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Abstract
We describe the spin distribution in the vicinity of a non-magnetic impurity in a two-dimensional

antiferromagnet undergoing a transition from a magnetically ordered Néel state to a paramagnet

with a spin gap. The quantum critical ground state in a finite system has total spin S = 1/2 (if the

system without the impurity had an even number of S = 1/2 spins), and recent numerical studies

in a double layer antiferromagnet (K. H. Höglund et al., Phys. Rev. Lett. 98, 087203 (2007)) have

shown that the spin has a universal spatial form delocalized across the entire sample. We present

the field theory describing the uniform and staggered magnetizations in this spin texture for two

classes of antiferromagnets: (i) the transition from a Néel state to a paramagnet with local spin

singlets, in models with an even number of S = 1/2 spins per unit cell, which are described by a

O(3) Landau-Ginzburg-Wilson field theory; and (ii) the transition from a Néel state to a valence

bond solid, in antiferromagnets with a single S = 1/2 spin per unit cell, which are described by a

“deconfined” field theory of spinons.
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I. INTRODUCTION

There have been many experimental studies of non-magnetic Zn impurities substituting

for the spin S = 1/2 Cu ions in spin-gap and superconducting compounds1,2,3,4,5,6. These

have stimulated many theoretical studies of the spin dynamics in the vicinity of a vacancy

(i.e. a site with no spin) in S = 1/2 square lattice antiferromagnets7,8,9,10,11,12,13,14,15,16,17,18,19.

An important feature of the impurity-response escaped1 theoretical attention until

recently18. Consider the regime where the bulk antiferromagnet preserves global ro-

tational symmetry and has a S = 0 ground state. Such states can be reached by

deforming the nearest-neighbor antiferromagnet into a coupled-ladder or coupled-dimer

antiferromagnet20,21, in a double-layer antiferromagnet22, or by adding additional ring-

exchange interactions while preserving full square lattice symmetry23. Now remove a single

S = 1/2 spin in a system with an even number of spins, leaving an antiferromagnet with a

vacancy and an odd number of S = 1/2 spins. We expect this antiferromagnet to have a

doubly-degenerate ground state with total spin S = 1/2. Without loss of generality, we can

examine the ground state with spin-projection Sz = 1/2. In such a state, even though there

is no broken symmetry and no applied magnetic field (the Hamiltonian has full SU(2) spin

symmetry), the expectation values of the spin projection on the site i, ⟨Szi⟩, is non-zero on

all i for any finite system of size L. The question of interest in this paper is the following:

What is the spatial form of ⟨Szi⟩ ? It is possible that the S = 1/2 magnetization is pushed

out to the boundaries of the system, far from the impurity: in this case, it will not be rel-

evant to the impurity properties in the limit L → ∞. However, we will find this is not the

case for the antiferromagnets examined in this paper. For the spin-gap antiferromagnets we

consider, the S = 1/2 magnetization is bound to the impurity over a length scale inversely

proportional to the spin gap. At the quantum critical points separating the spin gap states

from the Néel state, which define ‘algebraic spin liquids’, we will find, as in Ref. 18, that the

impurity magnetization is delocalized over the entire system, forming a spin texture with a

universal spatial form determined only by the system size L.

First, let us consider the models which have been numerically studied in Ref. 18. These

are antiferromagnets which have an even number of S = 1/2 spins per unit cell (such as the

coupled-dimer20,21 or double layer22 models), which exhibit a transition between a Néel state

and a simple spin gap state; the latter state is adiabatically connected to a state in which

the spins in each unit cell are separately locked into singlets, with negligible resonance

between unit cells. This is a ‘conventional’ transition, described by a Landau-Ginzburg-

Wilson (LGW) theory. A convenient description of both phases and the quantum phase

transition is provided by the O(3) non-linear sigma model, expressed in terms of a unit

vector field n(x⃗, τ) representing the local orientation of the Néel order parameter. Here

x⃗ is the two-dimensional spatial position, τ is imaginary time, and n2 = 1 everywhere in

spacetime. The bulk action in the absence of the impurity is the O(3) non-linear sigma

1 Section II.B.3 of Ref. 15 contains results which can be used to extract the spin textures in zero field.
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model

Sn

b =
1

2g

∫
dτ

∫
d2x(∂µn)2 , (1.1)

where g is the coupling constant which tunes the antiferromagnet from the Néel state (g < gc)

to the spin gap state (g > gc), µ is a 3-dimensional spacetime index and a spin-wave velocity

has been set to unity. In this formulation, the influence of the impurity is represented

universally by the following Berry phase term alone15 (provided the antiferromagnet is not

too far from the critical point)

Sn

imp = iS

∫
dτA[n(0, τ)] ·

dn(0, τ)

dτ
, (1.2)

for a spin S = 1/2 antiferromagnet, where A is the Dirac monopole function in spin space

with ∇n × A = n. Note that Sn
imp does not include any coupling constants, and it depends

upon the value of n only at x⃗ = 0, which is the position of the impurity.

Now we need to describe the S = 1/2 ground state of Sn

b +Sn
imp for g ≥ gc. First, we need

a proper discussion of the rotationally invariant S = 0 ground state without the impurity.

While it may be possible to do this within the context of a small g expansion of the O(3)

non-linear sigma model, the procedure is quite cumbersome and delicate, requiring a global

average over all possible locally ordered states. We shall instead follow a simpler procedure

which is described in more detail in Section II: we use an alternative soft-spin, LGW for-

mulation of Sn

b in terms of a vector order parameter, φ, whose length is unconstrained. The

φ = 0 saddle point then is an appropriate starting point for describing the physics of the

S = 0 ground state of the bulk theory and its excitations. Next, we include the impurity

term described by Sn
imp, and also apply an infinitesimal magnetic field in the z direction. As

we will show in Section II, the Berry phase effectively localizes the order parameter at the

impurity site, n(x⃗ = 0, τ), to a specific orientation on the unit sphere; in particular, for the

Sz = 1/2 state chosen by the applied field, we may perform an expansion about a saddle

point with n(x⃗ = 0, τ) = (1, 0, 0). This expansion quantizes, at each order, the total spin at

Sz = 1/2: this was established in Section II.C.2 of Ref. 10 for g < gc, and the same result

also applies here for g ≥ gc. The infinitesimal magnetic field is set to zero at the end, but

the spin density of the Sz = 1/2 state remains non-zero in this limit.

The results in Section II provide an explicit analytic realization for the scaling forms

presented in Ref. 18 for the spin texture near the impurity. For the magnetization density,

Q, which is the conserved Noether “charge” density associated with the O(3) symmetry of

the antiferromagnet, we have at g = gc and zero temperature (T ) and in the Sz = 1/2 state:

⟨Qz(x⃗)⟩ =
1

L2
ΦQ

(
x⃗

L

)
(1.3)
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where ΦQ(r⃗) is a universal function obeying the quantized total spin condition

∫
d2rΦQ(r⃗) = S . (1.4)

Similarly, the staggered magnetization associate with the Néel order parameter obeys the

scaling form

⟨nz(x⃗)⟩ =
1

L(1+η)/2
Φn

(
x⃗

L

)
(1.5)

at g = gc, where Φn(r⃗) is another universal function, but its overall scale is non-universal.

The exponent η is the anomalous dimension of n at g = gc in the absence of the impurity.

Let us now turn to the more interesting and much more subtle case of a “deconfined”

critical point24,25. Here we are considering antiferromagnets with a single S = 1/2 spin per

unit cell, and so there is no simple spin-gap state with local singlets. For the models studied

in Refs. 23,24,25, the spin gap state has singlet valence bonds which crystallize into a regular

arrangement, breaking the space group symmetry of the square lattice, while preserving spin

rotation invariance. Such a state is a valence bond solid (VBS), and we are now interested in

the impurity response across the Néel-VBS transition. As argued in Refs. 24,25 the vicinity

of this quantum critical point is described by the CP
1 field theory which is expressed in terms

of a bosonic ‘spinon’ represented by a complex spinor field zα(x⃗, τ), where α =↑, ↓, and the

constraint
∑

α |zα|2 = 1 is obeyed everywhere in spacetime. The Néel order parameter, n is

related to zα by

n = z†ασ⃗αβzβ , (1.6)

where σ⃗ are the Pauli matrices. Also, in our analysis, we find it useful to generalize to

the CP
N−1 model with SU(N) symmetry, where α = 1 . . .N , and then the Pauli matrices

are replaced by the generators of SU(N). The action of the CP
N−1 model also involves a

non-compact U(1) gauge field Aµ, and is given by

Sz
b =

∫
dτ

∫
d2x

[
1

g
|(∂µ − iAµ)zα|2 +

1

2e2
(ϵµνλ∂νAλ)

2

]
. (1.7)

This theory describes a Néel-ordered phase for g < gc, and a spin-gap state with VBS

order for g ≥ gc (additional Berry phase terms are needed to obtain the four-fold square-

lattice symmetry of the VBS order26). It is crucial to note that, unlike the situation in 1+1

dimensions27,28, the models Sn
b (in Eq. (1.1)) and Sz

b are not equivalent to each other in 2+1

dimensions. This was established in Ref. 29, and is a consequence of the proliferation of

‘hedgehog’ or ‘monopole’ defects at the critical point of Sn
b ; such defects are absent in the

Sz
b theory.

