in the weak disorder perturbation theory; Eqgs. (4)
and(5) contain only the leading order terms in this series.
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FIG. 2. Spin susceptibility (y) and conductivity (o) for two different me-
tallic samples of Si-P. The suceptibility is normalized to the susceptibility
(xo) of afree Fermi gas, while the conductivity is normalized to the conduc-
tivity of the sample at 10K (0;). The solid lines represent theoretical renor-
malization-group calculations of two versions of the disordered Fermi lig-
uid theory. The two versions differ in their treatment of the valley index of
the conduction band. There is only one adjustable parameter in the theoreti-
cal calculations, and it is used to fix the high-temperature point common to
the two solid curves and the experimental points.

The results of this calculation depend upon whether the dis-
ordered Fermi liquid preserves the many-valley structure of
the underlying conduction band or averages over it; both
cases are presented in Fig. 2. As plotted in Fig. 2, there is
only one adjustable Fermi liquid constant which determines
the theoretical curves. This constant is used to fix the high-
temperature starting point of the renormalization-group cal-
culation; this is the point at which the two theoretical curves
intersect in Fig. 2. The lack of any correspondence between
the theoretical and experimental curves indicates the inap-
plicability of the disordered Fermi liquid theory. Neither of
the theoretical curves is close to vertical as the conductivity
and susceptibility vary on the same temperature scale. To get
better agreement with the experiment it is then clearly neces-
sary to introduce a different model which treats the spin
excitations and charge transport differently from one an-
other.

Before abandoning the Fermi liquid description at den-
sities close to n_, it is of interest to examine whether its gen-
eral physical framework is useful, independent of the valid-
ity of perturbation theory. The disordered Fermi liquid
theory framework allows one to make phenomenological
scaling ansatzes for the frequency, density and temperature
dependences of the thermodynamic quantities of the system.
For example, it states that asymptotically close to »,, the
conductivity should satisfy the following equation'®:

o(n,I)=(n—n)*®[T*(n—n.)], (7
where ® is smooth function of its arguments. Attempts to fit
the data in Si:P to Eq. (7) have not been successful®® indicat-
ing that the corrections to scaling terms in the experimental
region of interest are so large that the scaling concept is not
very useful.
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Two recent nuclear magnetic resonance (NMR) ex-
periments®*3! have provided important clues about the na-
ture of this intermediate phase. The first by Paalanen ef al.*®
measured 7, relaxation times of Si*® nuclei. They found
strong enhancements over the Korringa relaxation rate pres-
ent in a clean metal. In addition, the T, relaxation rates were
strongly dependent upon the magnitude of the magnetic
field. These results were explained by Gan and Lee?? using a
simple two fluid model of the electrons. The electron liquid
was assumed to be made divided into two mutually indepen-
dent components: (i) a disordered Fermi liquid which was
responsible for the charge transport and (ii) electron local
moments, which were precursors of the spins on the insulat-
ing side of the transition and were responsible for the large
spin susceptibility. The local moments were necessary in the
model of Gan and Lee* to explain the magnetic field depen-
dence of T,. The second experiment by Alloul ef al.*’ mea-
sured the NMR signal from P nuclei. The interaction of the
P nuclei with the electrons leads to a shift in resonance fre-
quency of NMR (the Knight shift). If the electron is in a
localized bound state near a nucleus, then the shift is so large
that the NMR signal from the nucleus becomes part of the
background. The NMR experiment therefore only measures
the signal from the P nuclei which interact with itinerant
electrons. The experiment found an abrupt decrease in the
Knight shift as the doping density was changed from 1.1n,
to n.. This can be interpreted as the transformation of the
itinerant quasiparticle spectral weight into local moments.
This transformation occurs while the system still has a non-
zero conductivity at zero temperature.

The two-fluid model discussed by Gan and Lee*? is actu-
ally a very old one and was also used by Quirt and Marko®? in
their early experiments on the magnetic properties of doped
semiconductors. At its simplest level the model can be taken
as a phenomenological description of the electronic states as
being made up of two independent fluids: a Fermi fluid with
extended quasiparticle-like excitations which carry charge,
spin, and energy and a configuration of localized moments
which consist of electrons singly occupying localized states
and contributing a large spin susceptibility. To go beyond
this model it is obviously necessary to introduce an interac-
tion between the two components. Such a program would
have to ultimately show the correlation between the decrease
in the quasiparticle weight in Fermi fluid and the increase in
the weight of the local moment spectrum. In the remaining
part of this section we summarize the result of a recent at-
tempt by one of us'? to develop a theory of the interaction
between the local moments and the Fermi liquid.

