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We consider spin-1/2 fermions of mass m with interactions near the unitary limit. In an applied
periodic potential of amplitude V and period a1, and with a density of an even integer number
of fermions per unit cell, there is a second-order quantum phase transition between superfluid and
insulating ground states at a critical V = V.. We compute the universal ratio Vema? /A* at N = oo
in a model with Sp(2N) spin symmetry. The insulator interpolates between a band insulator of
fermions and a Mott insulator of fermion pairs. We discuss implications for recent experiments.

An important milestone in the studies of ultracold
atoms has been the observation of superfluidity in de-
generate gases of fermionic atoms across a two-body
Feshbach resonance [1, 12, 13, |4, 5]. As a function of
the detuning, v, across the resonance, these systems in-
terpolate from a Bose-Einstein condensate of diatomic
molecules for large negative v, to a Bardeen-Cooper-
Schrieffer (BCS) paired state of a Fermi liquid for large
positive v. For v = 0, neither limiting description ap-
plies, and we have a superfluid state of fermions with
interactions near the unitarity limit. As has been em-
phasized in recent work [6, [7] this entire crossover has
striking universal aspects, with all physical properties de-
termined only by v and the density of the Fermi gas.

In a separate development, ultracold gases of bosonic
atoms were placed in an optical lattice potential [g].
With increasing lattice depth, the bosons exhibited a
superfluid-to-insulator quantum phase transition.

In the quest to realize strongly correlated quantum
phases of interacting fermions, a recent experiment [9]
has combined the techniques of the above experiment by
studying fermions of mass m with near unitary interac-
tions in the presence of an optical lattice potential of
period ar, and amplitude V. This paper shall demon-
strate that the universality arguments can be extended
to include the periodic potential after including a single
energy scale associated with V. In particular, we find
a universal phase diagram shown in Fig [Il below. This
phase diagram has superfluid-insulator quantum phase
transitions with a density of an even integer number (np)
of fermions per unit cell at critical amplitude V = V,
which obeys
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where F),. is a universal function of ar,v dependent only
on the even integer ny. The transition at unitarity occurs
at Fy,. (0). We will show that F,, can be determined in a
1/N expansion in a model with Sp(2/N) spin symmetry.
Explicit numerical results for the universal phase diagram
and the function F),, will be presented below at N = oo.

An important aspect of the physics accounted for by
our analysis is that the insulator near the critical point is

a novel quantum state which is neither a band insulator of
fermions, nor a Mott insulator of bosonic fermion pairs.
Instead, it is in a interesting intermediate regime in which
multiple single-particle bands are occupied. Previous
computations of ultra-cold atoms in optical lattices have
relied on effective tight-binding models [10, 11, [12, [13],
but such approaches are not expected to be quantita-
tively accurate near the transition to the superfluid. A
recent computation |14] uses a method related to ours,
but does not account for the off-diagonal couplings be-
tween different reciprocal lattice vectors in Eq. (6]) below;
these are essential for a proper result, and make the com-
putation much more demanding. Our 1/N expansion is
also able to quantitatively account for the strong inter-
actions between the fermions in the multiple bands. One
consequence of the many occupied bands is that the com-
putational requirements are demanding even at the lead-
ing N = oo level. So our present numerical results will
be limited to N = oo although we will set up a formalism
that allows computations to all orders in 1/N. It is also
worth noting that previous studies of ground state prop-
erties 7] found that 1/N corrections were quite small in
the unitarity limit, v =~ 0.

We consider 2N species of fermionic atoms v, (i =
1...N,o € {1,1|}) coupled to a single field ® of s-wave
Cooper pairs, or molecules. This is an Sp(2N) gener-
alization of the popular “two-channel” model, and the
physical case N = 1 can be accessed in 1/N expansions
[6, [7]. The atoms experience an optical lattice potential
V(r); we choose a simple cubic latice potential

and our computations have simple generalization to other
lattice structures. The density of the fermions is con-
trolled by chemical potential p and we assume that spin
polarization is zero. The imaginary-time action of this
many-body system, which includes all terms for a de-
scription of the universal physics in the vicinity of a two-
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body Feshbach resonance is:
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Note that the Cooper pair field ® is actually a Hubbard-
Stratonovich field that decouples the fermion interaction
terms, and hence does not have a bare dispersion, or
Berry’s phase. Thanks to this, we have conveniently
rescaled the @ field to absorb in it the interaction cou-
pling. Among the relevant operators is detuning v from
the Feshbach resonance in the absence of the lattice, and
the co-efficient that contains it is fixed by relating the
scattering matrix of this theory to the scattering length
a=-1/vfor V(r)=0.

Our primary result is that the above model has a uni-
versal phase diagram as a function of u/F,, E,/V, and
vay,, where E, = 72h?/(4ma?) is the molecular recoil
energy. The phase boundaries are shown in Fig. [ as a
function of the first two parameters for different values
of var,.