Now let us add an impurity to the field theory in Eq. (1.7). It was argued in Ref. 30 that

the impurity is now represented by a source term for a static charge Q = 2S at x⃗ = 0. Thus

Sz
imp = iQ

∫
dτAτ (x⃗ = 0, τ) (1.8)
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As before, we are now interested in describing the ground state of Sz
b +Sz

imp, which we expect

carries total spin S = 1/2. However, now the projection onto the state with S = 1/2 cannot

be done by the method used for the LGW theory. For g ≥ gc, we begin with a S = 0 ground

state of Sz
b , but now don’t find that the impurity term in Eq. (1.8) introduces any net spin:

the total spin remains at S = 0 to all orders in perturbation theory. Clearly, we need the

impurity charge Q to non-perturbatively bind a S = 1/2 zα spinon. For g > gc, such binding

can be addressed via a non-relativistic Schrödinger equation31, the analysis does not appear

appropriate at the main point of interest, g = gc, where we have a conformal field theory

(CFT) with no sharp quasiparticle excitations. Here we expect the spinon to be smeared

over the whole system of size of L. We shall describe this spinon state by explicitly beginning

with a S = 1/2 state of Sz
b and then perturbatively examining the influence of Sz

imp: this is

expected to yield correlations in the true S = 1/2 ground state of Sz
b + Sz

imp.

Using the language of general SU(N), let the ground states of Sz
b + Sz

imp be |α⟩; these

transform under the fundamental representation of SU(N). To find the matrix element of

some operator O(x⃗) between states |α⟩ and |β⟩ of the SU(N) multiplet, we compute,

⟨α|O(x⃗)|β⟩ = lim
T →∞

〈
zα(0, T /2) exp

(
−i
∫ T /2
−T /2 Aτ (0, τ)dτ

)
O(x⃗, 0)z†β(0,−T /2)

〉

Sz
b〈

zα(0, T /2) exp
(
−i
∫ T /2
−T /2 Aτ (0, τ)dτ

)
z†α(0,−T /2)

〉

Sz
b

. (1.9)

Effectively, we start with external charge free vacuum, and then at time τ = −T /2 create a

spinon together with the Wilson line, the latter representing the effect of the external charge

Q = 1. We wait for a long time T /2 to single out the lowest energy state with the quantum

numbers of the operator z†α. We then measure the operator O(x⃗), again wait time T /2 and

annihilate our spinon together with the external charge. The denominator in Eq. (1.9) serves

to cancel out the matrix element for creating the spinon - external charge bound state out

of the vacuum (no sum over α is implied in the denominator). Expressions of type (1.9) are

common when studying the properties of heavy-light mesons in quantum chromodynamics.

The time T must be much larger than the gap between states with the quantum numbers

that we are studying. In the spin gap phase, g > gc, this gap is finite in the infinite volume

limit. However, at the critical point the gap will be of order 1/L. So one has to choose

T ≫ L. Although unusual, this condition can always be satisfied as we work at zero

temperature.

To discuss higher charge impurity (Q > 1) one needs to act on the vacuum with higher

U(1) charge composite operators of the z field. The resulting states can form higher repre-

sentations of SU(N) symmetry. For simplicity, we limit ourselves to Q = 1 below.

Details of our evaluation of Eq. (1.9) in the 1/N expansion appear in Section IIIA. We

will obtain results for the scaling functions appearing in Eq. (1.3) and (1.5) describing the

spin distribution at the deconfined quantum critical point.

In addition, in Section IIIB we compute the uniform and staggered spin distributions

in the Néel phase of the CP
N−1 model. We find that the short distance behaviour of spin
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distributions both at the critical point and in the Neel phase is in agreement with the

impurity scaling theory postulated in Ref. 30. In particular, we obtain substantial additional

evidence that the uniform and staggered spin operators flow to the same impurity spin

operator upon approaching the impurity site. Results of the 1/N expansion for the impurity

critical exponents of uniform and staggered magnetization are obtained.

II. LGW CRITICALITY

This section will study the field theory Sn
b + Sn

imp describing an impurity in an antifer-

romagnet with an even number of S = 1/2 spins per unit cell. As discussed in Section I,

the O(3) non-linear sigma model formulation in Eqs. (1.1) and (1.2) is not appropriate for

our purposes. Instead, we shall use a ‘soft-spin’ approach which yields a convenient descrip-

tion of the rotationally-invariant state of the bulk antiferromagnet for g ≥ gc, and of its

impurity-induced deformations. The universal results appear in an expansion in

ϵ = (3 − d), (2.1)

where d is the spatial dimensionality.

This dimensionality expansions allow us to compute, in principle, the universal scaling

functions, appearing in Eqs. (1.3) and (1.5), which were numerically computed recently in

Ref. 18. The scaling functions clearly depend upon the geometry of the sample, and the

nature of the finite-size boundary conditions. Such features are not easily captured in a

dimensionality expansion. Consequently the results in this section are more a “proof of

principle” that the scaling results apply. Direct comparison of the results below for scaling

functions to the numerical results are not very useful.

As discussed in Ref. 10, the ϵ expansion is obtained by replacing the fixed length field n by

a field φ whose amplitude is allowed to vary freely. However, we do not have the freedom to

relax the length constraint on the impurity site because the Berry phase term is only defined

for a unit length field. Consequently, we retain an independent field n(τ) representing the

impurity spin, which is now linearly coupled to φ. So we consider the theory

Zφ =

∫
Dφ(x⃗, τ)Dn(τ)δ

(
n2 − 1

)
exp

(
−Sφ

b − Sφ
imp

)

Sφ
b =

∫
ddxdτ

[
1

2

(
(∂µφ)2 + sφ2

)
+

g0

4!

(
φ2
)2
]

Sφ
imp = iS

∫
dτA[n(τ)] ·

dn(τ)

dτ
− γ0Sn(τ) · φ(0, τ) (2.2)

Here s ∼ g is the coupling that tunes the system across the bulk quantum phase transition,

and g0 and γ0 are the couplings which were shown in Ref. 10 to approach fixed point values

in the vicinity of the quantum critical point. In the (3 − d) expansion, these fixed point

values are small with g0 ∼ γ2
0 ∼ ϵ. It was argued in Ref. 15 that this fixed point is identical
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to that obtained from the O(3) non-linear sigma model theory appearing in Eqs. (1.1,1.2).

We will be interested here in the s ≥ sc regime of Zφ here, where ⟨φ⟩ = 0 and full

rotational symmetry is preserved in the absence of the impurity. As discussed in Section I,

we need to project on to the state with total Sz = 1/2 in the presence of the impurity. This

is easily done here by choosing the following parameterization for the impurity degree of

freedom n(τ) in terms of a complex scalar ψ(τ):

n =

(
ψ + ψ∗

2

√
2 − |ψ|2,

ψ − ψ∗

2i

√
2 − |ψ|2, 1 − |ψ|2

)
. (2.3)

The advantage of the representation (2.3) is that with the gauge choice

A(n) =
1

1 + nz
(−ny, nx, 0) , (2.4)

the Berry phase takes the following form

iA(n) ·
dn

dτ
=

1

2

(
ψ∗∂ψ

∂τ
− ψ

∂ψ∗

∂τ

)
, (2.5)

Furthermore, the measure term in the functional integral also has the simple form

∫
Dnδ

(
n2 − 1

)
=

∫
DψDψ∗ (2.6)

Now, an expansion of the correlators of Zφ, in a functional integral over φ and ψ about the

saddle point with φ = 0 and ψ = 0, in powers of the couplings γ0 and g0, automatically

projects onto the state with total spin projection Sz = 1/2. This is easily established by

applying a uniform magnetic field, and verifying by the methods of Ref. 10,15 that the total

magnetization is quantized by a Ward identity associated with the conservation of spin.