The Hamiltonian describing the interactions of the Fer-
mi liquid and the local moments can be written as follows:

H=Hy + > J; S5,
i#j

+ 2 z 2 Ki Si CI_'_q'a a-a,ﬁ ck,ﬂ eiq-Ri’ (8)

kq apB i
where Hy is the Fermi liquid Hamiltonian for the quasi-
particles, ¢! is a quasiparticle creation operator, S, are local
electron spins interacting with each other with exchange J;;
and with the extended quasiparticles with exchange K,. An
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issue that arises at the outset is the lack of an analytical
description of the spatial and dynamical correlations in the
local moment susceptibility. In Ref. 12 a simple phenomeno-
logical description of the local moments is assumed. All spa-
tial correlations are ignored and the local moments are as-
sumed to be randomly located. After averaging over the
locations of the moments, this leads to a momentum inde-
pendent local moment susceptibility y(w, ). It is assumed
that the spectral weight in y is zero above a spin-fluctuation
frequency w,, with w, satisfying w, € Er. Then to second
order in coupling K between the local moments and the con-
duction electrons several important features of the proper-
ties of the system can be understood which are independent
of the spectral shape of y(w,, ). At any finite temperature 7"
the self-energy 3 (w) of the electrons in the Fermi liquid has
the form

14

2(kw) =2 (kw) +o(l —2Z) — sgn(w) . (9)
m
Here 3. is the Fermi liquid self-energy from the Coulomb
interactions between the itinerant electrons and remaining
terms arise from the interaction with the local moments. The
only wave-vector dependence in X is contained in =.. The
frequency renormalization factor Z can be shown to arise
from the local moment spectral weight in the region > T
and the inelastic scattering from the local moment spectral
weight in the region @ < T. It is shown in Ref. 12 that the
renormalization factor Z cancels in the expression for the
compressibility and conductivity, but yields an enhance-
ment of the spin susceptibility. The local moment inelastic
scattering (described by the term 7,, ), however, leads to a
decrease in the conductivity. Using a local sum rule on the
magnitude of the local-moment spin at each site it can be
shown to exponential accuracy in T /w, that

1/27, ~TK *Ny (T) , (10)

where y, (T) is the static local moment susceptibility. As-
suming that the spin susceptibility of the itenerant electrons
is negligible compared to that of the local moments this im-
mediately leads to an experimentally testable connection
between the temperature dependence of the spin susceptibil-
ity and the conductivity. As discussed elsewhere!? this corre-
lation is found to be consistent with experiments except very
close to the metal insulator transition.

As an aside we note that although the inelastic spin-flip
rate 7, will modify all the quantum interference effects in
the disordered Fermi liquid, it will not show up as an addi-
tional linewidth in the ESR experiment. In particular 7, will
be relevant in choosing between the various renormalization
group fixed points of Finkelstein.”® The reason it does not
contribute to the ESR linewidth is simple: the ESR experi-
ment measures the tozal electron spin susceptibility while 7,
represents relaxation of spin between different parts of the
electron system. An analytic calculation describing this phe-
nomena in detail can be found in Ref. 12.

The results that emerge out of this analysis of the inter-
actions between the local moments and the disordered Fermi
liquid are therefore very simple. The dominant effect of the
local moments on the Fermi liquid is to introduce a frequen-
cy renormalization factor and a strongly temperature depen-
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dent inelastic scattering rate. The inelastic scattering leads to
a temperature dependent conductivity and also cuts off all
the quantum interference effects which were responsible for
the scaling behavior.

V. CONCLUSIONS

We have presented a review of experimental and theo-
retical work on the metal insulator transition in doped semi-
conductors, especially Si:P. While considerable progress has
been made in the understanding of the insulating and metal-
lic phases, there are still many unresolved issues on the phys-
ics of the transition between the two regions. There appears
to be a decoupling of the charge and spin degrees of freedom
in the transition region between the metal and insulator.
While the conductivity vanishes at a critical density n_, there
is clear experimental evidence for the appearance of local
electron moments at densities greater than n.. Although a
complete understanding of this unusual phase is still lacking,
phenomenological approaches'> have recently had some
success in understanding the interaction between extended
disordered quasiparticles and local moments.

On the experimental front, most work on magnetic
properties has so far concentrated on uncompensated semi-
conductors. An important future direction is therefore the
measurement of magnetic properties of compensated mate-
rials. The measurement of the conductivity exponent x has
already indicated differences from the uncompensated semi-
conductors. The magnetic properties of compensated semi-
conductors will undoubtedly yield important clues about the
value of u and the physics of metal-insulator transition.
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