We will explore the superfluid phase boundary by fo-
cusing on the superfluid order parameter. We integrate
out the fermion fields v;, and obtain the effective action
of the Cooper pair field ®, which can be expressed using
Feynman diagrams:

S = N / drd®rote + (3)
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Each fermion loop (straight lines) contributes a factor of
N, so that N appears as an overall factor in the effec-
tive action. Every external wavy line represents the pair
field ® or ®t, depending on the direction of arrow with
respect to vertex, and every vertex is associated with a
point in space and time. In the present problem, the op-
tical lattice potential V() breaks translation symmetry,
so that momentum is not a good quantum number. In-
stead, according to the Bloch’s theorem, quantum num-
bers are band index n and crystal momentum k which
takes values within the first Brillouin zone (BZ). Assum-
ing a Bravais optical lattice with reciprocal vectors G,
the bare fermion propagator is given by:
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where the Fourier components of the Bloch wavefunctions
Yn.k:c and energies e, j are obtained from the Fourier

transformed Schrédinger equation:
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Solving this set of equations numerically requires impos-
ing a cut-off energy A that limits the reciprocal vectors
kept in calculations: G* < 2mA. For our V(r) above,
the only non-zero Fourier components are V = 3V/2,
V:|:27ri/aL = V:|:27r@/aL = V:|:27r2/aL = V/4~

The presence of superfluidity can be described by a su-
perfluid order parameter, which due to the optical lattice
may have Fourier components @ at various reciprocal
lattice vectors G. Fluctuations 6®(r) of the Cooper pair
field are added to the order parameter, and the total bo-
son field ®(r) = >, ®ce'C™ + §®(r) is represented by
the wavy lines in (3)). For large N the action Segr x N be-
comes large, so that fluctuations §® are suppressed; the
mean-field theory becomes exact in the limit N — oo.
Integrating out d® gives rise to corrections of the order
1/N to the mean-field results. This follows from dia-
grammatic perturbation theory performed in the effec-
tive action, where the first diagram in (3)), together with
the detuning term, defines a ‘bare’ propagator of the ®
fields, while all other diagrams define new vertices of the
® fields. Even though the new vertices are proportional
to N, the ‘bare’ propagator is proportional to 1/N and
hence yields perturbative expansions of thermodynamic
functions in powers of 1/N.

As in the bosonic case, we expect a second order
superfluid-insulator transition. Near such a transition,
the action terms quadratic in order parameter determine
the state, in analogy to a simple uniform ®* Landau-
Ginzburg theory of bosons. Neglecting the fluctuations
d®(r) in the N — oo limit, the free energy density F is
just the effective saddle-point action divided by volume
Vand f=1/T:
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The quadratic couplings Kg,)G’ can be represented as
a matrix whose components are indexed by the recip-
rocal lattice vectors G. If this matrix has only posi-
tive eigenvalues, the free energy (@) is minimized by
(VG) ¢ = 0 indicating an insulating (7" = 0) or normal
(T > 0) phase. Otherwise, the minimum is obtained at
(3G) ¢ # 0, and the established phase is superfluid.
The role of O(®?1) terms near a second order phase tran-
sition is only to stabilize the theory.

A naive derivation of K g,)G’ from the first Feynman di-
agram in (B) produces an ultra-violet divergent expres-
sion. This divergence stems from the naive continuum
form of the bare field theory, and must be renormalized
away by absorbing it into finite physically measurable



renormalized quantities. One step toward this goal has
already been taken by absorbing any bare molecule mass
(a part of the bare molecule dispersion omitted from (2]))
into detuning v, which is measurable and fixed in the ef-
fective field theory simply by the properties of scatter-
ing matrix. The second step is to remove the remaining
unphysical divergent part by dimensional regularization,
which at large momenta k + G is carried out just like in
a system without the optical lattice|6]. The regularized
expression is:
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where f(z) = (1+¢*/T)~! is the Fermi-Dirac distribution
function.

In the following, we numerically compute the matrix
K@ for reciprocal lattice vectors |G| < v/2mA’, where
A < A, in the limit N — oco. In practice, it is sufficient
to choose a very small A’ (|G| < 27a; '), as long as A >
V. By mapping dependence of the smallest eigenvalue
I'® of the matrix K on chemical potential y, lattice
amplitude V' and detuning v, we find the second order
phase boundary between superfluid and insulating phases
by the condition

r® =o. (8)

In Fig[Il we show a contour plot of the phase boundary as
a function of chemical potential and inverse lattice am-
plitude at 7= 0 and N = oco. This choice of plot axes
was made in order to obtain resemblance to the well-
known phase diagram [15] of a superfluid to Mott in-
sulator transition; while chemical potential directly con-
trols density, inverse lattice amplitude is correlated with
hopping strength ¢ of an effective tight-binding model.
Indeed, insulating regions are dome-shaped and corre-
spond to integer fillings of optical lattice sites with bosons
(Cooper pairs). The character of an insulator depends on
detuning v from the Feshbach resonance. On the BCS
side of the resonance, v > 0, the insulating domes be-
come larger, and converge toward the fermion band-gap
boundaries as v is increased. The system then behaves as
a typical band-insulator (weakly paired fermions are in-
sulating due to a filled band). On the other hand, in the
BEC limit ¥ < 0 the domes become ‘smaller’, resembling
a Mott insulator. When molecules are tightly bound,
filling up a fermion band is not sufficient to destroy su-
perfluidity, but repulsion between molecules needs to step
in. Note, however, that true Mott insulating phases, with