We can now use the above perturbative expansion, using methods explained at length

elsewhere10,15, to compute the expectation values of the magnetization density ⟨Qz(x⃗)⟩ and

the Néel order parameter ⟨φz(x⃗)⟩. We perform this computation on a sample with periodic

boundary conditions and length L in each spatial dimension, i.e. a torus T d. The main effect

of the finite boundary conditions is that the momenta p⃗ are discrete, and each momentum

component is quantized in integer multiples of 2π/L. The results below are easily generalized

to other finite size geometries and boundary conditions. To leading order in ϵ, the results

are

⟨Qz(x⃗)⟩ = Sδd(x⃗) − γ2
0Sδ

d(x⃗)

∫
dω

2π

1

(iω + ε)2
G(ω, 0) + 2γ2

0S

∫
dω

2π
G(ω, x⃗)G(ω,−x⃗)

⟨φz(x⃗)⟩ = γ0SG(0, x⃗)

[
1 − γ2

0

∫
dω

2π

1

(iω + ε)2
G(ω, 0)

]
(2.7)

where ε is a positive infinitesimal proportional to an applied magnetic field which selects
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the Sz = 1/2 state. We may set ε = 0 after the frequency integrals have been performed.

The Green’s function of the φ field is

G(ω, x⃗) =
1

Ld

∑

p⃗

eip⃗·x⃗

ω2 + p⃗2 + ∆2
, (2.8)

where ∆ is the spin gap of the bulk antiferromagnet in the absence of the impurity. Other

boundary conditions will only change the form of G. It is easy to check that the spatial

integral of ⟨Qz⟩ is quantized at S.

To leading order in ϵ, it would appear that we can set ∆ equal to the spin gap in the

infinite bulk antiferromagnet, and in particular, set ∆ = 0 at the critical point s = sc.

However, we will see below that for the particular boundary conditions we are using here,

there are infrared divergencies at ∆ = 0 in the expressions for the impurity-induced spin

textures. In such a situation we have to examine the finite L corrections to the value of

∆ at s = sc, which yield a non-zero ∆ even at the bulk quantum critical point. The value

of ∆ can be computed as described elsewhere32, and to leading order in ϵ, the equation

determining ∆ at the quantum critical point s = sc is

∆2 =
5g0

6

1

Ld

∑

p⃗

∫
dω

2π

1

ω2 + p⃗2 + ∆2
(2.9)

To leading order in ϵ, only the p⃗ = 0 term on the right-hand-side has to be included; setting

g0 equal to its fixed point value32 we find for small ϵ

∆ =

(
20π2ϵ

11

)1/3
1

L
. (2.10)

Note that L∆ is a universal number at s = sc, which is the main result we will need below

to establish the universality of the spin texture.

Returning to the expressions in Eq. (2.7), we now want to manipulate them into the

forms of Eq. (1.3) and (1.5). However, the presence of the δd(x⃗) in Eq. (2.7) makes the x⃗

dependence singular. These singularities are in fact an artifact of the present perturbative

expansion in real space, and are not expected to be present once the expansion is resummed.

This is evident by examining the results in momentum space, where the results are a smooth

function of momentum. In this manner we obtain after applying Eq. (2.8) to Eq. (2.7)

⟨Qz(p⃗)⟩ = S

⎡

⎣1 −
γ2

0

Ld

∑

q⃗

1

2Eq⃗

(
1

E2
q⃗

−
2

Ep⃗+q⃗(Ep⃗+q⃗ + Eq⃗)

)⎤

⎦

⟨φz(p⃗)⟩ =
γ0S

p⃗2 + ∆2

⎡

⎣1 −
γ2

0

Ld

∑

q⃗

1

2E3
q⃗

⎤

⎦ (2.11)

8



where Ep⃗ =
√

p⃗2 + ∆2. Now Eqs. (2.11) can be evaluated at the fixed point value of γ0,

and to leading order in ϵ they are seen to yield results consistent with the following scaling

forms which can be deduced from Eqs. (1.3,1.5)

⟨Qz(p⃗)⟩ = Φ̃Q(p⃗L)

⟨φz(p⃗)⟩ = L(d+1−η)/2Φ̃n(p⃗L) (2.12)

The explicit results for the scaling functions to leading order in ϵ are

Φ̃Q(y⃗) = S

[

1 − 2π2ϵ
∑

x⃗

1

2Ex⃗

(
1

E2
x⃗

−
2

Ey⃗+x⃗(Ey⃗+x⃗ + Ex⃗)

)]

Φ̃n(y⃗) =
πS

√
2ϵ

y⃗2 + L2∆2

[
1 − 2π2ϵ (a finite number)

]
(2.13)

where now x⃗ and y⃗ are three dimensional momenta whose components are quantized in

integer multiples of 2π (except in the integral in the second equation), and Ex⃗ =
√

x⃗2 + L2∆2.

It is easily checked that these expressions are free of infrared and ultraviolet divergencies,

and so yield universal results because L∆ is a universal number.

From the above expression, we observe that Φ̃Q(|y⃗| → ∞) = S(1 − (ϵ/2) ln |y⃗|), which

we assume exponentiates to Φ̃Q(|y⃗| → ∞) ∼ |y⃗|−ϵ/2. From the short distance behavior of

the spin texture discussed in Ref. 18, we expect that Φ̃Q(|y⃗| → ∞) ∼ |y⃗|−η′/2, where η′

is the scaling dimension of the boundary spin10. So we obtain the value η′ = ϵ, which is

consistent with earlier results10. Similarly, from the short distance behavior discussed in

Ref. 18, we also have Φ̃n(|y⃗| → ∞) ∼ |y⃗|−2+(ϵ+η−η′)/2. So with η ∼ O(ϵ2) and η′ = ϵ, we

have Φ̃n(|y⃗| → ∞) ∼ |y⃗|−2, which is consistent with Eq. (2.13).

III. DECONFINED CRITICALITY

This section describes the Néel-VBS transition in square lattice quantum antiferromag-

nets with a single S = 1/2 per unit cell. As discussed in Section I, the response of a

non-magnetic impurity is described by the action Sz
b + Sz

imp in Eqs. (1.7,1.8) for a complex

SU(N) spinon field zα and a non-compact U(1) gauge field Aµ. Here we will describe the

1/N expansion of its universal critical properties. Note that in what follows we have rescaled

the spinon field z, to remove the coupling constant g from the action (1.7), in favour of a

rescaled constraint z†αzα = 1/g. This constraint is enforced with a local Lagrange multiplier

λ, so that the bulk action becomes,

Sz
b =

∫
dτ

∫
d2x

[
|(∂µ − iAµ)zα|2 + iλ(|zα|2 −

1

g
) +

1

2e2
(ϵµνλ∂νAλ)

2

]
. (3.1)

It is useful to define SU(N) generalizations of the SU(2) observables defined in Section I.

The uniform magnetization density Q generalizes to Qa, which is the zeroth component of

9



a current associated with the SU(N) rotation symmetry,

Qa = z†T aDτz − (Dτz)†T az (3.2)

(where Dµ = ∂µ−iAµ is the covariant derivative) while the Néel order n in Eq. (1.6) becomes

the staggered magnetization operator

na = z†T az (3.3)

where T a are generators of the SU(N) algebra. We will describe the spatial dependence

of the expectation values of these operators for two cases: a finite system of size L at the

critical point g = gc in Section IIIA, and the infinite system in the Néel phase with broken

SU(N) symmetry in Section IIIB.

A. Critical point in a finite system

We tune the system to the critical point g = gc of the infinite volume zero temperature

model, and then consider the system on a spatial torus of length L. We use periodic boundary

conditions for all fields.2 As we discussed in Section I, the ground state in the absence of an

impurity is a spin-singlet, while adding an impurity yields a ground state which transforms

under the fundamental representation of SU(N). This ground state has a single spinon in

it, and we argued that the projection onto this state can be performed by Eq. (1.9). For an

additional test of our projection formalism, see the appendix, where we compute the U(1)

(electric) charge density in the presence of the impurity.

Before we address the explicit computation of (1.9), we discuss scaling forms that our

results should obey.