Superfluid

0.012

12.14 H/E, 60.69

FIG. 1: A contour plot of the superfluid-insulator phase
boundaries at 7' = 0 and N = oco. Contours, dependent on
detuning v from the Feshbach resonance, separate superfluid
regions surrounding the fermion bands (black) from insulat-
ing regions in the band structure gaps. The dashed yellow
contours correspond to the transition at the resonance v = 0,
while the spacing between contours is Av = afl, where ag, is
the optical lattice spacing; contours move upward and toward
the band edges as v grows. Insulators are labeled by the
closest even integer to the average filling of the optical lat-
tice by atoms in the grand-canonical ensemble. The reference
energy scale is molecule recoil energy E, = m2h?/(4ma}).
Accuracy is smaller than that in Fig2] because calculating
at many points in reasonable time required a small cut-off
A =3 x (2ma;’).

an arbitrary integer lattice filling by molecules, cannot be
found without including 1/N corrections.

It is also important to consider the phase diagram as
a function of particle density, rather than chemical po-
tential. The Mott insulating lobes in Fig. ] all have a
density of an even integer number, ng, of fermions per
unit cell. We therefore fix the density at ngp and study
the transition from the insulator to the superfluid. By
generalizing the argument made for the bosonic case, this
T = 0 transition occurs at the point where we satisfy the
condition () along with

= 0. (9)

The two conditions (B) and (@) determine an isolated
point in the phase diagram of Fig. [l for each ng, and the
location of these points then immediately yields Eq. ().
In Fig. [@ we plot the universal function F,.(vay) for
np = 2 and N = oo (calculations were performed with
large cut-off A < 10 x (27a; ')).

The obtained values of V. = F,.(aLv)E; are larger
than those reported in the experiment, V, ~ 6E, [9].
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FIG. 2: Universal function F,p (var) in () at the superfluid-
insulator transition for the first fermion band completely
filled, np =2 (T' =0, N = 0).
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FIG. 3: A contour plot of the superfluid-normal phase bound-
ary at T' = 1.8F, and N = oo. This temperatureis " ~ 0.6 E,
where Er = h?(6ma})??/(2m) is the Fermi energy of a free
fermion gas at the same density as the fermion gas in the lat-
tice with two particles per site. The black and yellow contours
are contours of constant detuning, as in Fig[Il The green lines
are normal-phase constant density lines, starting at np = 1 at
the left-bottom, displaced by Anr = 1. The superconductor-
normal phase transition can occur at any density or detuning,
at the intersection of the corresponding contour lines. Note
that due to a small cut-off used in plotting this diagram, one
should not directly compare it with Fig. [2] - the purpose is
only to illustrate the shape of phase boundaries.

However, unlike our computation so far, the experiment
is at a non-zero temperature (not known very accurately
in the presence of the optical lattice), and thermal fluc-
tuations should decrease the value of V.. We extended
our results to a range of T > 0 as shown in Fig. Bl The
character of the transition at which superconductivity is
lost changes qualitatively at T" > 0. At T' = 0, the in-
sulator must have a density np = even integer, and so

a superconductor-insulator transition can only occur at
such values of ng; this was rationale behind the addi-
tional constraint in Eq. [@). However, at the T > 0,
the transition is more properly a superconductor-normal
transition, and the normal state can occur at any den-
sity. In Fig Bl we show a contour plot of the boundaries
between superfluid and normal phases at finite temper-
atures (N = o0). As temperature is increased, the non-
superfluid domes gradually expand. The contours cor-
responding to larger values of v (BCS-limit) are more
affected by thermal fluctuations than those correspond-
ing to smaller values of v (BEC-limit). Since at T > 0
the normal regions can occur when the chemical potential
is not in a band gap, the normal regions corresponding
to different average lattice fillings can merge when the
v-dependent effect of fluctuations is large enough; when
this happens at a particular v, the appropriate contour
stretches all the way from the bottom to the top of the
diagram, instead of being dome-shaped. We expect that
including molecule fluctuations would increase these ef-
fects even further. Now, if an experiment is performed at
a fixed density (green lines in Fig.[B]), the phase transition
to a normal phase at unitarity (dashed line) can occur at
a smaller lattice depth V. than at T = 0. The reduc-
tion of V, can be particularly dramatic if the transition
is observed in a region where the 7' = 0 non-superfluid
regions have merged due to thermal fluctuations. This
can even occur at temperatures small compared to the
Fermi energy. We suspect this effect is the primary rea-
son for the discrepancy between the T' > 0 experiments
and our 7" = 0 results.
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