1. Scaling Forms

We are interested in computing the uniform and staggered magnetization densities. Re-

call, that since the uniform magnetization is a zeroth component of a conserved current, it

receives no renormalizations. Therefore, utilizing the SU(N) symmetry, we have the general

scaling form,

⟨α|Qa(x⃗)|β⟩ =
1

L2
ΦQ

( x⃗

L

)
T a

αβ . (3.4)

2 In principle, on a spatial torus, we can certainly have a finite magnetic (Fij) flux, which would correspond

to non-periodic boundary conditions. However, finite flux sectors are expected to be separated from

vacuum by an energy gap, and hence are suppressed at T = 0.
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The leading 1/L2 prefactor corresponds to the scaling dimension ∆Q = d = 2 of the magne-

tization density. Moreover, by conservation of total SU(N) charge,

∫
d2r ΦQ(r⃗) = −1 (3.5)

where the integral is over 0 < r1, r2 < 1. Similarly, for the case of the staggered magnetiza-

tion,

⟨α|na(x⃗)|β⟩ = Ληn

(
1

L

)1−ηn

Φn

(
x⃗

L

)
T a

αβ (3.6)

Here ηn is the anomalous dimension of the staggered magnetization operator na(x), ∆n =

dim[na] = 1 − ηn. This exponent is related to the exponent η in Eq. (1.5), and their

values were computed previously33 in the 1/N expansion for arbitrary spacetime dimension

2 < D < 4:

ηn =
1

2
(D − 2 − η) =

1

N

16Γ(D − 2)

Γ(2 − D/2)Γ(D/2 − 1)3
+ O(1/N2)

D=3
=

16

π2N
+ O(1/N2) . (3.7)

The function ΦQ is completely universal, whereas Φn is universal only up to an overall scale.

In particular, Φn does not have any property analogous to (3.5).

Of particular interest is the behavior of the functions ΦQ(r⃗), Φn(r⃗) for r⃗ → 0. We make

a hypothesis that na(x⃗, τ) and Qa(x⃗, τ) flow to the same operator Sa(τ) as x⃗ approaches the

Wilson line,

lim
|x⃗|→0

Qa(x⃗, τ) =
cQ

|x⃗|−∆Q
imp

Sa(τ) (3.8)

lim
|x⃗|→0

na(x⃗, τ) =
cn

|x⃗|−∆n
imp

Sa(τ)

Calculations in the ϵ expansion supporting this hypothesis have been given in Ref. 30. We

have performed analogous calculations in the 1/N expansion again confirming the OPE (3.8).

Technically, this impurity OPE program consists of the following steps. First one considers

the (multiplicative) renormalization of the operator na(x⃗ = 0), by studying its insertion

into the two point function of the z field (this consist of the usual bulk renormalization,

plus an additional renormalization of the logarithmic divergences that appear as x⃗ → 0).

Once na(x⃗ = 0) operator is renormalized, one considers the insertion of Qa(x⃗ → 0) into the

two point function of the z field. The highest divergence as |x⃗| → 0 is power-like, 1/|x⃗|,
modified by logarithms at higher orders in 1/N . This leading divergence can be cancelled

by a na(x⃗ = 0) counterterm (with a coefficient that diverges as x⃗ → 0). This procedure

gives one a way to construct order by order in 1/N , the impurity operator Sa(τ) (which

is essentially a regularized na(x⃗ = 0, τ)), and compute the anomalous dimensions ∆Q
imp,

∆n
imp as well as coefficients cQ, cn (the later are renormalization scheme dependent). As the

computation of the OPE in the 1/N expansion essentially follows that in the ϵ expansion

presented in Ref. 30, we shall not include it here. We only note that in this way, we have

11



been able to explicitly check the OPE (3.8) to order 1/N2, obtaining ∆n
imp to order 1/N2

and ∆Q
imp to order 1/N (this is lower order than the corresponding result for ∆n

imp as cQ/cn

is of order 1/N). Explicit results in this expansion will appear in Section IIIB.

Calculations of ΦQ and Φn given below provide additional support for the OPE (3.8).

Note that the exponents ∆Q
imp and ∆n

imp are not independent. Indeed, let the correlator

⟨Sa(τ)Sb(0)⟩ ∼
1

τ 2 ∆S
δab . (3.9)

The exponent ∆S is related to the boundary spin exponent η′ used in Refs. 10,18 by η′ = 2∆S.

Then,

∆S = ∆Q + ∆Q
imp = ∆n + ∆n

imp (3.10)

Recalling, ∆Q = 2, ∆n = 1 − ηn,

∆Q
imp = ∆n

imp − 1 − ηn . (3.11)

Our explicit results for the profiles ΦQ, Φn confirm the relation (3.11) to leading (zeroth)

order in 1/N , see below. We have also been able to check this relation to order 1/N

using the impurity OPE program summarized above: to this order, ∆Q
imp = −1 − ηn, as

∆n
imp ∼ O(1/N2). The result of our evaluation of ∆n

imp to O(1/N2) will appear later in

Eqs. (3.98),(3.99).

Note that the OPE (3.8) is sensitive only to short distance physics, and, thus, coefficients

cQ, cn should be independent of the system size L as well as the deviation from the critical

point (all this IR information is, however, contained in the impurity operator Sa). Thus,

the ratio,
cQ

cn
= lim

|x⃗|→0
|x⃗|∆n

imp−∆Q
imp

⟨Qa(x⃗)⟩
⟨na(x⃗)⟩

= lim
|x⃗|→0

|x⃗|1+ηn
⟨Qa(x⃗)⟩
⟨na(x⃗)⟩

(3.12)

although non-universal, should be constant throughout the scaling regime (once the reg-

ularization scheme is chosen). We shall check this fact below to leading order in 1/N by

comparing the short distance behaviour (controlled by the OPE) of uniform and staggered

magnetization densities at the critical point and in the Néel phase.

2. Projection onto the Single Spinon State

Now we return to the evaluation of the matrix elements (1.9). Although it is possible

to obtain all the results presented below directly from Eq. (1.9) it is technically somewhat

simpler to use instead,

⟨α|O(x⃗)|β⟩ = lim
T →∞

⟨zα(k⃗, T /2)O(x⃗, 0)z†β(k⃗′,−T /2)⟩imp

⟨zα(k⃗, T /2)z†α(k⃗′,−T /2)⟩imp

(3.13)
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Here, zα(k⃗, τ) =
∫

d2xzα(x⃗, τ)e−ik⃗x⃗ and the subscript “imp” indicates that the correlator

should be computed in a theory with the action Sz
b + Sz

imp which includes the impurity

term. Effectively, we have extended the Wilson line, which in (1.9) stretched from the point

where a spinon was created to the point where it was destroyed, to run from τ = −∞ to

τ = ∞. In addition, we have taken our “incoming” and “outgoing” spinon to be in momenta

k⃗ and k⃗′ states. This makes the numerator and denominator of (3.13) non-gauge invariant.

Nevertheless, we expect that this non-gauge invariance comes solely from the matrix element

for creating the ground state of the system by acting on the vacuum with z† and cancels out

between the numerator and denominator of (3.13).

Since the impurity term Eq. (1.8) breaks spatial (but not temporal) translational invari-

ance, for T → ∞ we expect to obtain the ground state irrespective of which k⃗, k⃗′ we started

with. Nevertheless, it will be most convenient in our perturbative treatment to work with

k⃗ = k⃗′ = 0.

Since the external charge does not break SU(N) symmetry and time translation symme-

try, we have,

⟨zα(x)z†β(x′)⟩imp = δαβD(x⃗, x⃗′, τ − τ ′) (3.14)

We let,

D(x⃗, x⃗′, τ) =
1

L2

∑

p⃗,p⃗′

∫
dω

2π
D(p⃗, p⃗′,ω)eip⃗x⃗e−ip⃗′x⃗′

eiωτ (3.15)

We write,

⟨zα(y)O(x)z†β(y
′)⟩imp =

∫
dvdv′D(y, v)Oαβ(v, x, v′)D(v′, y′) (3.16)

Fourier transforming,

Oαβ(v, x, v′) =
1

L2

∑

p⃗

1

L2

∑

p⃗′

∫
dω

2π

∫
dω′

2π
Oαβ(p⃗, q⃗, p⃗′,ω,ω′)eip⃗v⃗e−ip⃗′v⃗′eiq⃗x⃗eiωvτ e−iω′vτ

′

ei(ω′−ω)xτ

(3.17)

where we use the notation that the three-vector x has spatial components x⃗ and temporal

component xτ . So,

⟨zα(k⃗, T /2)O(x⃗, 0)z†β(k⃗′,−T /2)⟩imp =
∑

p⃗,p⃗′,q⃗

∫
dω

2π

dω′

2π
D(k⃗, p⃗,ω)Oαβ(p⃗, q⃗, p⃗

′,ω,ω′)D(p⃗′, k⃗′,ω′)eiωT /2eiω′T /2eiq⃗x⃗ (3.18)

As we perform the integral over ω, ω′, we pick up poles of the propagators D in the ℑ(ω) > 0,

ℑ(ω′) > 0 planes (we expect that Oαβ is analytic in ω). In the limit T → ∞ only the

contribution from the pole with smallest imaginary part survives. Let this pole be at ω = im
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and denote by Res(k⃗, p⃗) the residue of D(k⃗, p⃗,ω) at this pole. Then,

⟨zα(k⃗, T /2)O(x⃗, 0)z†β(k⃗′,−T /2)⟩imp→
∑

p⃗,p⃗′,q⃗

(iRes(k⃗, p⃗))(iRes(p⃗′, k⃗′))Oαβ(p⃗, q⃗, p⃗′, im, im)eiq⃗x⃗e−mT

(3.19)

Similarly, the denominator of (3.13) is,

⟨zα(k⃗, T /2)z†α(k⃗′,−T /2)⟩imp → L2iRes(k, k′)e−mT (3.20)

Finally,

⟨α|O(x⃗)|β⟩ =
1

L2

∑

q

⟨α|O(q⃗)|β⟩ eiq⃗x⃗ (3.21)

with,

⟨α|O(q⃗)|β⟩ =
∑

p⃗,p⃗′

(iRes(k⃗, p⃗))(iRes(p⃗′, k⃗′))

iRes(k, k′)
Oαβ(p⃗, q⃗, p⃗′, im, im) (3.22)

3. Large N expansion of CP
N−1 theory in finite volume

We now compute the expression (3.22) using the large N expansion in finite volume.

First, consider the N = ∞ limit. The gap equation reads,

1

L2

∑

p⃗

∫
dω

2π

1

ω2 + p⃗2 + m2
0

=
1

gN
(3.23)

and to this order in N , m2
0 = i⟨λ⟩. In the infinite volume, the critical coupling g = gc is

obtained when the gap m0 vanishes,

1

gcN
=

∫
d3p

(2π)3

1

p2
(3.24)

However, once we make the spatial volume finite, a non-zero m0 is generated even at the

critical point. Thus, setting g = gc, using Eq. (3.24) and poisson resumming, we obtain,

∑

n⃗∈Z2

∫
dω

2π

∫
d2p

(2π)2
eip⃗ n⃗L 1

ω2 + p⃗2 + m2
0

=

∫
dω

2π

∫
d2p

(2π)2

1

ω2 + p⃗2
(3.25)

On the left-hand side, only the n⃗ = 0 term diverges in the UV. However, this divergence

cancels with the divergence of the right-hand side. Thus, performing all integrals,

∑

n⃗ ̸=0

1

4π|n⃗|
e−m0|n⃗|L =

m0L

4π
(3.26)
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The solution of the Eq. (3.26) is,

m0 = θ
1

L
(3.27)

where θ is a constant that can be obtained by solving (3.26) numerically to be, θ ≈ 1.51196.

Thus, at leading order the propagator,

D0(k⃗, k⃗′,ω) = δk⃗,k⃗′

1

ω2 + k⃗2 + m2
0

(3.28)

and the lowest pole is at k⃗ = 0, ω = im0 and, iRes(k⃗, p⃗) = δk⃗,0δp⃗,0
1

2m0
.

To develop the 1/N expansion, we will need to find the Aµ and λ propagators. The

dynamically generated self-energy for Aµ is to leading order,

Kµν(p) = −N
1

L2

∑

q⃗

∫
dqτ

2π

(
(2q − p)µ(2q − p)ν

((q − p)2 + m2
0)(q

2 + m2
0)

−
2δµν

(q2 + m2
0)

)
(3.29)

This self energy is always more singular near the critical point than the bare Maxwell term

in Sz
b , and so we will work with e2 = ∞ for the rest of this paper. To find the photon

propagator, Dµν(p), we also need to fix a gauge. Practically, for the calculations to follow,

we will only need the static electromagnetic propagator Dττ (p⃗, pτ = 0) = Kττ (p⃗, pτ = 0)−1,

which is a gauge invariant quantity. We also note that in the infinite volume limit,

Kµν(q) = K(q)(q2δµν − qµqν) (3.30)

K(q) = NA qD−4 (3.31)

where the constant A is given by,

A =
1

(4π)D/2

(D − 2)Γ(2 − D/2)Γ(D/2 − 1)2

Γ(D)
(3.32)

Here D is the space-time dimension. In our case, D = 3 and A = 1
16 .

Likewise, the self-energy for λ is to leading order,

Π(p) = N
1

L2

∑

q⃗

∫
dqτ

2π

1

(q2 + m2
0)((q − p)2 + m2

0)
(3.33)

In the infinite volume limit,

Π(p) = NBpD−4 (3.34)

where the constant B is given by,

B =
1

(4π)D/2

Γ(2 − D/2)Γ(D/2− 1)2

Γ(D − 2)
(3.35)
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FIG. 1: The insertion of Qa into the z propagator.

For D = 3, B = 1
8 .

4. Matrix Elements

Now, let us compute the matrix elements of operator Qa(x). The insertion of Qa into the

z propagator, to leading order in 1/N is given by diagram in Fig. 1, so

Qa
αβ(p⃗, q⃗, p⃗′,ω,ω′) = i(ω + ω′)T a

αβδq⃗,p⃗′−p⃗ (3.36)

So utilizing formula (3.22), with k⃗ = k⃗′ = 0, we obtain,

⟨α|Qa(q⃗)|β⟩ = −T a
αβδq⃗0 (3.37)

i.e.,

⟨α|Qa(x⃗)|β⟩ = −
1

L2
T a

αβ (3.38)

and the function ΦQ(r⃗) = −1, satisfies the normalization condition (3.5). So at leading order

in the 1/N expansion the magnetization in the presence of an impurity is spatially uniform.

The system with the impurity simply consists of a free spinon in the zero momentum state.

The effects of the interaction with the impurity appear only at next order in 1/N .

Similarly, for the staggered magnetization, the insertion of na(x) into the z propagator,

to leading order is given by the same diagram in Fig. 1, except the cross now stands for na.

na
αβ(p⃗, q⃗, p⃗′,ω,ω′) = δq⃗,p⃗′−p⃗T

a
αβ (3.39)

so that,

⟨α|na(q⃗)|β⟩ =
1

2m0
δq⃗0T

a
αβ (3.40)

and,

⟨α|na(x⃗)|β⟩ =
1

2θL
T a

αβ (3.41)

So the staggered magnetization at leading order in 1/N is also uniform, Φn(r⃗) = 1
2θ .

Now, let’s include the 1/N corrections.

We will concentrate on corrections to ⟨α|O(q⃗)|β⟩, for O = Qa, na, with q⃗ ̸= 0 (where the

leading O(1) term vanishes). These turn out to be much simpler to compute than corrections

for q⃗ = 0. Moreover, for Qa, we know by SU(N) charge conservation that the N = ∞ result
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FIG. 2: 1/N corrections to z self-energy.

(3.37) at q⃗ = 0 receives no further corrections. Thus, to order 1/N ,

⟨α|O(q⃗)|β⟩ q⃗ ̸=0
= iRes(0,−q⃗)1 Oαβ(−q⃗, q⃗, 0, im0, im0)0 + iRes(q⃗, 0)1 Oαβ(0, q⃗, q⃗, im0, im0)0

+ iRes(0, 0)0 Oαβ(0, q⃗, 0, im0, im0)1 (3.42)

where the subscripts 0, 1 indicate the order in 1/N to which the quantity has to be computed.

The 1/N corrections to the z self-energy are shown in Fig. 2 (we drop λ tadpole dia-

grams). Of these only the last one couples to the impurity and, therefore, breaks translational

invariance. So, letting,

D(k⃗, k⃗′,ω) = D0(k⃗, k⃗′,ω) −
∑

p⃗,p⃗′

D0(k⃗, p⃗,ω)Σ(p⃗, p⃗′,ω)D(p⃗′, k⃗′,ω) (3.43)

Σ(k⃗, k⃗′,ω)
k⃗ ̸=k⃗′

=
1

L2
2iωDττ(k⃗ − k⃗′, 0) + O(1/N2) (3.44)

and

D(k⃗, k⃗′,ω)
k⃗ ̸=k⃗′

= −
1

L2
2iωDττ(k⃗ − k⃗′, 0)

1

ω2 + k⃗2 + m2
0

1

ω2 + k⃗′2 + m2
0

+ O(1/N2) (3.45)

So the residue,

iRes(0,−q⃗) = iRes(q⃗, 0)
q⃗ ̸=0
=

1

L2

1

q⃗2
Dττ (q⃗, 0) + O(1/N2) (3.46)

Note that at this order renormalization of the location of the pole ω = im
N=∞
= im0 can be

neglected.

The 1/N corrections to the insertion of Qa into the z propagator are shown in Fig. 3,

Again, only the last one of these couples to the impurity and breaks translational invari-

ance, so,

Qa
αβ(p⃗, q⃗, p⃗′,ω,ω′)

q⃗ ̸=p⃗′−p⃗
= −2

1

L2
Dττ (q⃗ + p⃗ − p⃗′, 0)T a

αβ + O(1/N2) (3.47)

Combining (3.42),(3.46),(3.47),

⟨α|Qa(q⃗)|β⟩ = −
(
δq⃗,0 + (1 − δq⃗,0)

1

θL
(1 +

4m2
0

q⃗2
)Dττ(q⃗, 0)

)
T a

αβ + O(1/N2) (3.48)
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FIG. 3: 1/N corrections to the insertion of Qa into the z propagator.

The calculation of 1/N corrections to result (3.40) for impurity induced staggered mag-

netization na(x) proceed in the same fashion. The corrections to insertion of na(x) into the

z propagator are given by the first two diagrams in Fig. 3 (except now the cross stands for

na insertion). None of these break translational invariance (as the last diagram in Fig. 3 is

present only for Qa, but not for na). Therefore,

⟨α|na(q⃗)|β⟩ =
1

2m0

(
δq⃗,0(1 + O(1/N)) + (1 − δq⃗,0)

1

L2

4m0

q⃗2
Dττ (q⃗, 0)

)
T a

αβ + O(1/N2) (3.49)

Note again that in the case of ⟨α|na(q⃗)|β⟩ we have computed the 1/N corrections only to

q⃗ ̸= 0. Unlike the case of uniform magnetization, here the N = ∞ result for ⟨α|na(q⃗ = 0)|β⟩
is expected to receive corrections.

Thus, the scaling functions,

ΦQ(x⃗/L) = −1 −
1

θL

∑

q⃗ ̸=0

(1 +
4m2

0

q⃗2
)Dττ (q⃗, 0)eiq⃗x⃗ + O(1/N2) (3.50)

Φn(x⃗/L) =
1

2θ
+ c1 +

1

L3

∑

q⃗ ̸=0

2

q⃗2
Dττ (q⃗, 0)eiq⃗x⃗ + O(1/N2) (3.51)

where c1 is an x⃗-independent constant of order 1/N (c1 should be also independent of Λ; we

have not verified this fact as we did not compute the 1/N corrections to ⟨α|na(q⃗ = 0)|β⟩).
We may write,

ΦQ(r⃗) = −(1 +
1

N
fQ(r⃗)) + O(1/N2) (3.52)

Φn(r⃗) =
1

2θ
(1 + 2c1θ +

1

N
fn(r⃗)) + O(1/N2) (3.53)

We have evaluated the functions fQ, fn numerically and plotted them along the diagonal of

our spatial torus in Fig. 4.

Now, we would like to find the q⃗ → ∞, x⃗ → 0 asymptotes of (3.50), (3.51). For this
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FIG. 4: Uniform (a) and Staggered (b) magnetization distribution functions fQ(r⃗), fn(r⃗) plotted
along the torus diagonal.

purpose, we may replace the finite box propagator Dττ (q) by the infinite box propagator,

Dττ (q⃗, 0)
q⃗→∞→

1

NA

1

|q⃗|
(3.54)

Writing, ΦQ,n(x⃗/L) = 1
L2

∑
q⃗ ΦQ,n(q⃗)eiq⃗x⃗,

ΦQ(q⃗)
q⃗→∞→ −

1

NAθ

L

|q⃗|
+ O(1/N2) (3.55)

Φn(q⃗)
q⃗→∞→

2

NA

1

L|q⃗|3
+ O(1/N2) (3.56)

Fourier transforming,

ΦQ(r⃗)
|r⃗|→0→ −

1

2πθNA

1

|r⃗|
+ O(1/N2) (3.57)

Φn(r⃗)
|r⃗|→0→

1

2θ
+ c2 + O(1/N2) (3.58)

where c2 is a constant of order 1/N .

Thus, we conclude that,

∆Q
imp = −1 + O(1/N) ∆n

imp = O(1/N2) (3.59)

which is consistent with the relation between impurity exponents (3.11). Note that the

present calculation shows that ∆n
imp is zero to order 1/N . We shall verify this fact in a

different way in Section IIIB, and compute ∆n
imp to order 1/N2.

Moreover, the ratio,
cQ

cn
= −

1

πNA
+ O(1/N2) (3.60)
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is independent of regularization at this order in N .

B. Néel Phase

In this section, we compute the uniform and staggered magnetization in the presence of

an impurity of charge Q in the symmetry broken phase, g < gc. We work in infinite volume.

We develop the 1/N expansion around the symmetry broken vacuum,

⟨z1⟩ =
1√
2
v (3.61)

Note that in general v is not a gauge invariant quantity. However, this fact does not manifest

itself at the order at which we are working. To leading order in N ,

1

2
v2 =

1

g
−

1

gc
(3.62)

Note that v2 ∼ O(N). Moreover, we take Q ∼ O(1) in N .

We now must quantize our theory around the symmetry broken state. We write,

z1 =
1√
2
(h + v + iφ), zα = πα, α = 2 .. N (3.63)

We work in the so-called Rξ gauge, in which the mixing between the goldstone φ and the

photon Aµ is absent, at the expense of introducing a ghost field c. In what follows, we

have eliminated the mixing only to leading order in 1/N . This is achieved by using the

gauge-fixing condition,

∂µAµ = ξvK−1φ+ w (3.64)

where the action for the auxillary field w, which appears in the Fadeev-Poppov formalism,

is

Sw =
1

2ξ

∫
dxdyw(x)K(x− y)w(y) (3.65)

Here, K(x − y) is the photon polarization function given by Eq. (3.31). Similarly, in what

follows Π(x − y) is the λ self energy given by Eq. (3.33).
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At the end of the day, the action one obtains is,

Sξ =
1

2

∫
dxdy Aµ(x)

(
Kµν(x − y) −

1

ξ
∂µ∂νK(x − y) + δµνv

2

)
Aν

+
1

2

∫
dxdy φ(x)

(
−∂2δ(x − y) + ξv2K−1(x − y)

)
φ(y) +

1

2

∫
dxdyλ(x)Π(x− y)λ(y)

+

∫
dxdy

(
c̄
(
−∂2δ(x − y) + ξv2K−1(x − y)

)
c(y) + ξvc̄(x)K−1(x − y)h(y)c(y)

)

+

∫
dx

(
|Dµπ|2 +

1

2
(∂µh)2 + ivλh + (φ∂µh − ∂µφh)Aµ + (vh +

1

2
h2 +

1

2
φ2)A2

µ

)

+

∫
dx

(
iλ|π|2 +

1

2
iλ(φ2 + h2)

)
(3.66)

As usual, we avoid double counting by dropping any diagrams, which are already included

in the dynamically generated N = ∞ self-energies for Aµ, λ etc. The propogators for our

fields are shown in Fig. 5. Note that in the Néel phase, we get mixing between the λ and h

fields.

Aµ Aν Dµν(p) = 1
p2K(p)+v2

(
δµν + (ξ−1)K(p)pµpν

p2K(p)+ξv2

)

φ φ Dφ(p) = 1
p2+ξv2K−1(p)

c̄ c Dc(p) = 1
p2+ξv2K−1(p)

π∗
α

πβ Dπαβ(p) =
δαβ

p2

h h Dh(p) = Π(p)
p2Π(p)+v2

λ λ Dλ(p) = p2

p2Π(p)+v2

h λ Dhλ(p) = −iv
p2Π(p)+v2

FIG. 5: Propagators in the Néel phase.

Now, having set up the perturbation theory, we wish to compute, ⟨Qa(x⃗)⟩, ⟨na(x⃗)⟩.
Utilizing the pattern of spontaneous symmetry breaking, U(N) → U(N − 1) (here we look
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FIG. 6: Leading contribution to uniform magnetization in the symmetry broken phase.

only at global symmetry), one can show that,

⟨na⟩ = T a
11⟨n0⟩ (3.67)

where n0 = z†T 0z and T 0 is any generator of SU(N) with T 0
11 = 1. Similarly for Qa. For

definiteness, we may choose T 0
11 = 1, T 0

1α = T 0
α1 = 0, T 0

αβ = − 1
N−1δαβ, α, β = 2 .. N .

Let’s start with computing the uniform magnetization.

Q0 =
N

N − 1
j1
τ −

1

N − 1
jτ (3.68)

where

j1
τ = z†1Dτz1 − (Dτz1)

†z1 (3.69)

and jτ is the U(1) charge density discussed in the appendix, see Eq. (A1). By equation of

motion (A4),

⟨jτ (x⃗)⟩ = −Jext
τ (x⃗) = −Qδ2(x⃗) (3.70)

So, it remains to compute ⟨j1
τ (x⃗)⟩. Expanding j1

τ in terms of φ, h and Aµ,

j1
τ = −iv2Aτ + iv(∂τφ− 2Aτh) + i(h∂τφ− φ∂τh − Aτ (h

2 + φ2)) (3.71)

In the 1/N expansion the leading contribution to ⟨j1
τ ⟩ is of O(1) and comes from the first

term on the r.h.s of (3.71), see Fig. 6.

⟨j1
τ (p⃗)⟩ = −Qv2Dττ (p⃗, 0) = −Qv2 1

p⃗2K(p⃗) + v2
(3.72)

Thus, ⟨Q0(p⃗)⟩ = ⟨j1
τ (p⃗)⟩ + O(1/N). Fourier transforming,

⟨Q0(x⃗)⟩ = −
Qv2

2πNA

1

|x⃗|
+

Qv4

4N2A2

(
H0

(
v2|x⃗|
NA

)
− Y0

(
v2|x⃗|
NA

))
+ O(1/N) , (3.73)

where H0 is the Struve function and Y0 is the Bessel function. Taking the short and long

distance asymptotes,

⟨Q0(x⃗)⟩ x⃗→0→ −
Qv2

2πNA

1

|x⃗|
(3.74)

⟨Q0(x⃗)⟩ x⃗→∞→ −
QNA

2πv2

1

|x⃗|3
(3.75)
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a)

b) c)

FIG. 7: Leading x⃗-dependent contribution to staggered magnetization in the symmetry broken

phase.

The long distance decay is a consequence of the Goldstone physics of the spin waves, and the

1/|x⃗|3 decay is expected to be exact. At short distances, we have the physics of the critical

point, and the exponent will have corrections at higher order. From the present result we

can conclude that the impurity exponent

∆Q
imp = −1 + O(1/N), (3.76)

which is consistent with the result obtained at the critical point (3.59).

Now, let’s discuss the staggered magnetization,

n0 =
N

N − 1
z†1z1 −

1

N − 1
z†z (3.77)

By equations of motion,

z†z =
1

g
(3.78)

thus,

n0 =
N

N − 1
z†1z1 −

1

(N − 1)g
(3.79)

and

z†1z1 =
1

2
v2 + vh +

1

2
(h2 + φ2) (3.80)

Thus, at leading order, ⟨z†1z1(x⃗)⟩ = 1
2v

2, and

⟨n0(x⃗)⟩ =
1

2
v2 + O(1) (3.81)

Moreover, the x⃗-dependent corrections to ⟨n0(x⃗)⟩ come only at O(1/N), with diagrams of

Fig. 7 (the part of n0 which contributes at this order, denoted by ×, is vh).
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a)
q − p

p
q

b)
q − p

p

q

FIG. 8: Leading contribution to the three point vertex of Aµ, Aν and λ fields, Γµν(q, p, q − p).

We will discuss the diagrams in Fig. 7 shortly. For now, we can conclude that,

∆n
imp = O(1/N2) (3.82)

in agreement with the result (3.59) obtained at the critical point. Moreover, we can now

compute the ratio,
cQ

cn
= −

Q

πNA
+ O(1/N2) (3.83)

which exactly agrees with the result obtained at the critical point (3.60) for Q = 1. Notice,

that this is a highly nontrivial check of the OPE (3.8) as ⟨Qa⟩, ⟨na⟩ depend on v in the

Néel phase and on L at the critical point. Nevertheless, all the dependence on the IR scale

cancels out in the ratio cQ/cn, which is constant throughout the scaling regime.

Coming back to the diagrams in Fig. 7,

⟨n0(q⃗)⟩ q⃗ ̸=0
= Q2v2Dh(q⃗, 0)

∫
dD−1p

(2π)D−1

(
1+

i

2
Π−1(q⃗, 0)Γττ(q⃗, 0, p⃗, 0, q⃗ − p⃗, 0)

)
Dττ (p⃗, 0)Dττ (q⃗−p⃗, 0)

(3.84)

We keep the space-time dimension D arbitrary in what follows, as we wish to compare our

result for ∆n
imp obtained in the 1/N expansion, with the result obtained using ϵ expansion30.

Here, Γµν(q, p, q − p) is the lowest order contribution to the Aµ, Aν , λ vertex, given by the

sum of the loops in Fig. 8. The diagram in Fig. 8 a) is given by,

Γµν
1 (q, p, q − p) = 2iδµνΠ(q) (3.85)

Thus, diagrams in Fig. 7 a) and b) cancel (by the way, these diagrams are individually UV

divergent for D ≤ 3). So, calling the diagram in Fig. 8 b), Γµν
2 (q, p, q − p),

⟨n0(q⃗)⟩ q⃗ ̸=0
= Q2v2Dh(q⃗, 0)

∫
dD−1p

(2π)D−1

i

2
Π−1(q⃗, 0)Γττ

2 (q⃗, 0, p⃗, 0, q⃗ − p⃗, 0)Dττ(p⃗, 0)Dττ(q⃗ − p⃗, 0)

(3.86)
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Evaluating Γµν
2 ,

Γµν
2 (q, p, q − p) = −2iN

∫
dDl

(2π)D

(2l − p)µ(2l − p − q)ν

l2(l − p)2(l − q)2

= −
4iNΓ(2 − D/2)

(4π)D/2

∫
dx1dx2dx3δ(1 − x1 − x2 − x3)(∆

2)D/2−2

(
δµν +

(4 − D)(2x1q + (2x2 − 1)p)µ((2x1 − 1)q + (2x2 − 1)p)ν

4∆2

)

(3.87)

where,

∆2 = x1(1 − x1)q
2 + x2(1 − x2)p

2 − 2x1x2 p · q (3.88)

We are interested only in Γττ
2 , with p0 = q0 = 0. Thus,

Γττ
2 (q⃗, 0, p⃗, 0, q⃗ − p⃗, 0) = −

4iNΓ(2 − D/2)

(4π)D/2

∫
dx1dx2dx3δ(1 − x1 − x2 − x3)(∆

2)D/2−2

(3.89)

For |p⃗| ≫ |q⃗|, Γττ
2 (q⃗, 0, p⃗, 0, q⃗ − p⃗, 0) ∼ |p⃗|D−4, so for p⃗ → ∞ the integrand in Eq. (3.86)

behaves as |p⃗|−D and the integral is UV convergent.

We now attempt to understand the behaviour of (3.86) for q⃗ → ∞, from which we should

be able to extract the impurity anomalous dimension ∆n
imp. For this purpose, we may set

v = 0 in the propagators Dh(q⃗, 0), Dττ (p⃗, 0), Dττ (q⃗ − p⃗, 0) (this does not introduce any IR

divergences).

⟨n0(q⃗)⟩ q⃗→∞
=

Q2v2

N3A2B
|q⃗|2−D

∫
dD−1p

(2π)D−1

i

2
Γττ

2 (q⃗, 0, p⃗, 0, q⃗ − p⃗, 0)
1

|p⃗|D−2

1

|p⃗ − q⃗|D−2
(3.90)

Let us first discuss the limit D = 4 − ϵ, ϵ→ 0. In this regime, to leading order in ϵ,

Γττ
2 (q⃗, 0, p⃗, 0, q⃗ − p⃗, 0) = −2iN

1

(4π)2
Γ(2 − D/2) (3.91)

and,

⟨n0(q⃗)⟩ q⃗→∞
=

72π4ϵ2Q2v2

N2

1

|q⃗|3
(3.92)

Fourier transforming,

⟨n0(x⃗)⟩ x⃗→0
=

1

2
v2 + c3 −

36π2ϵ2Q2

N2
v2 log(v|x⃗|) + c4 + O(1/N2) (3.93)

where c3, c4 do not depend on x⃗ and are of order 1 and 1/N respectively. Thus, to leading
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order in 1/N , ϵ,

∆n
imp = −

72π2Q2ϵ2

N2
(3.94)

in agreement with the calculations of Ref. 30, where the impurity exponents were obtained

by performing the impurity operator renormalizations as summarized in Section IIIA 1.3

For arbitrary D, ∆n
imp is difficult to calculate analytically, as Γττ is no longer a constant.

However, combining Eqs. (3.86), (3.89) and introducing a new set of Feynman parameters,

⟨n0(q⃗)⟩ q⃗→∞
=

Q2v2

N2

1

|q⃗|D−1
f(D) (3.95)

where the numerical constant f(D) is given by,

f(D) =
1

A2B(4π)D−1Γ(D/2 − 1)2

∫ 1

0

dx1

∫ 1−x1

0

dx2

∫ 1

0

dy1

∫ 1−y1

0

dy2

x(D−3)/2
2 (1 − x2)

D/2−1y1−D/2
1 yD/2−2

2 (1 − y1 − y2)
D/2−2

(x2(1 − x2)
2y2(1 − y2) + x1y1((1 − x1)(1 − x2) − 2y2x2(1 − x2) − y1x1x2))

− 1
2

(3.96)

Consequently,

⟨n0(x⃗)⟩ x⃗→0
=

1

2
v2 + c3 −

2

(4π)(D−1)/2Γ((D − 1)/2)
f(D)

Q2

N2
v2 log(v2/(D−2)|x⃗|) + c4 + O(1/N2)

(3.97)

and

∆n
imp = −

4

(4π)(D−1)/2Γ((D − 1)/2)
f(D)

Q2

N2
+ O(1/N3) (3.98)

Evaluating f(D) numerically for D = 3,

∆n
imp ≈ −25.9

Q2

N2
+ O(1/N3) (3.99)

We note that we have separately verified the result (3.98) by performing the impurity OPE

program as summarized in Section IIIA 1.

3 Note that in the ϵ expansion of Ref. 30 only the analogue of the diagram in Fig. 7 a) appears, while

the diagrams in Figs. 7 b), c) do not appear at leading order in ϵ, as they are higher order in coupling

constant. Nevertheless in the 1/N expansion, we saw that the answer comes entirely from the diagram in

Fig. 7 c), with diagrams in Fig. 7 a) and Fig. 7 b) canceling for all D. The reason is the following: in the

1/N expansion all diagrams in Fig. 7 are individually of same order in ϵ. Moreover, to leading order in ϵ,

the diagrams b) and c) cancel, so a) = - b)
ϵ→0
= c). In the ϵ expansion, this fact is foreseen in advance: the

1/ϵ pole must cancel between diagrams b) and c) (the 4-point diagram with two photons and two scalars

is not divergent). Thus, we can obtain the answer to leading order in ϵ either from a) alone or from c)

alone.
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IV. CONCLUSIONS

A recent numerical study18 examined the spin distribution in the vicinity of a non-

magnetic impurity in a double-layer, S = 1/2 square lattice antiferromagnet at its quantum

critical point. The ground state of the system has total spin S = 1/2, and the spin dis-

tribution of this S = 1/2 was found to be extended across the entire system. Universal

scaling forms (Eqs. (1.3) and (1.5)) for the uniform and staggered spin distributions were

postulated18, and found to be in excellent agreement with the numerical results.

This paper has presented the field-theoretic foundation of the above results. Using the

soft-spin O(3) LGW field theory in Eq. (2.2), we found that the universal scaling forms in

Eqs. (1.3) and (1.5) were indeed obeyed in an expansion in (3 − d) (where d is the spatial

dimensionality), and explicit results for the universal scaling functions appear in Eq. (2.13).

Next, we examined a similar non-magnetic impurity in S = 1/2 antiferromagnets which

have a single S = 1/2 spin per unit cell. Such antiferromagnets can display a deconfined

quantum phase transition24,25 between Néel and valence bond solid (VBS) states. An explicit

example of such a transition was found recently in Ref. 23. We expect that such studies

will be extended to include non-magnetic impurities in the future, and so have provided our

theoretical predictions here. The field theory for this situation in Sz
b +Sz

imp in Eqs. (1.7,1.8).

It describes the dynamics of a SU(N) spinor field, zα (the spinon), and we obtained its

critical properties in a 1/N expansion. Projecting onto the total spin S = 1/2 sector

of this theory (which contains the ground state in the presence of the impurity) was not

straightforward here, and we achieved this by the relation Eq. (1.9). Our results obey scaling

forms which appear in Section IIIA 1. The scaling functions are in Eqs. (3.50) and (3.51),

and are plotted in Fig. 4. The boundary spin exponent for the deconfined critical point

appears in Eqs. (3.98), (3.99). We also obtained substantial evidence for the structure of the

operator product expansion near the impurity, and the fact that the staggered and uniform

magnetizations flow to the same impurity spin operator.

Our study of the deconfined case has so far only examined the uniform and staggered spin

magnetizations near the non-magnetic impurity. We have not provided here a description of

the structure of the VBS order near the impurity. This will be presented in a forthcoming

paper.
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APPENDIX A: U(1) CHARGE DENSITY

Throughout the paper we have concentrated on computing matrix elements of uniform

and staggered magnetization Qa(x), na(x). However, for the deconfined critical point, it is
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also interesting to compute the charge density associated with the U(1) local symmetry of

the CP
N−1 model. This charge density is the zeroth component of the current,

jµ(x) = z†Dµz − (Dµz)†z (A1)

As we shall see this computation serves as an additional test of our procedure for projecting

onto the single spinon state.

Consider the CP
N−1 model coupled to an external current,

S = Sz
b + i

∫
d3xAµJ

ext
µ (A2)

As in the rest of the paper, we set e2 = ∞, so that the gauge field has no bare kinetic term.

Then, by equations of motion,

0 =
δS
δAµ

= i(jµ + Jµ) (A3)

jµ = −Jext
µ (A4)

Thus, the dynamical current completely screens (locally!) the external current. Eq. (A4) is

an operator identity, and should, in particular, hold in the ground state of the system with

a single impurity. Let’s check this statement in the 1/N expansion.

We start from Eq. (1.9), with O(x) = j0(x). We write,

⟨α|j0(x⃗)|β⟩ = ρ(x⃗)δαβ (A5)

with ρ(x⃗) = 1
L2

∑
q⃗ ρ(q⃗)e

iq⃗x⃗. The Wilson line term in Eq. (1.9) can be incorporated into the

action as coupling to an external current, Jext
µ (x⃗, τ) = δµ0δ3(x⃗)θ(T /2 − τ)θ(τ + T /2). At

leading order in 1/N the numerator of Eq. (1.9) is given by diagrams shown in Fig. 9, while

the denominator is given by the bare propagator D(x⃗ = 0, T ).

×

(

+

)

+

FIG. 9: Diagrams contributing to U(1) charge induced

Thus, we can distinguish two contributions: the disconnected one, ρ1(q⃗), coming from

the first line in Fig. 9, and the connected one, ρ2(q⃗), coming from the second line. We note
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that the scalar loops contributing to ρ1(q⃗) are precisely the same as those contributing to

the self-energy of Aµ field, thus,

ρ1(q⃗) = −
∫

dqτ

2π
K0ν(q⃗, qτ )Dνλ(q⃗, qτ )J

ext
λ (q⃗, qτ ) (A6)

Now,

Kµν(q)Dνλ(q) = δµλ −
qµqλ

q2
(A7)

Thus,

ρ1(q⃗) = −
∫

dqτ

2π

q⃗2

qτ
2 + q⃗2

Jext(q⃗, qτ ) (A8)

Noting, Jext(q⃗, qτ )
T →∞→ 2πδ(qτ ),

ρ1(q⃗) = −(1 − δq⃗,0) (A9)

For the q⃗ = 0 part, the order of the limits q⃗ → 0, qτ → 0 is very important. In our finite

system the q⃗ = 0 mode is isolated, and, moreover, in our present treatment the Wilson line is

of finite length, so we must take the q⃗ = 0 limit first and then qτ → 0. Hence, ρ1(q⃗ = 0) = 0.

This is not surprising. In perturbation theory, we start with the vacuum which has charge

0. Unless we manually project the system into a finite charge subspace (as we do in our

treatment by acting on the vacuum with z, z† operators), we will never be able to see global

screening of charge. Since the diagrams contributing to ρ1(q⃗) are disconnected from the

external z line, ρ1(q⃗ = 0) = 0.

Now, the connected contribution, simply gives the charge density of one spinon in the

k⃗ = 0 state,

ρ2(q⃗) = −δq⃗,0 (A10)

Putting the two contributions together,

ρ(q⃗) = 1 (A11)

ρ(x⃗) = δ2(x⃗) (A12)

as expected by equations of motion (A4).

Thus, we have been able to check exact screening of external charge, which follows from

equation of motion (A4), to leading order in 1/N . We see that local and global parts of the

screening charge come from very different Feynman diagrams.

∗ Electronic address: mmetlits@fas.harvard.edu
† Electronic address: subir˙sachdev@harvard.edu
1 K. Manabe, H. Ishimoto, N. Koide, Y. Sasago, and K. Uchinokura, Phys. Rev. B 58, R575

29

mailto:mmetlits@fas.harvard.edu
mailto:subir_sachdev@harvard.edu


(1998).
2 J. Bobroff, H. Alloul, W. A. MacFarlane, P. Mendels, N. Blanchard, G. Collin, and J.-

F. Marucco, Phys. Rev. Lett. 86, 4116 (2001).
3 S. Ouazi, J. Bobroff, H. Alloul, M. Le Tacon, N. Blanchard, G. Collin, M. H. Julien, M. Horvatić,
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